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We revisit Parker’s conjecture of current singularity formation in 3D line-tied plasmas,
using a recently developed numerical method. variational integration for ideal mag-
netohydrodynamics in Lagrangian labeling. With the frozen-in equation built-in, the
method is free of artificial reconnection, hence arguably an optimal tool for stndying
current singularity formation. Using this method, the formmation of current singularity
has previonsly been confirmed in the Hahm-Kulsrud-Taylor problem in 2D In this paper,
we extend this problem to 3D line-tied geometry. The lincar solution, which is singnlar
in 2D, is found to be smooth for all system lengths, However, with finite amplitude.
the linear solution can become pathological when the system is sufficiently long. The
nonlinear solutions turn out to be smooth for short systems. Nonetheless, the scaling of
peak current density vs. system length suggests that the nonlinear solution may become
singular at a fiuite leugtli. Witli the results in hand. we cau neither confirm nor rule out
this possibility conclusively, since we cannot obtain solutious with systein length near

the extrapolated critical valne.

I. INTRODUCTION.

A long-standing problem in solar physics is why the
solar corona, a nearly perfectly conducting plasma where
the Lundquist number S can be as high as 10'*. has an
anomalously high temperature that conventional Ohuic
heating cannot explain. Decades ago. Parker (1972) pro-
posed that convective motions in the photosphere will
induce current singularities in the corona, and the subse-
quent magnetic reconnection cvents can account for sub-
stantial heating. This conjecture has remained controver-
sial to this day (Antiochos, 1987; Bogoyavlenskij, 2000;
Candclarcsi ct al., 2015; Craig & Poutin, 2014; Craig &
Sneyd, 2005: Janse et al.. 2010; Longbottom et al.. 1998;
Longcope & Strauss, 1994b; Low, 2006. 2010: Ng & Bhat-
tacharjee, 1998; Parker, 1983, 1994: Pontin et al.. 2016:
Pontin & Hornig, 2015; Rappazzo & Parker, 2013: Rosner
& Knobloch, 1982; Tsinganos et al., 1984; van Ballegooi-
jen, 1985, 1988; Wilmot-Smith et al., 2009a,b; Zweibel &
Boozer, 1985; Zweibel & Li. 1987).

This controversy fits into the larger context of currcnt
singularity formation, which is also a problem of interest
in toroidal fusion plasmas (Grad, 1967; Hahmm & Kul-
srud, 1985: Loizu et al.. 2015: Rosenbluth et al., 1973).
However. the solar corona, where magnetic field lines are
anchored in the photosphere. is often modeled with the
so-called line-tied geometry. This is a crucial difference
from toroidal fusion plasmas where closed field lines can
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cxist. For clarification, in this article, we refer to the
problem of whether current singularities can emerge in
3D line-tied geometry as the Parker problem.

Although this problein is inherently dynamical, it is
usually treated by examining maguctostatic equilibria for
simplicity, as Parker did in the first place. The justifica-
tion is, if the final equilibrium that an initially smooth
magnetic field relaxes to contains current singularities,
they must have formed during the relaxation. Here the
plasma is supposed to be perfectly conducting, so the
equilibrium needs to preserve the magnetic topology of
the initial field. Analytically, this topological constraint
is difficult to explicitly attach to the magnetostatic equi-
libriuin equation. Numnerically, most standard mecthods
for ideal magnetohydrodynamics (MHD) are suscepti-
ble to artificial ficld line recouncction in the presence of
(nearly) singular current densities. Either way, to en-
force this topological constraint is a major challenge for
studying the Parker problem.

It turns out onc can overcome this difficulty by adopt-
ing Lagrangian labcling, where the frozen-in cquation is
built into the equilibriim equation, instead of the com-
monly used Eulerian labeling. Zweibel & Li (1987) first
noticed that this makes the mathematical formulation of
the Parker problem explicit and well-posed. Moreover,
not solving the frozen-in equation numerically avoids the
accompanying error and resultant artificial reconnection.
A Lagrangian relaxation scheme with this feature has
been developed using conventional finite difference (Craig
& Sucyd. 1986), and cxtensively used to study the Parker
problem (Craig & Pontin. 2014: Craig & Sucyd, 2005:
Loungbottom et al., 1998; Wilmot-Swmith ct al.. 2009a,b).



Pontin et al. (2009) has later found that its current den-
sity output can violate charge conservation. and mimetic
discretization has been applied to fix it (Candelaresi
ct al., 2014).

Recently, a variational integrator for ideal NHD in
Lagrangian labeling has been developed by Zhou et al.
(2014} nsing discrete exterior calenlns (Desbrun et al.,
2005). Derived in a geometric and field-theoretic man-
ner. it naturally preserves many of the conservation laws
of ideal MHD, including charge conservation. It is ar-
guably an optimal tool for studying current singularity
formation.

Zhou et al. (2016) have used this method to study the
Hahm-Kulsrud-Taylor (HKT) problem (Hahm & Kul-
srud, 1985), a fundamental prototype problem for current
singularity formation in 2D, where a plasma in a sheared
magnctic ficld is subject to boundary forcing. The forma-
tion of current singularity is conclusively confirmed via
couvergence study, and its signature is also identified in
other 2D cases with more complex topology, such as the
coalescence instability of magnetic islands (Longcope &
Strauss, 1993).

In this paper, we extend the HKT problem to 3D line-
tied geometry. Zweibel & Li (1987) showed that the
linear solution, which is singular in 2D, should become
smooth. This prediction is confirmed by our numerical
results. However, we also find that given finite amplitude,
the linear solution can be pathological when the system is
sufficiently long. We speculate that this finitc-amplitude
pathology may trigger a finite-length singularity in the
noulinear solntionl.

We perforin convergence study ou the nonlincar solu-
tions for varying system length L. For short systems, the
nonlinear solutions converge to smooth ones. The peak
current density approximately scales with (L, — L)~!,
suggesting that the solution may become singular above
a finite length L, . However. the solutions for longer sys-
tems inherently involve strongly sheared motions, which
often lead to mesh distortion in our numerical method.
As a result, we cannot obtain solutions for systems with
lengths close to L, and lLicuce cannot conclude whether
such a finite-length singularity doces exist. Nonctheless,
our results arc suggestive that current singularity may
well survive in this line-tied system. in accordance with
the arguments in Ng & Bhattacharjee (1998).

This paper is organized as follows. In Sec. IT we formu-
late the Parker problem in Lagrangian labeling, specify
the setup in line-tied geometry, and introduce the con-
ventions of reduced MHD. Our numerical method is il-
lustrated in Sec. III. In Sec. IV we review the conclusions
from the HKT problem in 2D, and then present our re-
sults, both lincar and nonlinecar, in 3D line-tied geometry.
Discussions follow in Sce. V.,

[\v]

Il. THE PARKER PROBLEM

Parker (1972) originally considered a perfectly con-
ducting plasma magnetized by a uniform field B = 2
threaded between two planes at = = 0, L, which are often
referred to as footpoints. The footpoiuts are then subject
to random motions such that the maguctic field bhecomes
nommiform. He argued that in general, there exists no
smooth equilibrinim for the system to relax to, and there-
fore current singularities must form. This conjecture is
based on perturbative analvsis of the magnetostatic equi-
libriwm equation,

(V x B) x B=Vp, (1)

where p is the pressure. Many of the subsequent works
on the Parker problem arc performed on this equation as
well (Autiochos, 1987; Bogoyavlenskij, 2000; Jansce ct al.,
2010; Low, 2006, 2010; Parker, 1983; Rosuer & Knobloch,
1982; Tsinganos ct al.. 1984; van Ballcgooijen, 1985).

A caveat of this approach is that Eq. (1) is usually un-
derdetermined. That is, a given set of boundary condi-
tions may allow for more than one solution to this equa-
tion. and additional information is needed to identify a
specific one. Often it is prescribed to the equilibrium,
such as the pressure and guide field profiles in the Grad-
Shafranov equation (Grad, 1967). For the Parker prob-
lem, the information is the very constraint to prescrve
the initial maguetic topology. The hmplication is, iden-
tifying singular solutious to Eq. (1) does not nceessarily
prove Parker’s conjecture, since these solutions may not
be topologically constrained.

However, this topological constraint is mathematically
challenging to explicitly attach to Eq. (1) and its solu-
tions (Janse et al., 2010; Low. 2010). Nonetheless. it can
be naturally enforced if one adopts Lagrangian labeling
for ideal MHD, instead of Eulerian labeling that is used
in Eq. (1), as first noticed by Zweibel & Li (1987).

A. Lagrangian labeling

In Lagrangian labeling, the motion of the fluid ele-
ments is traced in terms of a continuous mapping from
the initial position xq to the current position x(xp.t).
In this formulation, the advection {continuity. adiabatic,
and frozen-in) equations are (Newcomb, 1962)

pd®x = pyd®zo = p = po/J, (2a)
p/p" =po/pg = p=npo/J". (2b)
B; dS, = Bu,‘ dSU,‘ =B, = .’L‘,jjBUJ'/J, (2C)

where x;; = Ov;/0z0;. J = det(a;;) is the Jacobian. v
the adiabatic index, pg = p(xg, 0) the initial mass density,
and the same goes for py and By. They reflect the fact
that in idecal MHD, mass, entropy, and magnctic flux arc
advected by the motion of the fluid clements. They are



built into the ideal NIHD Lagrangian and the subsequent
Euler-Lagrange equation (Newcomb, 1962),

. o x By
puti — By, T (—}.L)
iy, .

8 o Po BT e BH; “.1,,, b
Dy iy \ T 2,72

) 0. (3

This is the momentuin cquation, the ouly ideal NMHD
equation in Lagrangian labeling.

Without time dependence, Eq. (3) becomes an equilib-
rium equation. Its solutions will satisfy not only Eq. (1)
but automatically the topological constraint implied in
the Parker problem. since the initial field configuration
By is built into the equation. In contrast, not all so-
lutions to Eq. (1) can necessarily be mapped from given
initial conditions.

Thus, the equilibrium cquation in Lagrangian label-
ing offers a more natural and mathematically explicit de-
scription for the Parker problem, whicli siimply becoines
whether there exist singular solutions to such equation,
given certain smooth initial and boundary conditions. If
the initial field By is smooth, any singularity in the equi-
librium field B should trace back to that in the fluid
nmapping x(xg). In Sec.IL.B, we will specify the initial
and boundary conditions for the Parker problem.

B. 3D line-tied geometry

Parker’s original model can be characterized with a
uniform initial field By = 2 and prescribed smooth foot-
point motion x, (xy1) at zo = 0, L while z|.,—y., = 2p.
The subseript | denotes the in-plaue components (.. y).
Certain classes of footpoint motion were considered in
Craig & Sneyd (2005): Longbottom et al. (1998): Mikié
et al. (1989); Ng & Bhattacharjee (1998); van Ballegooi-
jen (1988), which are referred to as braiding experiments
in the recent review by Wilmot-Smith (2015).

An alternative is to consider a nonuniform By, referred
to as initially braided field in Wilmot-Smith (2015), with
no-slip footpoints (x = xg at z9 = 0, L). Note that to re-
main relevant to Parker’s original model, the nonuniform
By must be realizable from the Parker’s uniform ficld via
smooth footpoiut motion. Exawples include the coales-
cence instability (Longcope & Strauss, 1994a,h) and the
threaded X-point (Craig & Poutin, 2014), but cxclude
those with magnetic nulls (Craig & Effenberger, 2014:
Pontin & Craig, 2005).

We adopt the latter approach for its two advantages.
One is reduced computational complexity. More impor-
tantly, these initially braided fields are usually extended
from 2D cases that are susceptible to current singular-
ity formation (Craig & Litvinenko, 2005: Longcope &
Strauss, 1993). Unlike Parker’s original setup, this al-
lows one to focus on the cffect of 3D line-tied geometry

on current singularity formation. In Sec. TV. we will ex-
tend the HKT problem (Hahm & Kulsrud, 1985), where
current singularity formation is confirmed in 2D (Zhou
et al., 2016), to 3D line-tied geometry.

C. Reduced MHD

Reduced MHD (RMHD. Strauss, 1976) is an approx-
imation of MHD in the strong guide field limit that is
often used to model the solar corona. van Ballegooijen
(1985) first used what essentially is RNHD to study the
Parker problem.

In Eulerian labeling. RMHD approximations include
uniform guide field (B. = 1). rewoval of =z dynawics
{¢. = 0). and incompressibility (V - v = 0). The equilib-
rium equation becomes

B-Vj. =0, (4)

which is the = component of the curl of Eq.(1). Here
j =V x B is the current density.

Physically, Eq. (4) means that j. is constant along a
field line. In RAMHD, every ficld line is threaded through
all z. Thercfore. the implication for the Parker problein
is, if an equilibrium solution yields current singularity, it
must penetrate into the line-tied boundaries. Note that
this is a very strong condition that applies to all solutions
of Eq. (4), topologically constrained or not.

Translated into Lagrangian labeling, RMHD approxi-
mations become By. = 1, = = 2y, and J = 1. Following
Eq. (2¢), the in-plane field now reads

ox ox

B, = - B _"' 4
- UXH 1 0 + aZO (O)

The first term on the RHS results from in-plane motion,
while the second term is the projection of the tilted guide
field that shows up only in 3D.

At the line-tied boundaries (zp = 0.L). where x; =
Xo1, the z component of the (Eulerian) curl of Eq. (5)
reads

axl

]z:: - .]'0:5 + V_L X Z0 - (6)

Here jg., is the initial condition that has to be smooth.
That is, for j. to be (nearly) singular at the footpoints.
(0%, /0zp)|sg=0.. must be (nearly) singularly sheared
{(note that this is compatible with the line-tied houndary
condition). Therefore, we assert that strongly sheared
motion is an inherent feature of the Parker problem.
Throughout the rest of the paper, RMHD approxima-
tions are adopted unless otherwise noted. We comment
that the boundary layers close to the footpoints that are
identified in full MHD analysis (Scheper & Hassam. 1999;
Zweibel & Boozer, 1985; Zweibel & Li, 1987) are pre-
cluded in RHMD, which makes current singularity for-
mation cven more difficult. Nonctheless, we expecet that



if a current singularity can emerge in RNHD, it will likely
survive in full NIHD.

Hi. NUMERICAL METHOD

Numerically, many have used Eulerian methods for
ideal MHD to study the Parker problem (Longcope &
Strauss, 1994a; Mikié ct al.,; 1989; Ng & Bhattacharjce.
1998; Rappazzo & Parker. 2013). These simulations all
end up cucountering artificial recounuection. and topo-
logically constrained equilibrium solutions cannot be ob-
tained.

In contrast, Lagrangian methods that solve Eq.(3)
with moving meshes avoid solving the frozen-in equation
and the subsequent artificial reconnection. For example,
a Lagrangian relaxation scheme (Craig & Sneyd. 1986)
has been extensively used to study the Parker problem
(Craig & Pontin, 2014; Craig & Sneyd, 2005; Longbot-
tom ct al., 1998; Wilmot-Smith ct al., 2009a.b). In this
method, the inertia (Arst terin) in Eq. (3) is replaced by
frictional damping, which has heen argued to canse un-
physical artifacts by (Low. 2013). Also. Pontin ct al.
(2009) showed that the spatial discretization using con-
ventional finite difference can violate charge conservation
(V -j =0). Both of these issues have been fixed in Can-
delaresi et al. (2014): the former by keeping the inertia
during the relaxation, and the latter with mimetic dis-
cretization.

The numerical method we use is a recently developed
variational integrator for ideal MHD (Zhou et al., 2014).
It is obtained by discretizing the Lagraugian for ideal
MHD i Lagrangian labeling (Newcowb, 1962) on a wov-
ing wustructured niesh. Using disercte exterior calenlus
(Deshrun et al., 2005), the momentum equation (3) is
spatially discretized into a conservative many-body form
M, = —0V/0x;, where M, and x; are the mass and
position of the ith vertex, respectively, and V is a spa-
tially discretized potential energy. When the system is
integrated in time. friction may be introduced to dynam-
ically relax it to an equilibrium with minimal V.

Compared with similar methods (Candelaresi et al.,
2014; Craig & Sncyd. 1986), our method cxactly pre-
serves many conscervation laws including charge consecrva-
tion. Our discrete foree is conservative. which means the
cquilibrimmnn solution minimizes a discrete potcutial cn-
ergy. Constricted on unstructured meshes. the method
allows resolution to be devoted to where it is most
needed. such as the vicinity of a potential current sin-
gularity.

Au Achilles’ heel of our numerical method, and others
that solve Eq. (3) with moving meshes, is its vulnerabil-
ity to mesh distortion due to strong shear flow. Unfortu-
nately, as discussed in Sec. I1.C. strongly sheared motion
is an inherent nature of the Parker probleni, posing a
formidable challenge for our muucerical endeavor at the

very outset,

IV. THE HKT PROBLEM

The HKT problem was originally proposed by Tay-
lor and studied by Halun & Kulsrud (1935), in the con-
text of studying forced magnetic reconnection induced by
resonant perturbation on a rational surface. It consid-
ers a 2D incompressible plasma in a sheared equilibrium
field Bp, = x9. The perfectly conducting boundaries at
rg = ta are subject to sinusoidal perturbations so that
&(ta, yo) = Fla — d cos ky(xa, yo)].

Zweibel & Li (1987) first connected this problem to the
Parker problem. since the sheared initial field is easily re-
alizable from Parker's uniforin ficld via sheared footpoint
motion. In 2D, Their lincar equilibriun solution in La-
grangian labeling reads

dasinleborg sin kg

X=- (7)

kg sinh ka
where v is the stream function for the linear displacement
& = VA x £, Notce that the lincar cquilibrium equation in
Lagrangian labeliug is simply F(&) = 0, where F is the
ideal MHD force operator (Schuack, 2009).

The linear solution (7) yiclds a current singularity at
the neutral line rg = 0, resulting from the singularity
in 9, /dzy. Nonetheless, such a normal discontinuity in
the displacement is not physically permissible (see Fig. 3
and relevant discussion in Sec.IV.B). The failure at the
neutral line is expected from the linear solution since the
linear assumption breaks down there.

It has remained unclear whether the nonlinear solution
to this problem is singular. until Zhou ct al. (2016) used
the nmmerical method deseribed in See. I to confirm it
It is found that the equilibrinan fluid mapping normal to
the neutral linc at 3 = 0, namely x:(xy,0), converges to
a quadratic power law & ~ 2. Due to incompressibil-
ity, (9y/dyn)|,n=0 ~ = ' diverges at xp = 0. With the
sheared initial field By, = z substituted into Eq. (5),
such a mapping leads to an equilibrium field B, ~ sgn(x)
that is discontinuous at the neutral line.

Physically, this means the fluid element at the origin
(0,0) is infinitely compressed normally towards, while in-
finitely stretched tangentially along the neutral line. The
cxact same signature of current singularity is also identi-
fied in other 2D cases with more complex topology, such
as the coalescence instability of magnetic islands (Long-
cope & Strauss, 1993). It appears to be a general recipe
for current singularity formation in 2D, which we shall
refer to as “squashing”™ in this article.

The question then becomes whether squashing works
in 3D line-tied geometry. We can learn from Eq. (5) that
squashing is 2D in-plane motion that only contributes
to the first term on the RHS. At the footpoints, where
in-plance motion is abseut and Eq. (6) holds. squashing



does not work anyvmore. Hence, we expect 3D line-tied
geometry to have a smoothing effect on the 2D current
singularity. Yet we need to find out whether it eliminates
the singularity entirely.

A. Linear results

For the HKT problem in 2D, the singnlarity in the
lincar solution appears to he very suggestive for that in
the nonlinear solution. Naturally, when extending the
problem to 3D line-tied geometry, we consider the linear
solution first.

In 3D line-tied geometry, we modulate the boundary
forcing at rog = 4a into the form of x(ta.y.z) =
+[a —d cos ky(ta, yg. z0) sin(mwzo/L)]. The perturbations
vanish at the footpoints (zp = 0, L). consistent with the
line-tied (no-slip) boundary condition. Accounting for
the initial field By, = .y, adopting RMHD conventions

(By.: = 1 and € = Vy x 2) and Fowier depeudence
x = ¥(xp, z0) expikyg, the linear equilibriun equation
F(£) = 0 becomes

(ikwy + 05))(02, — k) (ikag + 9:,) ¢ = 0. (8)

When 0., = 0, the 2D solution (7) can be recovered.
Eq. (8) is solved using 2nd-order finite difference, with
boundary conditions Y|z, =+q = £i(d/k)sin(rzo/L) and
Xlzo=0.L = 0. The parameters nsed are « = 0.25. & = 27,
6 = 0.05, with varying L and resolution N x NL/8. For
a given L, the numerical solutions are found to converge
to a smooth one. In Fig. 1. £,(x,0. L/2) obtained with
different resolutions for L = 32 are shown to converge.

M - s N=32
=R N =04
T~
= N =128
= 000

= == 2D
= -
v
1l
Z02 01 0l i 02

FIG. 1 Nuwumerical solutious of £,(wo.0, L/2) for L = 32 with
N = 32, 64, and 128 couverge. Solid line shows the 2D solu-
tion (7).

We also find that with increasing L, &, (i, 0, L/2) ap-
proaclies the 2D solution with discoutinuity (solid line in
Fig. 1). Accordingly, the maximum of the linearly calcu-
lated current density jo. + 4j.. where jo. = 1 and dj. is
the perturbed current density, is shown to increase lin-
early with L in Fig. 2 (labeled j;). This suggests that the
linear solution is smooth for arbitrary L, only becoming
singular when L = oc. These results are consistent with
the 3D linear analysis by Zweibel & Li (1937).

It is worthwhile to emphasize that so far all the calcu-
lations have been strictly linear, assuining the amplitude

St

[R
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-
-
|
o
—
]
\

4 a4 V=[N x 7

FIG. 2 Maximum of the linearly calculated current density j;
(top). and inverse square root of the maximum of the finite-
amplitude current density j; (bottom, see Sec.IV.B), vs. sys-
tem length L for N = 64 and 128. j; increases linearly with
L, while jy ~ (Ly — L)~ can roughly be observed.

of the perturbation § to be infinitesimal. The linear so-
lutions. be they £, or §j,. are proportional to 4. The
magnitude of § has no physical impact in this context.

The finite amplitude of the perturbation must be ac-
counted for in the fully nonlinear studv. But before that,
we further exploit the linear solutions by considering the
effect of finite amplitude on them in Sec. IV.B.

B. Finite-amplitude pathology

Now consider fluid mapping x = xg + &, where £ is the
linear equilibrium displacement with finite amplitude §.
x is by no means a nonlincar equilibrivin solution. That
is. it does not satisfy the nonlincar equilibriun equa-
tion in Lagrangian labeling [Eq. (3) without time depen-
dence]. Nonetheless, one can still calenlate “nonlinearly”
the magnetic field it maps into, using Eq. (2¢), and the
current density j. thereafter, which we refer to as the
finite-amplitude current density in this paper.

We perform such calculation nsing the linear solutions
obtained (with 4 = 0.05) in Sec.IV.A, and notice that
the finite-amplitude current density peaks at (0.0, L/2).
As shown in Fig. 2, the maximum j; ~ (Ly—L)™2. which
diverges at a critical length Ly. The value Ly = 28.96
(using solutions with NV = 128 for fitting) depends on the
specific parameters we obtain the linear solutions with,
¢ in particular.

When L > Ly. x becomes pathological, its Jacobian
J no longer everywhere positive. More specifically, one
finds x(rg. 0, L/2) to be non-monotonic: dr/dre <0, or
equivalently, 9¢,/dxy < —1. at (0,0,L/2). Physically.
this mcans the flux surfaces (constant surfaces of flux
function ¢y = 43 /2) overlap, as illustrated in Fig. 3.
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FIG. 3 Coutowrs of flux fuuctiou subject to perturbation with
4 = 0.05: 2D solution (7) (a), and 3D solutions at the inid-
plane for L = 61 (b) and L = 16 (¢). The intersection of
contours in (a) and (b) are pathological.

Note that this pathology is also the reason the discon-
tinuity in the linear solution in 2D (7) is not physically
permissible. which is shown in Fig. 3 as well. The dif-
ference is, in 2D. J€,/dxg is singular, so the pathology
exists for infinitesimal amplitude; while in 3D, 0¢,/dxg
is smooth, aud finite amplitude is required to trigger the
pathology at a critical length.

Recall that dz/0xg = 0, the trigger for the pathology,
is also a signature of current singularity that is identified
in the 2D HKT problem. Interestingly, Loizu et al. (2015)
have also linked similar finite-amplitude pathology of the
lincar solution to the existence of current singularity in
3D cquilibria. We thercefore suspect that the nonlincar
solution to thic line-ticd HIK'T problem may be singular
above a finite length, which is presumably comparabhle to
the critical length Ly for the finite-amplitude pathology
of the linear solution.
current density of the nonlinear solution to be bounded
between j; and jy. We investigate whether our nonlinear
results support these speculations in Sec.IV.C.

Also, we expect the maximum

C. Nonlinear results

We solve the line-tied HKT problem numerically using
the method described in Sec. IT1, in a domain of [—a. a] x
(-7 /k,m/k] x [0,L]. At xp = %a it is constrained that
x = tfa — §coskysin(nz/L)]. The boundary conditions
in y and = are periodic and no-slip, respectively. We use
the same paramcters as used in the lincar study, namecly
a=0.25, k =2mr, § =0.05, with varying L.

In addition, we adopt RMHD approximations that is
described in Sec.II.C, by setting Bg. = 1 and = = zg.
For the sake of numerical practicality, we use moderate
pressure to approximate incompressibility, instead of en-
forcing the coustraint .J = 1. After all, incompressibility
itsell is an approximation. Specifically, we luitialize with
po = 0.1 — ;:'(2]/2 to balance the sheared ficld By, = wrq,
and choose v = 5/3. In our numerical solutions, we find
|J — 1] < 0.02.

A conscquence of approximating .JJ = 1 is that Eq. (4)
docs not hold anywmore, but instead we have B - Vj. =

j- VB, with B, = 1/J. Since the syvstem is symmetric
under rotation by 7 with respect to the z axis (r.y =0,
the field line of interest in this problem), one finds that
B, = j. = 0. and thercfore j-(z) = j.(0)/.J(z), along
the =z axis. So in owr solutions j,(0,0, z) should still be
approximately constant.

We use a tetrahedral mesh where the vertices are ar-
ranged in a structured manner with resolution N x 2N x
NL/4. The grid munber in z varies with L so that the
grid size does not. The vertices are non-uniformly dis-
tributed in x and y to devote more resolution near the z
axis. We use a same profile of mesh packing for a given
L, but adjust it accordingly when L varies.

The system starts from a smoothly perturbed configu-
ration consistent with the boundary conditions and rclax
to cquilibrium. In Fig. 4, the cquilibrium cwrrent den-
sity distributions obtained with N = 160 for L = 6, 12,
Despite that the distribnutious be-
come significantly more concentrated to the z axis with
increasing L, all these solutions turn out to be smooth
and well-resolved, as our convergence study shows.

and 18 arc shown.

—003 0.00 0.05

r r

FIG. 4 Distribution of current density j.(x, y) obtained with
N =160 for L = 6, 12. and 18 (from top to bottom, respee-
tively) at z = 0 (left) and =z = L/2 (right).

In Fig. 5, the means of j.(0.0, z) (labeled j,) for vary-
ing L arc shown to converge with increasing resolution
N. In addition, the standard deviations of j,(0,0, z),
as shown by thie error bars, decrease with increasing N.
That is, 7.(0,0, z) is indecd approximately constant. as
predicted. We therefore conclude that the nonlinear so-
lutions for these relatively short systems are smooth.

Another observation from Fig. 5 is that the standard
deviation of j.(0,0,z) lucreases with L. The reasou is.
for longer systems. the footpoints are more difficult to
resolve than the mid-plane. At the footpoints, there is
no in-plane motion, which means the mesh there stays as
initially prescribed. Meanwhile, as L increases, the mid-
planc bears more resemblance with the 2D case, where
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FIG. 5 The means (j,) and the standard deviations (er-
ror bars) of the current density j.(0.0.z) for varying system
length L are shown to converge with incresing resolution N.

the squashing effect spontaneously packs the mesh near
the z axis. In fact, in the simulations, we need to pack
the mesh more aggressively near the footpoints than the
mid-plane, particularly for longer systems, in order to
compensate for the self-packing near the mid-plane. To
sum up, longer systems are simply much more challenging
to resolve computationally than shorter ones.

Fig.6 shows that j, ! decrcascs roughly lincarly with
L. That is, j, ~ (L, — L)~ !. which diverges at a critical
length L,,. This suggests that the nonlinear solution may
become singular at a finite length. Using the solutions
with N = 160 for fitting, we obtain L, ~ 25.81, which
is comparable to the critical length Ly for the finite-
amplitude pathology discussed in Sec.IV.B. Fig.6 also
shows that j, is indeed bounded between j; and jf, as
expected.

In order to validate such a diverging scaling law and
confirm the cxistence of the finite-length singularity, we
should exawnine the solutions for systems with lengths
closc to or above the critical value L,. Unfortunately,
we arc not able to obtain (converged) equilibrinm soli-
tions for systems with L = 20 or higher: as j5,(0,0. z) in-
creases with L, the motion near the footpoints becomes
more strongly sheared, eventually leading to mesh dis-
tortion, as discussed in Sees. I1.C and I1I. As L increases,
j2(0,0, z) may indeed diverge at a finite length, or con-
vert to a different scaling law that stays well-defined for
arbitrary L. With the results in hand, we cannot confirm
or rule out cither possibility conclusively.

V. DISCUSSION

One conclusion we can indeed draw from our results is
that 3D line-tied geometry doces have a smoothing effect
on the cwrrent singularity in the 2D HKT problem. In
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FIG. 6 Inverse of the mean (jn) of the current deusity
7:(0,0, =) (dashed lines) with varying resolution N vs.system
length L. 7, ~ (L, — L)™' can roughly be observed. j (dash-
dot line) and j¢ (dotted line) are also shown for comparison
(solutions with .V = 128 from Fig. 2 are used).

2D, both linecar and nonlincar solutionus yield a current
singnlarity. In 3D line-tied geometry, the linear solution
is smooth for all system lengths; the nonlinear solution
is smooth when the system is short.

Whether the nonlinear solution becomes singular at a
finite length remains yet to be confirmed. Our numerical
results show that the maximum current density scales
with (L, — L)1, which iniplies finite-length singularity.
However, since we cannot obtain munerical solutions to
validate such a scaling law necar the critical value L,,,
these results can only be considered suggestive, but not
conclusive. Nonetheless, we remark that this scaling law
is already stronger than the exponential scaling that is
predicted by Longcope & Strauss (1994b).

In this paper, we have preseribed what we believe is
an cffective formmla for realizing possible current singu-
laritics in 3D line-tied geomctry. The idea is to extend
a 2D case with singularity to 3D line-tied geometry, and
then make the system really long. In particular, the HKT
problem is arguably a simplest prototype. for it captures
how a sheared field responds to squashing, both ingre-
dients ubiquitous in nature. Also, the finite-amplitude
pathology in its linear solution may be suggestive for the
possible finite-length singularity in the nonlinear solu-
tion.

The results of the HKT problem can also be suggestive
for other cases with more complex magnetic topology.
such as the inlernal kink instability (Huang el al., 2006;
Rosenbluth et al., 1973) and the coalescence instability
(Longcope & Strauss, 1993, 1994a,b). The obvious dis-
tinction between the HKT problem and these cases is the
former is externally forced. while the latter arc instability
driven. A subtlety is, for the iustability driven cascs, the



linear equilibrium equation F(&) = 0 usually has no non-
trivial solutions. In these cases, (fastest-growing) eigen-
modes are usually considered to as linear solutions. In
addition, cigenmodes do not have intrinsic amplitudes,
unlike in the HKT problem where the linear equilibriuim
solntion can reasonably be given the finite amplitude of
the houndary forcing. Conscquently, the lincar solutions
in the instability driven cases can be less suggestive for
the nonlinear ones.

Nonetheless, critical lengths still exist in 3D line-tied
geometry for the instability driven cases. That is, these
systems are unstable only with lengths above certain fi-
nite values (Huang et al., 2006: Longcope & Strauss,
1994a,b). In fact, Ng & Bhattacharjee (1998) argued
that current singularities must emerge when the line-tied
systcms become unstable.

Still, what prevents us from obtaining more conclusive
results is the limitation of our numerical method. namecly
its vulnerability to inesh distortion caused by strongly
shicared motion. There are a few remedics that arc worth
investigating. One option is to enforce incompressibil-
ity (J = 1). since the signature of mesh distortion is J
becoming negative. However, naively enforcing this con-
straint means implicitly solving a global nonlinear equa-
tion at every time step, which is not practical. What
might make things better is to solve for pressure from a
Poisson-like equation, yet that could still be expensive on
an unstructured wesh. More iimportantly, when the mo-
tion becowmes too strongly sheared for the mesh to resolve,
cuforcing incompressibility may just not be enough.

An alternative is to cuploy adaptive mesh refineinent.
Intuitively. that means to clivide a simplex into smaller
ones once its deformation reaches a certain threshold.
This approach will not work for problems with strong
background shear flows where the number of simplices
can grow exponentially, but may suffice for the Parker
problem that is quasi-static. In addition, one may con-
sider more delicate discretization of Eq. (3) to make the
mesh itself more robust against shear flow.

Finally, we emphasize that the Parker problem is still
opeu and of practical relevance, by echoing the latest re-
view by Zweibel & Yamada (2016): It is émportant to
determane whether the equilibrivin of line-tied magnetic
fields has true current singularities or merely very large
and intermittent currents, to characterize the statistical
properties of the sheets and to determine how the equi-
librium level and spatial and temporal intermittency of
energy release depend on S.”
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