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The integration of kinetic effects in fluid models is important for global simulations of the Earth’s
magnetosphere. In particular, it has been shown that ion kinetics play a crucial role in the dynamics
of large reconnecting systems, and that higher-order fluid moment models can account for some of
these effects. Here we introduce a ten-moment model for electrons and ions, which includes the
off diagonal elements of the pressure tensor that are important for magnetic reconnection. Kinetic
effects are recovered by introducing a nonlocal heat flux closure, which approximates linear Landau
damping in the fluid framework. The closure is tested using the island coalescence problem, which
is sensitive to ion dynamics. We demonstrate that the nonlocal closure is able to self-consistently
reproduce the structure of the ion diffusion region, pressure tensor and ion velocity without the need
for fine-tuning of relaxation coefficients present in earlier models.

Magnetic reconnection is a change in topology of the
magnetic field lines in a plasma [1], often followed by the
conversion of stored magnetic energy to the kinetic en-
ergy of accelerated particles. It is believed to play an im-
portant role in many laboratory and astrophysical plasma
processes, including sawtooth crashes in tokamaks, solar
flares, magnetic substorms in the Earth’s magnetosphere
and coronal mass ejections [2-6].

For reconnection to take place, the motion of the
plasma must decouple from the magnetic field lines. In
collisionless environments such as the magnetosphere,
this takes place in the electron diffusion region, and due
to the kinetic scales involved, cannot be described purely
by resistive magnetohydrodynamic (MHD) models such
as the Sweet-Parker model (7, 8]. For large scale global
numerical studies of the magnetosphere, which are cru-
cial for accurate space weather prediction, the use of fluid
models is common due to the computational cost involved
in simulating the large domains involved. Thus, the de-
velopment of extended fluid models incorporating colli-
sionless effects is desirable for capturing the physics of
reconnection in large systems.

The major issue with fluid models is the closure of the
hierarchy of fluid equations obtained by taking moments
of the kinetic equation. While increasing the number of
moments allows more information about the distribution
function to be captured [9], a choice must be made as to
when to close the equations and how to treat the highest
moment. Most closures of the moment equations involve
an expansion in small Knudsen number in the collisional
regime, and attempts have been made to use these models
to simulate magnetic reconnection [10-13].

However, in the collisionless case, kinetic effects such
as phase mixing are present and cannot be captured by
these fluid closures [14, 15]. Instead, approximations can
be made by introducing collisionless damping coefficients

by expressing the highest moments in terms of lower mo-
ments. Unlike the collisional case, the closure coefficients
can be complex and are nonlocal in space [14, 15]. While
these models have been used extensively in studies of
fusion plasmas [16, 17], they have not been applied to
studies of magnetic reconnection.

In this paper we describe the self-consistent implemen-
tation of a fluid closure using the ten-moment equation
system without any adjustable parameters. We evolve
the full pressure tensor for both electrons and ions, which
is necessary to balance the reconnection electric field in
collisionless reconnection [18, 19], and close for the heat
flux using a three-dimensional extension of the Hammett-
Perkins closure [14]. We perform simulations of the island
coalescence problem, in which the existing Hall MHD
fluid model does not reproduce the kinetic result due
to the absence of important ion physics (20, 21]. We
demonstrate here with the collisionless fluid model that
the wider ion diffusion region can be reproduced with-
out the fine tuning of a free parameter as was previously
required [21]. While the strong system-size scaling of
the reconnection rate in kinetic and hybrid (kinetic ion,
fluid electron) simulations is not completely reproduced
for larger scales, the new closure successfully captures
the ion-scale structures such as agyrotropy which are not
accounted for consistently by earlier fluid models.

The ten-moment equations are derived by taking mo-
ments of the kinetic equation
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where P;; and Q;;x are the second and third moments of



the distribution function

Py = m/vz'vjfdsv
(2)
Qi = m/v,—vjkad%,

and the square brackets denote a sum over permutations
of the indices (e.g. u;F;] = wiF; + ujE;). The third
moment tensor Qi can be written in terms of the heat
flux tensor gix = m [(vi — wi)(v; — uy)(vg — ug) fd3v

Qijk = Gijk + U Piry — 2mnu;ugug. (3)

Earlier multi-fluid models of reconnection involving
a pressure tensor have employed a relaxation to local
isotropy in the form 8;q;;, = nu|ko|(Ty; — Tods;). Here
vy = \/21'/m is the thermal velocity of the associated
species and kg is a free parameter which effectively al-
lows deviations from isotropy at length scales less than
1/1kol [10, 11, 13, 21]. It has been shown that simulation
results are sensitive to the choice of kg for each species
[13, 21] and such free parameters are present in earlier
efforts as well [10, 11, 13].

In order to close the equations in the collisionless limit,
we use a three-dimensional extension of the Hammett-
Perkins closure, which can be expressed as follows for
both electrons and ions [14]:

@ik (%) = n(x) iz (x) (4)

Here Tjk is the Fourier transform of the deviation of the
local temperature tensor from the mean. The 1/]k| scal-
ing makes this a non-local closure when expressed in real
space [15, 16] and provides a 1 to 3 pole Padé approx-
imation of various components of the dielectric tensor.
The coefficient x = /4/97 is the best fit value for the
diagonal g¢;;; component and reduces to the closure in
Refs. [14, 15] in the 1-D limit. This is an unmagnetised
closure (especially relevant to ions in this geometry in
which there is no guide field) which approximates lin-
ear phase mixing, allowing the wavenumber-dependent
damping of spurious short-wavelength oscillations which
are present in higher moment fluid models [15, 22], and
to our knowledge, is the first of its kind in closure studies
of magnetic reconnection.

The moment equations coupled to Maxwel
tions are implemented in the finite-volume version of the
Gkeyll code, which uses a high-resolution wave propa-
gation method for the hyperbolic part of the equations
and a point implicit method for the source terms [23, 24].
The closure is evaluated using an interface to the parallel
FFTW library [25].
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FIG. 1. (a) Damping of electrostatic fluctuations in 1-D ten-
moment simulations. (b) Reconnection rates in kinetic, ten-
moment and Hall \/[HD simulations. {L\ Scaling of maximum
reconnection rate with system size. {d) Scaling of average
reconnection rate over 1.5¢4 with system size.

We first illustrate the effects of the closure in Fig. 1(a),
which shows the evolution of the electric field amplitude
for a Langmuir wave with k\ge = 0.35 in a 1-D two-
fluid simulation, where Ay is the electron Debye length.
In the simulation, the measured frequency and damp-
ing rate in terms of the electron plasma frequency Wpe
are w = 1.16wye, v = 0.044w,,. respectively, compared
to the exact solution Irom the linear Vlasov dispersion
relation w = 1.22wpe, ¥ = 0.034wp.. Here we note that
the measured values are consistent with those calculated
using the Padé approximant of the plasma dispersion
function, and improved agreement with the Vlasov so-
lution requires evolving higher fluid moments [14-16]. Tn
contrast, the simulation without any explicit dissipation
is qualitatively different and shows no damping as ex-
pected.

For magnetic reconnection, while the Harris sheet ge-
ometry is a standard test problem [26]., and has been
successfully simulated using this closure (not shown), we
focus on the island coalescence geometry in this paper
as it has been found to be sensitive to ion rather than
electron dynamics [20, 21], where for which this closure
would be a better approximation. This is a Fadeev equi-
librium with initial conditions [27]
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Here By is the z-component of the magnetic field up-
stream of the layer, € controls the island size and A is the
half width of the current sheet. We use the same physical
parameters as described in previous studies |20, 21, 28],
with ¢ = 0.4, which corresponds to an island half-width of
approximately 1.2\, and background density ny, = 0.2n¢.



The system size is L, x L, = 4n\ x 2w\, with peri-
odic boundary conditions in the z direction. Conducting
walls for fields and reflecting walls for particles are used
in the 2z direction. We use mass ratio m;/m, = 25, elec-
tron thermal speed v o/c = 0.35 and T; = T, = T, and
the value of T is set by the upstream equilibrium con-
dition 8 = 1. The ratio of electron plasma frequency to
gyrofrequency is wpe/Qee = 2. A 10% initial perturba-
tion in the magnetic field is applied to initiate merging.
The kinetic results in this paper are described in Ref. [20]
and additional simulations for the A/d, = 5, 10 cases were
performed using the particle-in-cell code PSC [29].

In MHD, multi-fluid and kinetic models, the initial
phase in which the islands approach each other is driven
by the ideal MHD coalescence instability [30], and dif-
ferences between the models only appear after the cen-
tral current sheet begins to form [20, 21]. This can
be seen in Fig. 1(b), which shows the normalised re-
connection rate for simulations using the new closure
and comparisons to earlier kinetic, ten-moment and Hall
MHD simulations {20, 21]. Here the reconnection rate
is Er = (1/B'V})0%/0t in the same manner as in
Refs.[20, 21, 28], where B’ and V) are calculated using
the maximum magnetic field between the centres of the
two islands at ¢ = 0. The flux within an island ¥ is
defined as the difference between A, at the X- and O-
points.

Because reconnection in this system is bursty, it is use-
ful to consider the average as well as maximum reconnec-
tion rates [20, 21, 28]. In Figs. 1{c-d), the scaling of the
maximum and average (over 1.5 global Alfvén times) re-
connection rates with system size is shown. With the
nonlocal closure; there is a stronger negative scaling of
the average reconnection rate ()\/di)_o'45 for system
sizes up to A/d; = 25 compared to (A/d;)""? for both
Hall MHD and ten moment simulations with a local clo-
sure. However, this is still weaker than the results of
Ref. [20] where the rate scales like o (A/d;)™*® and
(A/d5)70'65 for kinetic and hybrid models respectively.
The discrepancies for the ten moment systems are par-
tially explained by the enhancement of the reconnection
rate due to the formation of secondary islands in smaller
systems (A/d; = 15 for the nonlocal closure, A/d; = 25
for the local closure).

Figure 2 shows a comparison between the kinetic, ten-
moment and Hall MHD simulations with A = 5d; at
t = ta, which is close to the time of maximum recon-
nection rate. As can be seen in the bottom panel, the
width of the current sheet in the ten-moment simulation
is comparable to that in the kinetic simulation (1.20d; vs
1.15d;), and is much larger than the highly peaked Hall
MHD current sheet (0.18d;). The peak current density is
still higher than in the kinetic simulation due to the elec-
tron dynamics in the ten-moment model, which causes
a more intense electron layer due to the isotropisation
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FIG. 2. Current densities in kinetic, ten-moment and Hall
MHD simulations with A = 5d;. The colour scaling of the
Hall MHD current is reduced by a factor of two so the strongly
peaked current sheet can be seen.
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FIG. 3. Comparison of the decomposition of the ion mo-

mentum equation near the x-point between the nonlocal ten-
moment model and a kinetic simulation.

of the pressure tensor. Here the electron closure cap-
tures the off-diagonal terms of the pressure tensor which
balance the reconnection electric field in the electron dif-
fusion region self-consistently, but produces weaker elec-
tron pressure anisotropy than models which focus on par-
ticle trapping effects (31-33]; this does not affect the re-
sults of this paper as the reconnection rates are sensitive
to the ion dynamics for this geometry [20, 21].

The structure of the ion diffusion region is shown in
Fig. 3, which contains the decomposition of the ion mo-
mentum equation on a cut along z = 0 at t = t4. In
Ref. [20] it was shown that the influence of the ion ki-
netic physics extends to a broader 2-3 d; ion diffusion



region, where the divergence of the pressure tensor bal-
ances the non-ideal electric field. This result is in contrast
to the Hall MHD result, where the ion inertia balances
the reconnection electric field below d; scales [20].
While both local and nonlocal ten-moment models
could capture the wider ion diffusion region, it was found
that keeping the relaxation parameter k; = 1/de, which
was used in the Harris sheet study [13], caused larger Hall
MHD-like reconnection rates to be observed and a nar-
rower ion diffusion region to form. Only by adjusting k;
in the ion closure to 1/(3d;), allowing the pressure tensor
to deviate from isotropy at larger scales, could the kinetic

In contrast, with the nonlocal closure, the wider ion
diffusion region develops self-consistently without the
need to fine tune the relaxation. While the reconnec-
tion rate does not match the kinetic result exactly, the
larger region in which the divergence of the ion pressure
tensor balances the non-ideal electric field is reproduced,
with the associated reduction of the reconnection rate as
compared to that of Hall MHD or the local ten-moment
model with larger &, [21].

Additionally, due to the wavenumber-dependent
damping, the model using the nonlocal closure shows
good agreement in the ion velocity with the kinetic re-
sults, apart from the absence of PIC noise. This is be-
cause the new closure does not exhibit some of the spu-
rious structures which have been observed when using
the local closure. These are most evident along the line
z = 0, where the ion velocity is reduced, and just up-
stream of the reconnection region in Fig. 4. The struc-
tures are present with the local closure due to the lower k;
used to obtain the wider diffusion region, which does not
account for the faster damping at shorter wavelengths,
unlike the nonlocal closure, which approximates this ef-
fect.

Further improvements when using the nonlocal closure
are illustrated by considering a common metric used in
reconnection, the agyrotropy A@, which measures the de-
parture of the distribution function from cylindrical sym-
metry [34]. Figure 5 shows the ion agyrotropy 4@, ob-
served close to the central current sheet at t = t4. In
the kinetic simulation, there is strong agyrotropy in both
a 2-3d; thick region upstream of the current sheet and
the exhaust region and it was shown in Ref. [20] that
this corresponds to the region where ion motion is char-
acterised by meandering orbits and ion pressure tensor
effects contribute to momentum balance.

With the new nonlocal closure shown in the second
panel of Fig. 5, the structure of the agyrotropy both up-
and downstream of the x-point is reproduced. This is a
qualitative improvement on the local model, which shows
two distinct upstream regions and small agyrotropy in
the exhaust region. The improvement is due to the non-
local heat flux, which reduces the discrepancies in the
diagonal components of the ion pressure tensor observed
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FIG. 4. Out-of-plane ion velocity in kinetic, nonlocal fuid
and local fluid models. The local model uses k, = 1/(3d;)
which was chosen to match reconnection rates with the kinetic
solution in Ref. [20].

lon agyrotropy

Nonlocal 6
closure 4
_ 2

X 0

v 5

-4

~6

Local 6
closure ;

0
-2
~4
-6

2(d)]

-6 —4 -2 ]

FIG. 5. Comparison of ion agyrotropy between kinetic, non-
local fluid and local fluid models. The local model uses
ki = 1/(3d;) which was chosen to match reconnection rates
with the kinetic solution in Ref. [20].

when only using the local model [12]. However, the val-
ues of the agyrotropy using the nonlocal closure are still
lower than the kinetic results, as the fluid model cannot
capture all the details of the non-gyrotropic distribution
function caused by the meandering motion.

To summarise, we have implemented a nonlocal ion
closure for the two-fluid, ten-moment equations that cap-
tures linear phase mixing in a fluid treatment. This pro-
vides heat flux at the x-point which is necessary for re-
connection to take place in the collisionless ten moment
model [12]. We demonstrate that using the new nonlo-
cal closure gives improved agreement with kinetic results
compared to previously implemented systems for moment



closures and Hall MHD [13, 21}, by allowing the ion pres-
sure tensor to deviate from isotropy without introducing
a free relaxation parameter. This sets the structure of
the ion diffusion region self-consistently, and results in
much improved agreement highlighted by the ion velocity
profile and agyrotropy. However, the strong system-size
dependence of the average reconnection rate observed in
kinetic and hybrid simulations is not completely repro-
duced [20]. The scaling is due in part to the formation
of secondary islands in the larger fluid systems, and also
indicates that while the ion diffusion region physics is
reproduced, there is still additional ion kinetic physics,
such as the ion meandering motion and its effects on the
distribution function [20], that contributes to setting the
reconnection rate in this system. While this system is less
sensitive to the electron dynamics [20, 21], the nonlocal
closure is also able to capture the off diagonal terms of the
electron pressure tensor in the electron diffusion region.
Future work could explore the extension to the strongly
magnetised regime in a similar manner {15, 35], which
could allow the treatment of guide-field reconnection and
application to large systems, in which the development of
strong electron pressure anisotropy is also an important
process [32, 33].
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