PPPL-3268 is available in pdf or postscript formats.

Gyrokinetic Theory for Arbitrary Wavelength Electromagnetic Modes in Tokamaks

Authors: H. Qin, W.M. Tang, and G. Rewoldt

A linear gyrokinetic system for arbitrary wavelength electromagnetic modes is developed. A wide range of modes in inhomogeneous plasmas, such as the internal kink modes, the toroidal Alfvén eigenmode (TAE) modes, and the drift modes, can be recovered from this system. The inclusion of most of the interesting physical factors into a single framework enables us to look at many familiar modes simultaneously and thus to study the modifications of and the interactions between them in a systematic way. Especially, we are able to investigate self-consistently the kinetic MHD phenomena entirely from the kinetic side. Phase space Lagrangian Lie perturbation methods and a newly developed computer algebra package for vector analysis in general coordinate system are utilized in the analytical derivation. In tokamak geometries, a 2D finite element code has been developed and tested. In this paper, we present the basic theoretical formalism and some of the preliminary results.