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Abstract

A linear gyrokinetic system for arbitrary wavelength electromagnetic modes is de-

veloped. A wide range of modes in inhomogeneous plasmas, such as the internal kink

modes, the toroidal Alfv�en eigenmode (TAE) modes, and the drift modes, can be re-

covered from this system. The inclusion of most of the interesting physical factors

into a single framework enables us to look at many familiar modes simultaneously and

thus to study the modi�cations of and the interactions between them in a systematic

way. Especially, we are able to investigate selfconsistently the kinetic MHD phenom-

ena entirely from the kinetic side. Phase space Lagrangian Lie perturbation methods

and a newly developed computer algebra package for vector analysis in general coor-

dinate system are utilized in the analytical derivation. In tokamak geometries, a 2D

�nite element code has been developed and tested. In this paper, we present the basic

theoretical formalism and some of the preliminary results.
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1 Introduction

The motivation of this research project is twofold: to develop an alternative, more compre-

hensive and self-consistent approach for kinetic MHD theory, and to add electromagnetic

e�ects to a global kinetic analysis of low frequency microinstabilities with the goal of achiev-

ing a better understanding of anomalous transport in toroidal geometry. Basically, the pre-

vious focus has been on the electrostatic drift type instabilities and on pure uid type MHD

modes. However, in order to realistically assess the stability properties in high temperature

(high beta) plasmas, it becomes necessary to systematically analyze kinetic MHD modes and

electromagnetic drift waves. Developing the required methods of analysis and the associated

codes constitute fundamental problems in the �eld of plasma stability. It is believed that

the interaction between kinetic e�ects and MHD modes, such as the �shbone modes and the

TAE modes, is the key physical reason for many bewildering phenomena in fusion plasmas.

In addition, there are possible new applications of kinetic-MHD, such as collisionless recon-

nection, which is thought to be relevant to magnetic storms in the magnetosphere and to the

sawtooth instability commonly seen in modern tokamaks. For drift type microinstabilities

and the associated transport theory, the inclusion of electromagnetic e�ects has long been

recognized as being necessary. For example, the examination of electromagnetic �i modes

in slab geometry [1] and in toroidal geometry [2, 3] revealed that increasing plasma beta

can provide a stabilizing e�ect, especially when �nite Larmor radius (FLR) e�ects of ions

become important.

These problems can be put into a single theoretical framework |- the gyrokinetic the-
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Figure 1: The multi-scale-length structure of the internal kink mode.

ory of arbitrary wavelength electromagnetic modes. On the one hand, including magnetic

components in the kinetic analysis and extending it to long wavelength modes formally leads

us into the kinetic-MHD regime from the kinetic side. An example of this approach is the

kinetic MHD ballooning mode theory. [4] Using this formalism we are able to recover those

familiar MHD results entirely from the kinetic point of view, and more importantly to obtain

kinetic modi�cations. Compared with previous hybrid kinetic-MHD theory, the approach

from the kinetic side is more rigorous, selfconsistent and comprehensive. On the other hand,

the drift type microinstabilities and the associated transport can be also investigated sys-

tematically in this theoretical framework. Not only do we recover the existing results such

as the electrostatic limit, [5, 6] the long wavelength limit, [7] and the ballooning limit, but

also we can explore many new problems, for example, the intermediate wavelength regime

and the coupling between drift waves and shear Alf�ven waves.

Furthermore, in magnetized plasmas there exist a lot of multi-scale-length modes. Ac-

tually the well-known internal kink mode is indeed a multi-scale-length mode (See Figure

1).

For an unstable internal kink mode, there is a boundary layer around the rational surface,
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inside which the scale length is much shorter than that outside. FLR e�ects are important

inside the boundary layer, whereas outside the boundary layer it is just a long wavelength

MHD mode. Obviously this structure can not be described by the conventional approaches,

neither the long wavelength ideal MHD nor the short wavelength kinetic theory. An arbitrary

wavelength kinetic approach will provide us with a tool for this kind of multi-scale-length

structure.

In this paper, we present our gyrokinetic theory for arbitrary wavelength electromagnetic

modes. First, the linear gyro-kinetic equation (GKE) valid for arbitrary wavelength is derived

using the phase space Lagrangian Lie perturbation method. [8, 9, 10, 11, 12] The existing

gyrokinetic equations are mainly derived for the high modenumber (i.e. short wavelength)

modes, [19] for which some of the background inhomogeneities are not important and are

left out. However the most crucial physical factors driving the long wavelength modes, such

as the toroidal Alfv�en eigenmode (TAE)[13, 14] mode and the internal kink mode,[15, 16, 17]

are the background inhomogeneities which include the inhomogeneities of the magnetic �eld,

temperature and density. Part of the inhomogeneity of the magnetic �eld enters through

the current distribution. In our GKE, all the background inhomogeneities are fully retained.

Then a gyrokinetic system for the shear Alfv�en modes is developed. This system consists

three basics equations: the gyrokinetic equation, the gyrokinetic quasineutrality condition,

and the gyro-kinetic moment equation (GKM) which is derived by combining the parallel

Ampere's law and the 0th moment of the GKE. In this system, all the interesting physical

factors are kept. Many classical results obtained before by di�erent theories can be put

into a single framework in our theory. Therefore, it is also a good framework to study the

modi�cations of and the interactions between these classical modes.

The solution methods for this system are also developed. Even though this is a fully
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kinetic approach, the di�erential equations which need to be solved numerically can be cast

rigorously into the con�guration dimensions. This is accomplished by solving the linear GKE

using the method of integrating along characteristic lines, and substituting the solution of

the distribution function in terms of perturbed �elds back into the quasineutrality condition

and the GKM. A 2D numerical code for tokamak geometries has been developed and tested.

[6, 7] The newly developed computer algebra package for vector analysis in general coordinate

systems is also utilized in solving the equation system.[18] In section 2, we derive the linear

GKE for arbitrary wavelength modes and the corresponding gyrokinetic Maxwell's equations.

The gyrokinetic system for shear Alfv�en physics is presented in section 3. Then, in section 4

we compare our system to other existing equations and especially the ideal MHD equation.

Section 5 is about the analytical and numerical solution methods. Two simple applications,

the local dispersion relations for electrostatic drift waves and the instabilities of the internal

kink mode in a straight tokamak, are given in section 6. The last section is the conclusions

and some discussion on our future work.

2 Linear gyrokinetic equation for arbitrary wavelength

electromagnetic modes

Di�erent versions of the GKE have been derived many times by di�erent methods in di�erent

representations.[19, 20, 21, 22, 11, 12] Usually, it is derived for short wavelength modes for

which many of the equilibrium inhomogeneities can be neglected. However the essence of the

GKE is to average out the fast time scale gyromotion. The wavelength can be left unspeci�ed

and all the equilibrium inhomogeneities can be kept in. We will derive the linear GKE for

arbitrary wavelength modes using the phase space Lagrangian Lie perturbation method.
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The derivation here is similar to that of Brizard for the nonlinear GKE.[12] However, here

we consider arbitrary wavelength modes, and all the equilibrium inhomogeneities are fully

retained. We use the U representation instead of the �k representation, where U is the

parallel velocity and �k � U=
. Also, unnormalized real physical units are used.

The equilibrium is assumed to be magnetostatic. In the extended guiding center coordi-

nates (X; U; �; �; w; t), the extended phase space Lagrangian is[8, 10, 12]

E =bE �HEd�

=(
e

c
A+mUb� �

mc

e
W ) � dX +

mc

e
�d� � wdt� (H � w)d�;

(1)

where X is the con�guration component of the guiding center coordinate, U is the parallel

velocity, � is the magnetic moment, � is the gyrophase angle, and

W = R +
b

2
(b � r� b); R = (re1) � e2: (2)

b = B=B. e1 and e2 are unit vectors in two arbitrarily chosen perpendicular directions, and

e1 and e2 are perpendicular to each other. To deal with the time-dependent Hamiltonian, the

regular phase space is extended to include the time coordinate and its conjugate coordinate

energy w. bE is the extended symplectic structure, HE = H�w is the extended Hamiltonian,

and H is the regular Hamiltonian de�ned as

H =
mU2

2
+ �B:
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The corresponding Poisson bracket is obtained by inverting the symplectic structure bEij ,

fF;Gg = e

mc
(
@F

@�

@G

@�
� @F

@�

@G

@�
)� cb

eB�

k

� [(rF +W
@F

@�
)� (rG+W

@G

@�
)]

+
B�

mB�

k

� [(rF +W
@F

@�
)
@G

@U
� (rG+W

@G

@�
)
@F

@U
] + (

@F

@w

@G

@t
� @F

@t

@G

@w
);

(3)

where

B� = B + Ur� b; B�

k
= b�B�: (4)

When the perturbed electromagnetic �eld is introduced, the extended phase space La-

grangian is perturbed accordingly:

E = E0 + E1;

E1 = [
e

c
A1(T

�1
GC�X; t) � d(T�1

GC�X)]� e�1(T
�1
GC�X; t)d�;

(5)

where TGC� is the push-forward transformation induced by the guiding center transformation,

and T�1
GC� is its inverse.

T�1
GC�X =X + �0 + �1 +O(�2B); (6)

where

�0 �
c

e

r
2�

B
b�; (7)

and �B is the ratio between the gyroradius and the scale length of the equilibrium magnetic
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�eld.

�B =
�0

LB
: (8)

To derive the linear GKE, we usually don't need higher orders of the guiding center trans-

formation. The leading order expression,

T�1
GC�X =X + �0; (9)

will be su�cient for our purpose. Expanding d(T�1
GC�X), we obtain:

E1 =
e

c
A1(X + �0; t) � [(1 +r�0) � dX +

@�0
@�

d� +
@�0
@�

d�] � e�1(X + �0; t)d�: (10)

The essence of the Lie perturbation method is to introduce a near identity transformation

from the equilibrium guiding center coordinates Z = (X; U; �; �; w; t) to the gyrocenter coor-

dinates �Z = ( �X; �U; ��; ��; �w; �t) when the perturbed �eld is present such that the transformed

extended phase space Lagrangian � can be gyrophase independent.

We emphasize that there are three di�erent coordinate systems appearing in our for-

malism. (X;V ) is the particle `physical' coordinate system. Z = (X; U; �; �; w; t) is the

(extended) `guiding center' coordinate system in an equilibrium magnetic �eld. When the

time-dependent electromagnetic �eld is introduced, we use the `gyrocenter' coordinate sys-

tem �Z = ( �X; �U; ��; ��; �w; �t) to describe the gyrocenter motion. Among other things, the

most well-known di�erence between the guiding center motion and gyrocenter motion is

the polarization drift motion due to the time-dependent electrical perturbation. We follow

Brizard[12] in using the terms `gyrocenter' and `guiding center' to distinguish these two
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di�erent coordinate systems.

For the transformation

�Z i = Z i +Gi(Z); (11)

the leading order transformed extended phase space Lagrangian is:[9]

�E1 = E1 � iG!E0 + dS = b�E1 � �HE1d�; (12)

where !E0 = dE0, S is the gauge function, and iG!E0 is the interior product between the

vector �eld G and the two form !E0. There are several ways to make b�E and �HEd� gyrophase

independent. We will choose G and S such that there is no perturbation on the symplectic

structure,

b�E1 = 0: (13)

This will e�ectively transfer the perturbation into the Hamiltonian. Since we choose not to

change the time variable t, Gt = 0: Other components of G are solved for from b�E1 = 0.

G = � c

eB�

k

b� (
e

c
A1 +rS)� B�

mB�

k

@S1

@U
+O(�B);

GU =
B�

mB�

k

� (e
c
A1 +rS) +O(�B);

G� =
e

mc
(
e

c
A1 � @�0

@�
+
@S

@�
);

G� = � e

mc
(
e

c
A1 � @�0

@�
+
@S

@�
) +O(�B);

Gw = �@S
@t
:

(14)
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The transformed Hamiltonian is

�HE1 = HE1 �Gi @HE0

@xi
+Gw = e�1( �X + �0; t)�

e

c
A1( �X + �0; t) � f �X + �0;HE0g � fS;HE0g;

(15)

in which

f �X + �0;HE0g = v + vd +O(�B): (16)

In the calculation related to the gyrocenter transformation, we will only keep the lowest

order in terms of �B, because the background FLR e�ects normally are not important.

We choose

�HE1 = eh�1( �X + �0; t)� v �
e

c
A1( �X + �0; t)i; (17)

where h i represents the gyrophase averaging operation. This leads to the equation deter-

mining the gauge function S:

fS;HE0g = 

@S

@�
+
@S

@t
+
@S

@ �X
� fX;HE0g+ @S

@U
fU;HE0g

= e e�1( �X + �0; t)�
e

c
gv �A1( �X + �0; t);

(18)

where e�1( �X+�0; t) and gv �A1( �X+�0; t) are the gyrophase dependent parts of �1( �X+�0; t)

and v �A1( �X + �0; t) respectively.

e�1( �X + �0; t) = �1( �X + �0; t)� h�1( �X + �0; t)i
gv �A1( �X + �0; t) = v �A1( �X + �0; t)� hv �A1( �X + �0; t)i:

(19)
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To the lowest order,



@S

@�
= e e�1( �X + �0; t)�

e

c
gv �A1( �X + �0; t): (20)

Since b�E1 = 0, the Poisson bracket in the gyrocenter coordinates is the same as that in the

guiding center coordinates, which is give by Equation (3).

Now we are ready to obtain the linear GKE. Unless clarity requires us to use the barred

notation, we will drop the bars for the gyrocenter coordinates thereafter. In the gyrocenter

coordinates (X; U; �; �; w; t), the distribution function F (X; U; �; �; w; t) satis�es the Vlasov

equation:

fF;HEg = @F

@t
+ fF;Hg = @F

@t
+ _X

@F

@X
+ _U

@F

@U
+ _�

@F

@�
= 0: (21)

We prove that F is gyrophase independent. Let

F = F (0) + �BF
(1) + �2BF

(2)+ :::: (22)

The leading order is:

@F (0)

@�
= 0: (23)

F (0) is gyrophase independent. To the next order:

@F (0)

@t
+ _X

@F (0)

@X
+ _U

@F (0)

@U
+ _�

@F (1)

@�
= 0; (24)

Since all the terms except for @F (1)=@� are gyrophase independent, gyrophase averaging this
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equation gives,

@F (0)

@t
+ _X

@F (0)

@X
+ _U

@F (0)

@U
= 0; (25)

and therefore

_�
@F (1)

@�
= 0: (26)

By the same way, we can prove that F is gyrophase independent to all orders.

The linear GKE in its geometric form (coordinate independent form) can be written as:

ff;HEg+ fF0;HE1g = 0; (27)

or

@f

@t
+ ff;H0g = �fF0;H1g; (28)

where

F = F0 + f;

H0 =
mU2

2
+ �B0;

H1 = he�1(X + �0; t)�
e

c
v �A1(X + �0; t)i:

(29)
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In the coordinates (X; U; �; �; w; t), the linear GKE is,

@f

@t
+ (Ub+ vd) � rf � 1

m
b � rH0 =

c

eB
b � (rF0 �rH1)� 1

m
b � (rF0

@H1

@U
�rH1

@F0

@U
):

(30)

Another set of gyrocenter coordinates (X; "; �; �; w; t) is often used. " is the total energy

in the unperturbed �eld, that is

" = H0 =
mU2

2
+ �B0: (31)

In this set of gyrocenter coordinates, the linear GKE is:

@f

@t
+ (Ub+ vd) � rf = (

c

eB
�rF0) � rH1 +

@F0

@"
(Ub+ vd) � rH1: (32)

An alternative form of this equation is written in term of the nonadiabatic part of f ,

g = f �H1

@F0

@"
: (33)

@f

@t
+ (Ub+ vd) � rf = (

c

eB
�rF0 � r � @F0

@"

@

@t
)H1: (34)

The gyrokinetic Maxwell equations are as important as the GKE itself. The di�erences

between di�erent versions of the GKE can be usually resolved when the corresponding gy-

rokinetic Maxwell equations are taken into account in appropriate coordinate systems.
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The Poisson equation is

�r2�(r; t) = 4�
X
j

e

Z
d3vf(r; t;v) +

1

c

@

@t
r �A(r; t); (35)

where

Z
d3v f(r; t;v) =

Z
d6Z [T �

GY f ](Z; t)�(T
�1
GC�X � r): (36)

Ampere's law is

r� (r�A(r; t)) =
4�

c

X
j

e

Z
d3v vf(r; t;v); (37)

where

Z
d3vvf(r; t;v) =

Z
d6Z [V gc(Z)][T

�

GY f(Z; t)]�(T
�1
GC�X � r): (38)

In above equations, d6Z is understood to be (B�

k
=m) d3XdUd�d�. T �

GY is the pull-back

transformation, which transforms the perturbed distribution f in the gyrocenter coordinates

into that in the guiding center coordinates. T�1
GC� is the inverse of the push-forward TGC� that

transforms the particle physical coordinates (r;v; t) into the guiding center coordinates. We

assume T �

GC; TGC�; T
�

GY and TGY � are one-one onto (bijective). Generally for a macroscopic

quantity Q(r) in the particle coordinates, we have

Q(r) =

Z
Q(r;v)fPH(r;v) d

3v =

Z
�(x� r)Q(z)fPH(z) d6z: (39)



15

In the guiding center coordinates Z = (X; U; �; �),

Q(r) =

Z
[T � �1
GC Q](Z)fGC(Z)�(T

�1
GC� � r) d6Z: (40)

Treating Z in the above equation as a dummy variable, and replacing it by the gyrocenter

coordinates �Z = ( �X; �U; ��; ��; �w; �t) , we get,

Q(r) =

Z
[T � �1
GC Q]( �Z)[T �

GY fGY ](
�Z)�(T�1

GC�
�X � r) d6 �Z: (41)

The pull-back transformation from the gyrocenter coordinates to the guiding center coordi-

nates is easily obtained from the expression for G given by Equation (14),

T �

GY F = F + LGF

= � b
B
�A1 � rF +

e

mc
b �A1

@F

@U
+

e

mc
[
e

c
A1 � @�0

@�
+
@S

@�
]
@F

@�
+O(�B);

(42)

where LGF represents the Lie derivative of F with respect to the vector �eld G.

We will use A and � to notate the perturbed �eld thereafter; the subscript \1" will be

dropped.

3 Arbitrary wave-length electromagnetic gyrokinetic

system for shear Alfv�en physics

As discussed before, the most inuential factors which solely de�ne the characteristics of

long wavelength modes are the background inhomogeneities, including the inhomogeneities

of equilibrium temperature, density, magnetic �eld, and current. We need to describe these
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inhomogeneities properly in the kinetic context in order to develop a successful kinetic theory

for arbitrary wavelength electromagneticmodes. At �rst thought, one would suggest a simple

solution: express all the background inhomogeneities by an inhomogeneous and anisotropic

equilibriumdistribution function, and carry out the rest of the process straightforwardly. But

for more realistic systems, such as a tokamak, this simple solution won't work out easily.

The reason is that when we put all the physical e�ects, the background inhomogeneities and

the kinetic e�ects, into the distribution function, they entangle together in such a complex

way that the problem is not tractable anymore.

Another method is necessary. To proceed, let's observe some basic facts associated with

the anisotropic distribution function

Fj =
nj(r)

[2�Tj(r)=mj]3=2
exp

�
�mj[v

2
?
+ (vk � uj)

2]

2Tj(r)

�
: (43)

The equilibrium current produced by the inhomogeneity of the B �eld can be separated out

from the unperturbed distribution function by taking the �rst moment,

Z
vFjd

3v = njuj; (44)

which suggests singling out the equilibrium current in deriving the GKM equation. Another

fact is that the anisotropy of the equilibrium distribution function turns out to be weak. For

example, to create the toroidal current for the poloidal �eld in a tokamak,

J = enu � c

4�
r�Bp; u � cBp

4�ena
: (45)
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For standard tokamak parameters,

u2

v2th
� 2

c2

v2th

1

�p

�2D
a2

�

8>><
>>:
10�8; electrons;

10�5; ions.

(46)

This estimate suggests that we can almost assume the unperturbed distribution to be

isotropic. But we have to assume an anisotropic distribution, since the equilibrium in-

homogeneities can't be ignored. The answer to this seeming paradox is that the bulk of the

plasma doesn't contribute to the magnetic �eld inhomogeneity; the anisotropic part of the

plasma is the only source for the magnetic �eld inhomogeneity although its population is

extremely small. Hence we can't throw away the anisotropic component for this reason. For

other e�ects, like perturbed pressure e�ects, collision e�ects, and Landau damping, where the

contribution from the isotropic part is non-vanishing, the contribution from the anisotropic

part can be ignored completely. Our methodology here is to separate out the terms related

to the anisotropy in velocity space during the process of deriving the GKM, after which the

unperturbed distribution function will be assumed to be isotropic.

Most of the important non-electrostatic long wavelength eigenmodes in tokamak geometry

are shear Alfv�en waves, that is, the parallel magnetic perturbation is much smaller than the

perpendicular magnetic perturbation. Kink modes and TAE modes fall into this category.

In a homogeneous medium, the shear Alfv�en wave is the branch with the dispersion relation

!2 = k2
k
v2A. It has several characteristics:

� B1 ? (k �B0);v1 ? (k �B0);B1k = 0, and v1k = 0.

� �1 = 0; p1 = 0, and r � v1 = 0.

For the shear Alfv�en wave in an inhomogeneous plasma, these properties are not all true.
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We will restrict ourselves to large aspect ratio tokamak geometries. We de�ne the shear

Alfv�en modes in a large aspect ratio tokamak as the modes with

A? = 0: (47)

This de�nition is consistent with the normal meaning of shear Alfv�en wave, because from

B1 = r�A = r� (Akb0) = rAk � b0 +Akr� b0 (48)

we get the estimate

B1? � b0 �r� b0Ak �
Ak

R
� B1k �

Ak

r
:

We also have r � � � 0. From

B1 = r� (� �B0) = �B0r � � + (B0 � r)� � (� � r)B0;

and B1k � B1?; it is easy to observe

B1k � �B0k(r � �) + iB0kk�k = B0kk? � �? � k?�?B0:

That is k? � �? � k?�? � k�:

Other shear Alfv�en characteristics in a homogeneous medium generally are not valid in

tokamak geometries. However, the pressure perturbation sometimes can be treated as a

small correction by the virtue of the low � assumption. This is obvious from the motion
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equation:

�0
@v

@t
=

1

c
J1 �B0 +

1

c
J0 �B1 �rp1: (49)

1

c
J 1 �B0 � 4�B2

0

�

r2
� rp1 � r � �rp0 � �

r2
p0:

Overall, the shear Alfv�en waves that we will study in the large aspect ratio low � toka-

maks are those almost incompressible eigenmodes with zero perpendicular vector potential

perturbations, small parallel magnetic perturbations, and small pressure perturbations.

For shear Alfv�en physics,

A = Akb0: (50)

We need three equations to complete the system. Besides the GKE, the gyrokinetic Poisson

equation and the gyrokinetic parallel Ampere's law are used. Carrying out the gyrophase

averaging, we obtain

H1 =
e

m
J0�(X)� e

mc
J0UAk(X): (51)

In this equation and other equations appearing latter, J0(v?r?=i
) should be viewed as a

symbol for the di�erential operator de�ned below:

J0(
v?r?

i

) = 1 +

v2
?
r2

?

4

+ :::: (52)

To derive the explicit forms of the gyrokinetic Maxwell's equations, we �rst look at the
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pull-back transformation T �

GY f . The special form of Equation (20) for shear Alfv�en modes

is



@S

@�
=
e



�0 � [r�(X; t)� 1

c
UrAk(X; t)]: (53)

Using Equation (42), we get the pull-back transformation for shear Alfv�en modes,

T �

GY F = F +
e

mc
Ak(X + �0; t)

@F

@U
+
e

B
[e�(X + �0; t)�

1

c
gUAk(X + �0; t)]

@F

@�
: (54)

The perturbed density, perturbed ow, and perturbed current can be derived from the

general form of Equation(41).

n(r) =

Z
[T �

GY f ](Z)�(X + �0 � r) d6Z

=

Z
f(Z)�(X � r)d6Z +

Z
[�(X + �0 � r)� �(X � r)]f(Z) d6Z

+

Z
�(X + �0 � r)f

e

mc
Ak(X + �0; t)

@F

@U

+
e

B
[e�(X + �0; t)�

1

c
gUAk(X + �0; t)]

@F

@�
g d6Z:

(55)

The physical meaning of this equation is clear. The perturbed density in particle coordinates

consists of three parts, the perturbed density in gyrocenter coordinates, the guiding center

residue, and the gyrocenter residue. The guiding center residue is related to the equilibrium

FLR e�ect and thus can be ignored. After some lengthy algebra,

n1(r; t) =

Z
f(r; U; �; t) d3v +

e

m
r?

n0


2
r�(r; t) + 3

4

ev2tn0

m
4
r4

?
�(r; t); (56)
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where d3v = 2�(B=m)dUd�. For the perturbed parallel ow,

n0Vk1(r) =

Z
U [T �

GY f ](Z)�(X + �0 � r) d6ZZ
Uf(Z)�(X � r)d6Z +

Z
[�(X + �0 � r)� �(X � r)]f(Z) d6Z

+

Z
U�(X + �0 � r)f

e

mc
Ak(X + �0; t)

@F

@U

+
e

B
[e�(X + �0; t)�

1

c
gUAk(X + �0; t)]

@F

@�
g d6Z:

(57)

Again, the algebra here is straightforward but involved. The �nal result is:

n0Vk1(r; t) =

Z
Uf(r; U; �; t) d3v +

Z
e

mc
hUAk(r + �0)i

@F

@U
2�
B

m
d�dU +

en0v
2
t

2mc
2
r2

?
Ak:

(58)

Therefore, the quasi-neutrality condition is

X
j

e

�Z
fd3v +

e

m
r?

n


2
r?�+

3e

4m

v2t

2

n



r4

?
�

�
= 0; (59)

and parallel Ampere's law is

[r�r�A]k =
4�

c

X
j

e

Z
U(f +

@F0

@E

e

mc
hUAki)d3v + 4�

c

e2n0v
2
t

2mc
2
r2

?
Ak: (60)

In the above equations, the spatial variable is the particle coordinate r. However r is a

dummy variable. What matters is the functional forms. We can replace r by the spatial

coordinate of the gyrocenter coordinate Z. The Equations (59) and (60) will be referred

to as the gyrokinetic quasineutrality condition and the gyrokinetic parallel Ampere's law

respectively.
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Instead of using the parallel Ampere's law directly, we usually combine it with the 0th

moment equation of the GKE to get the gyrokinetic moment equation (GKM) and use this

as the third equation in our equation system. This equation is often referred as the GKM

, in spite of the fact that it is distinct from the gyrokinetic equation because Ampere's law

has been utilized to derive it. We use the linear GKE in (X; U; �; �), Equation (30). The

0th moment of it is

@

@t

Z
f d3v +

Z
vd � rf d3v +

Z
Ub � rf d3v � 1

m

Z
b � �rB @f

@U
d3v

=
cb

eB
�
Z
rF0�rH1 d

3v � b

m
�
Z
@H1rF0

@U
d3v +

b

m
�
Z
r(H1

@F0

@U
) d3v:

(61)

It is obvious that the 4th term on the left hand side and the 2nd term on the right hand

side vanish. Applying
P

j ej, we have

X
j

e
@

@t

Z
f d3v +

X
j

e

Z
[Ub � rf � b � r(H1

m

@F

@U
)] d3v

+
X
j

cb

B
�
Z
rF �rH1 d

3v +
X
j

evd � rf d3v = 0:

(62)

Using the quasineutrality condition, Equation (59), we replace the �rst term by

�
X
j

@

@t
(
e

m
r?

n


2
r?�+

3e

4m

v2t

2

n



r4

?
�):
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For the second term, we have

X
j

e

Z
[Ub � rf � b � r(H1

m

@F

@U
)] d3v

=
X
j

e

Z
b � r(Uf � H1

m

@F

@U
) d3v

=
X
j

B � r 1

B

Z
(Uf � H1

m

@F

@U
)
B

m
2� d�dU

= B � rf 1
B

X
j

Z
e[Uf +

e

mc
hUAki@F

@U
]2�B d�dUg

= B � rf 1
B
[
c

4�
(r�r�Ak)k �

X
j

e2n0

mc

v2t
2
2

r2
?
Ak]g:

(63)

We note that only in (X; U; �; �) coordinates can we freely move U in and out of r. But we
should not move b or B in and out r. This is important for arbitrary wavelength modes, for

which the equilibrium inhomogeneities are crucial. It will later be clear that this accuracy

enables us to exactly recover the ideal MHD equation from our gyrokinetic system. For short

wavelength modes, the background variations are normally ignored, and B, n0, and b can

be brought in and out of r when necessary.

After some calculation, the third term is

(b�rAk) � r
j0k

B
+
X
j

cb�r n0v
2
t

2B0
2
� rr2

?
�:

As before, no approximations regarding the equilibrium inhomogeneities are made in this

calculation.

Finally, the GKM is:
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� @
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r � ( 1

V 2
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(B0 � r)(r�r�A) � B0
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j0k
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X
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Z
(evd � rf)j d3v +
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2
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Ak] + b�
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j

r(cen0v
2
t

2B0
2
)j � rr2

?
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(64)

where the
R
evd �rf d3v is evaluated in (X; U; �; �) coordinates. In (X ; "; �; �) coordinates,

it should be replaced by
R
(vd � rf + vd � rB@f=@"�) d3v: However, in a low � plasma,

Z
(vd � rf + vd � rB@f

@"
�) d3v �

Z
vd � rf d3v; (65)

because

vd � �cm(v2
k
+ v2

?
=2)

eB3
rB �B: (66)

We will introduce another �eld variable  k to replace Ak.  k is de�ned by

Ak � c

i!
(r k)k: (67)

It is easy to solve for f in (X; "; �; �) coordinates. The non-adiabatic part of the perturbed

distribution functions g is solved for in terms of � and  k from the gyro-kinetic equation

(34) by integrating along the characteristic lines. The formal solution is given as:

g =

Z t

�1

dt
0

�
(
b0



�rF0 � r � @F0

@E

@

@t
)H1

�
: (68)
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In conclusion, our gyrokinetic system for the arbitrary wavelength shear Alfv�en modes

consists of three equations, the gyrokinetic equation, Equation(34), the gyrokinetic quasineu-

trality condition, Equation(59), and the gyrokinetic moment equation, Equation(64).

4 Comparison and Recovery

Two simpli�ed versions of our GKM have been derived before to study kinetically TAE

related problems. The �rst one is the equation derived by Rosenbluth and Rutherford; [23]

this equation was used by Fu and Van Dam [14] as the starting equation for their kinetic

Alfv�en modes. Though some inhomogeneities are kept to give the desired result, most of

the important inhomogeneities in toroidal geometry, which would a�ect the �nal result, were

left out. Being aware of this shortcoming, Berk, et al derived a new equation for the same

purpose from ideal MHD theory;[24] then they replaced the pressure perturbation term by

a kinetic counterpart such that the crucial kinetic e�ects are able to be picked up. Clearly

this is the standard hybrid kinetic-MHD treatment, which is not always selfconsistent.

The advantage of our fully gyrokinetic formalism and the GKM equation is apparent by

comparison. First, our selfconsistent, fully kinetic approach is valid for general inhomoge-

neous plasmas, and all the important physical factors are captured. Therefore, it is capable

of delineating the �ne structure of these long wavelength modes we are interested in. As we

can see from the left hand side of the GKM, the kink terms are more detailed than those

in References [23] and [14], and also the right hand side, in addition to being selfconsistent,

has kinetic terms that are more comprehensive than those in References [23],[14], and [24].

The kink mode is harder to describe because it appears in the order of O(�2), while the

TAE comes out in the order of O(�). Most alternative theories, including Strauss's reduced
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MHD,[25] consider physical e�ects only to the order O(�), and thus are not capable of pro-

viding information order O(�2). Speci�cally, the internal kink modes can not be recovered

by these models.[25, 26, 27] Our system can recover TAE modes as well as kink modes in

tokamaks. It is the only known alternative approach for the classical yet still important

kink instabilities studied before by MHD theory. Moreover, with the ability to examine the

interaction between ideal MHD kink modes and kinetic e�ects, our system will be a key

to investigate systematically some bewildering questions in today's fusion plasma physics.

Secondly, the physical features captured in our GKM equation are separated. The back-

ground inhomogeneities responsible for the TAE modes, the kink instabilities, and other

ideal MHD modes is completely isolated in the left hand side; meanwhile the equilibrium

pressure e�ects, the Landau damping e�ects, and the FLR e�ects appear on the right hand

side of the equation. It is possible to look at each one of them individually. Finally, our

formalism is an arbitrary wavelength description. It is able to recover the results for short

wavelength modes. We will use this as a benchmark, while concentrating on the long wave

length electromagnetic modes and their kinetic modi�cations.

Now, we show that our GKM can recover the ideal MHD equations. From r� j1 = 0; we

get

(B0 � r)j1 �B0

B2
0

+r � B0 � (j1 �B0)

B2
0

= 0: (69)

The linearized motion equation is

�0
@v

@t
=

1

c
j1 �B0 +

1

c
j0 �B1 �rp1; (70)
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from which we obtain

c�0
B0

B2
0

� @v

@t
� B0

B2
0

� (j0 �B1) + c
B0

B2
0

�rp1 = B0

B2
0

� (j1 �B0): (71)

Also, we have the ideal Ohm's Law

B0 � v = cE1: (72)

We combine Equation (69), (71), and(72) to get:

(B0 � r)j1 �B0

B2
0

+r � c
2�0

B2
0

@E1

@t
�r � j0(B0 �B1)�B1(B0 � j0)

B2
0

+ crp1 � r � B0

B2
0

= 0:

(73)

For shear Alfv�en modes, this is

(B0 � r)j1 �B0

B2
0

+ i!r � c
2�0

B2
0

r?�+ (B1 � r)j0 �B0

B2
0

+ crp1 � r � B0

B2
0

= 0; (74)

where we have expressed the perturbation �eld in terms of � and  k, and B1 = r�(Akb0) '
B1? ' rAk � b0; j1 = (c=4�)r� B1: This equation is the ideal MHD eigenequation for

shear Alfv�enmodes in terms of perturbed electromagnetic �elds. It can be recovered from our

GKM when the FLR e�ect is neglected and the �rst term on the left hand side of the GKM

is replaced by its ideal MHD counterpart crp1 � r� (B0=B
2
0): The kinetic generalization of

ideal MHD is represented by the left hand side of the GKM, i.e., the kinetically generalized

pressure perturbation term and the FLR terms. Therefore it is reasonable to expect our

kinetic approach to recover all the important MHD results. Indeed, in the simplest limit, we
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have

X
j

ev � rf d3v =
X
j

mc

B
b� [

v2
?

2

rB
B

+ U2b � rb] � rf d3v

=
c

B
[b�rB � r

X
j

Z
f� d3v + b� b � rb � r

X
j

Z
fmU2 d3v]

� c

B
b� (

rB
B

+ b � rb) � rp1

� c(b� rB
B2

+r�b
B

) � rp1

= crp1 � r � B

B2
:

(75)

5 Solution methods in tokamak geometry

In this section, we discuss briey the solution methods for our equation system. More details

will be presented in future publications.

One of the di�culties in solving the basics Equations (34), (59), and (60) is that it

is a integral-di�erential equation system in a 6D space { 3D con�guration space and 3D

velocity space. Though these equations can be studied directly by particle simulation, the

linear eigenmode problem can be rigorously projected onto the 3D con�guration space by

solving the linear GKE for the perturbed distribution function in terms of �eld variables,

and substituting the solution back into the the quasi-neutrality condition and the GKM.

When combined with boundary conditions, an eigenvalue problem is formed.

This method has been successfully applied to the kinetic theory of both short wave length

electromagnetic modes and long wavelength electrostatic modes. In the latter case, of course,

the quasi-neutrality condition itself will complete the system; the GKM is not used.

When applying the equation system to the geometries of large aspect ratio tokamaks, we

encounter another di�culty. As one can imagine, the left hand side of the GKM equation as
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a scalar function of  k and � is extremely complicated in tokamak geometries. To study the

TAE modes kinetically, we have to evaluate this equation to order O(�). For internal kink

modes, it has to be calculated to order O(�2). Even assuming circular concentric magnetic

surfaces, the total number of terms involved to order O(�2) is about 1,500, which is obviously

problematic if calculating by hand.

We have developed a computer algebra package for vector analysis in general coordinate

systems, called GVA, in the context of symbolic computation system Mathematica.[18, 28]

GVA can perform symbolic vector calculation in any mathematically well de�ned coordinate

system. Asymptotic analysis capability is built into this package, and any analytical result

can be expanded as an asymptotic series. With the help of the GVA, we are able to work out

the required vector calculation to any order of � quickly with 100% accuracy after specifying

an equilibrium magnetic �eld and a coordinate system.

The simplest toroidal model equilibrium assumes circular, concentric ux surfaces, and

uses the coordinates (r; �; �) shown in the Figure 2.

The magnetic �eld is given by

B =
B0

h(�)
(e� +

r

q(r)R0

e�); (76)

where

h(�) � 1 + � cos �; � � r

R0

(77)
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Figure 2: Circular concentric tokamak coordinate system.

Assuming the general 2D expansion[29]

( k; �) =
X
m

( km(r); �m(r))e
in��im��i!t; (78)

let's work out the left hand side of the GKM equation in this coordinate system to the order

of O(�)2. There are more than 100 terms.

� @

@t
[
c2

4�
r � ( 1

V 2
A

r?�)] +
c

4�
(B0 � r)(r�r�A) � B0

B2
0

+ (r�A)? � r
j0k

B0

=
X
m

ein��im��i!t(
O2

R2
0

+
O3

R3
0

+
O4

R4
0

);
(79)

O3 = D1e
i� + U1e

�i�; (80)
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O4 = D2e
2i� + U2e

�2i� + S: (81)

where O2, O3, O4, etc are di�erential operators acting upon every pair of  km(r) and �m(r).

O2, O3 and O4 are O(�0) , O(�1) and O(�2) respectively. The O3 term can be separated into

D1 which couples downward by one poloidal harmonic, and U1 which couples upward by one

poloidal harmonic ; the O4 term can be separated into D2 which couples downward by two

poloidal harmonics, U2 which couples upward by two poloidal harmonics, and S which is

the self-coupling term. S can be divided further into the self-coupling term from a straight

tokamak Ss and that from toroidicity St, i.e. S = Ss + St. Inside every term, there are

terms related to  k representing by subscript \ " and terms related to � representing by

subscript \�". For example, Ss = Ss + Ss�. The expressions for these operators are listed

below in Appendix A.

The equation for straight tokamak geometry is a special case and can be recovered when

the toroidal coupling terms are set to zero. In this case, poloidal harmonics are decoupled.

For each one of them, we have:

� @

@t
[
c2

4�
r � ( 1

V 2
A

r?�)] +
c

4�
(B0 � r)(r�r�A) � B0

B2
0

+ (r�A)? � rj0k
B0

=(
O2

R2
0

+
Ss

R4
0

):

(82)

The equation system in tokamak geometries is generally a coupled system. There are

an in�nite number of ordinary di�erential equations coupled together. However, considering

the fact that the inverse aspect ratio is a small parameter, we can utilize some perturbation

techniques to simplify the system. The important observation is that the coupling between
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di�erent harmonics is proportional to �, as is apparent from Equation (79). The order O(�0)

term is O2, which is decoupled. The order O(�1) term is O3 which couples to the harmonics

higher by one and lower by one. In the order O(�2) term, O4, we �nd terms coupled to the

harmonics higher by two and lower by two. In other words, the coupling, like � itself, is a

m m m

m  - 1

m  - 2

m + 1

m + 2

εε ε
0 1 2

Figure 3: Toroidal coupling diagram.

weak e�ect. The strongest coupling of a harmonic to other harmonics is in order O(�1), and

only to its nearest neighbors. The longer the interval between two harmonics, the higher

order is the coupling between them. This situation is shown in the coupling diagram in

Figure 3.

The method of asymptotic decoupling, that we propose, is based upon this fact. To

order O(�0), all harmonics are decoupled. Therefore we can pick an eigenmode for � = 0,

for example (m;n) = (1; 1), and ask what the perturbation on this mode is when the small

parameter � is introduced. It is easy to see that to order O(�1), two new harmonics appear

| the m� 1 and m+ 1 harmonics. There are only three harmonics in the system now. We
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can solve for the m � 1 and m + 1 harmonics and the perturbation on the eigenfrequency

and the m harmonic. We can go on to the next order, O(�2), to solve for the m � 2 and

m+ 2 harmonics and the second order perturbations on other quantities. This process can

be carried out to any order.

One thing we need to realize about this asymptotic decoupling method is that the number

of di�erential equations involved varies as the perturbation process is carrying out. The

higher the order, the more the equations. To order O(�n), there are 2n � 1 equations in the

system, but only 2 new variables are introduced by each increase of one order.

For those modes whose leading order contains many decoupled harmonics, the asymp-

totic method will become intractable. Numerical solution is needed. Also, for kinetic e�ects

like trapped particle e�ects, a numerical code including all the interesting physics are indis-

pensable.

Our gyrokinetic system can be converted into a system of coupled ODEs of the following

form:

Apm

0
B@ �

00

m

 
00

km

1
CA+Bpm

0
B@ �

0

m

 
0

km

1
CA+ Cpm

0
B@ �m

 km

1
CA = 0; (83)

where Apm, Bpm, and Cpm are 2 � 2 block matrices whose two rows correspond to the

quasi-neutrality condition and the gyrokinetic moment equation respectively, with each block

spanning the poloidal harmonics. Here 0 denotes the radial derivative. Note that Apm, Bpm,

and Cpm are functions of r as well as !.

After truncation to some proper number of poloidal harmonics, this eigenvalue problem

is solved numerically using a �nite element method in the radial direction . The actual code
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will appear as a version of the two-dimensional kinetic code (KIN-2D) developed over the

past 20 years by Tang, Rewoldt, Marchand, and Artun at the Princeton Plasma Physics

Laboratory.[6, 7, 30, 31]

6 Two simple applications

In this section we give two simple applications of our gyrokinetic formalism for arbitrary

wavelength electromagnetic modes. As the �rst application, we derive the local dispersion

relation of electrostatic drift waves in slab geometry. Then we recover the classical ideal

MHD result of the internal kink mode in a straight tokamak. More interesting applications

such as global drift modes, internal kink modes in toroidal geometry, and TAE modes will

be covered in future publications.

For the local dispersion relation of electrostatic drift waves in slab geometry, we employ

the electrostatic limit of the Equation (32),

(
@

@t
+ Ub � r)fj � r�� b

B
rF0j � ejr� � bU @F0j

@"
= 0; (84)

whose solution is given by:

fj = F0j

j e j �
Te

[
!�j(1 � 3=2�j)� ! + kkU(1 +

Teej
Tijej

) + !�e�j
"
Tj

! � kkU
+ 1]; (85)

where !�j = (k?T=m
)jdnj0=dx is the diamagnetic drift frequency, and �j = dlnTj=dlnnj0.
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This solution is substituted in the quasineutrality condition,

X
j

ej[

Z
fj(X; U; �; t)2�B d�dU +

ej

mj

r?

nj0


2
j

r?�] = 0; (86)

to derive the dispersion relation. Normally, F0j can be assumed to be Maxwellian in the

gyrocenter coordinates. Then the density response in the gyrocenter coordinates can be

expressed in the following familiar form,

Z
fj(X; U; �; t)2� d�dU =

j e j �
Te

n0jf� Teej

Tj j e j �
Z(�)

kkvt
[!�e(1 � 1=2�j) + !

Teej

Tj j e j ]

� !�e�j�

kkvt
[1 + �Z(�)]g;

(87)

where � = !=kkvt. It is su�cient to only keep the gyrocenter residue of ions, because


2
eme � 
2

imi. As usual, electrons are assumed to be hot, that is �e � 1, and ions to be cold,

that is, �i � 1. We also assume that Te = Tj. Working out the algebra straightforwardly,

we obtain the dispersion relation,

1 � !�e

!
+ bs � 1

2
(
kkCs

!
)2(1 � !�pi

!
) =

i
p
�

kkvte
[!�e(1� �e=2)� !]; (88)

where bs = Tek
2
?
=(mi
2

i )�. bs comes directly from the gyrocenter residue which is due to

the polarization drift in the perturbed time-dependent electrical �eld. Without the kinetic

correction on the right hand side, it is the well-known uid result. We emphasize that the

appearance of the ion gyrocenter residue in the quasineutrality condition guarantees us a

complete recovery of the uid result.

The second application here is the classical internal kink mode in a straight tokamak.

The familiar ideal MHD result from the energy principle can summarized as follows,
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8>>>>>>><
>>>>>>>:

m2 6= 1 All modes are stable to O(�0)

m2 = 1

8>>>><
>>>>:

q(r = 0) > 1

n
stable to O(�0)

q(r = 0) < 1

n
neutral to O(�0)

unstable to O(�2)

In the straight tokamak approximation, all poloidal harmonics are decoupled. Our GKM

gives:

O2

R2
0

+
Ss

R4
0

+

Z
vd � rf d3v = 0: (89)

Because
R
vd � rf d3v is the smallest order term appearing in the equation, we can use the

lowest order solution of f here. The lowest order solution for f from the GKE is:

f =
e

T

! � !�

! � kkU
F0(�� kkU

!
 k) +

@F0

@"
H1: (90)

Substituting this solution into the quasineutrality condition, ignoring all the FLR e�ects,

and making use of the usual cold-ion and hot-electron expansions, we easily get the expected

relationship between  k and �,

 k = �: (91)

This is consistent with ideal MHD in which

E =
1

c
v �B: (92)
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It is obvious that

Ek = �rk�� 1

c

@Ak

@t
= �rk(��  k) = 0: (93)

Therefore � =  k in the ideal MHD limit.

When the solution for f and the relationship between � and  k are substituted into

Equation(89), the eigenequation is formed:

1

R2
0

[!2L1(�) + L2(�)] +
1

R4
0

[Ss(�)� R2
08�p

0

0(r)q
0(r)

B2
0q

3(r)
] = 0; (94)

where

L1(�) = � 1

!2
A0

[
1

r

d

dr
(r�

d�

dr
)� �

m2�

r2
]; (95)

L2(�) = R2
0[
1

r

d

dr
(rkk0

d�

dr
) � k2

k0

m2�

r2
� 1

r

dk2
k0

dr
�]; (96)

and

kk0 � 1

R0

(n� m

q
): (97)

Performing the operation
R a
0
dr r� on Equation (94), we get

!2

!2
A0

=
�WR a

0
[r�(d�

dr
)2 + �m

2�2

r
] dr

; (98)
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where

�W = �W2 + �W4: (99)

�W2 is the 2nd order contribution

�W2 = R2
0

Z a

0

k2
k0

r
[(�� r

d�

dr
)2 + (m2 � 1)�2] dr; (100)

and �W4 is the 4th order contribution ,

�W4 =
�1
R2

0

Z a

0

r�fSs [�]�
R2

08�p
0

0(r)q
0(r)

B2
0q

3(r)
g dr: (101)

Using the fact that L1 and L2 are Sturm-Liouville operators, we can show that if for all

trail functions �W > 0, then all modes are stable; if there exits a trial function � for which

�W < 0 , then there is at least one unstable eigenmode.

We immediately reach the following conclusions:

� If m2 6= 1, then the modes are stable with �W � O(�2).

� If m2 = 1, q(r = 0) > 1=n, then the modes are stable with �W � O(�2).

For the case of m2 = 1 and q(r = 0) < 1=n (assuming q(r = a) > 1=n), there exists a

rational surface at rs. We can choose the trail function as

�(r) =

8>><
>>:
r; r < rs

0; r > rs:

(102)
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It is obvious that �W2 = 0 and

�W = �W4 � O(�4): (103)

The mode is neutral to the order O(�2), and the instability is determined by �W4. Using

the familiar family of q pro�les:

q = q0
(1 + �)r2

1 � (1 � r2)1+�
(104)

we can verify that for a wide range of � and q0, �W4 is indeed less than zero. Therefore the

m = 1 internal kink mode is unstable when q(r = 0) < 1=n. In Figure 4 we plot �W4 against

q0 and � for the (n;m) = (1; 1) case.
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Figure 4: The gyrokinetic result for �W for a straight tokamak.

To compare with the ideal MHD result, we also plot the minimizing �W from the ideal

MHD energy principle for the same case[16](see Figure 5). Our kinetic results agree with
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Figure 5: The ideal MHD result for �W for a straight tokamak.

the classical ideal MHD results both quantitatively and qualitatively.

7 Conclusions

The gyrokinetic system for arbitrary wavelength electromagnetic modes developed in this

paper can cover a wide range of phenomena in inhomogeneous plasmas, from the electrostatic

drift waves to ideal MHD modes, from the short wavelength ballooning modes to the long

wavelength kink modes. Even though this system is comprehensive, it is also extremely

accurate. As we have seen, this system is capable of recovering the delicate internal kink

mode which can't be recovered by all the existing reduced systems such as Strauss's reduced

MHD. With newly developed symbolic computation facilities and the 2D comprehensive

numerical code, our fully kinetic approach enables us to investigate important kinetic-MHD

modes selfconsistently in great detail. It is an e�ective equation system to use to study the
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multi-scale-length behavior as well. These topic will be the focus of our future work and

publications.

Appendix A Expressions for terms in the GKM in cir-

cular concentric tokamak geometry
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q(r)6
+
2mnr2 q0(r)2

q(r)5
� n2 r2 q0(r)2

q(r)4
) k(r):

(120)
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Ss� =
4!2R2

0 � r
2 �(r)�00(r)

B0
2 q(r)2

+ (
12!2R2

0 � r �(r)

B0
2 q(r)2

� 8!2R2
0 � r

2 �(r) q0(r)

B0
2 q(r)3

+
4!2R2

0 � r
2 �0(r)

B0
2 q(r)2

)�0(r) + (
�8m2 !2R2

0 � �(r)

B0
2 q(r)2

+
8mn!2R2

0 � �(r)

B0
2 q(r)

)�(r):

(121)

St = (
3n2 r2

2
� mnr2

q(r)
) 00

k
(r) + (3n2 r � m2 r

2 q(r)2
� mnr

q(r)
+
mnr2 q0(r)

q(r)2
) 0

k
(r)

+ (
�3m2 n2

2
� 3m2

2 q(r)2
+
3mn

q(r)
+
m3 n

q(r)
+
m2 r q0(r)

q(r)3
� 3mnr q0(r)

q(r)2
) k(r):

(122)

St� =
�2!2R2

0 � r
2 �(r)�00(r)

B0
2

+ (
�8!2R2

0 � r �(r)

B0
2

� 2!2R2
0 � r

2 �0(r)

B0
2

)�0(r)

+
2m2 !2R2

0 � �(r)

B0
2

�(r):

(123)
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