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Abstract. The two-dimensional Terry-Horton equation is shown to exhibit the
Dimits shift when suitably modified to capture both the nonlinear enhancement
of zonal/drift-wave interactions and the existence of residual Rosenbluth-Hinton
states. This phenomena persists through numerous simplifications of the equation,
including a quasilinear approximation as well as a four-mode truncation. Analytic
progress on the truncated system is reported, focused on determining the growth
rates of zonal flows and calculating the upper bound of the Dimits shift. The re-
sults for the truncated system are then used to estimate the Dimits shift of the
fully nonlinear system. A new understanding is thus developed on the fundamental
nature of the Dimits shift, both on its operation and its eventual termination.

1. Introduction

The Dimits shift is the nonlinear upshift of the critical temperature gradient for the
onset of turbulent transport witnessed in simulations of collisionless tokamak plas-
mas (Dimits et al., 2000). This results from the shearing away of turbulent radial
streamers by poloidal zonal flows that are generated from the so-called secondary
instability (Rogers et al., 2000). This shearing of radial streamers leads to fine-scale
structure which is subsequently damped. The zonal flows are then able to persist
on a longer time scale than the turbulent eddies, as they are not Landau-damped.
These residual zonal flows are called Rosenbluth-Hinton states (Rosenbluth and
Hinton, 1998), named for those who were the first to show this property. However,
as the temperature gradient is further increased, the system eventually experiences
a tertiary instability (Rogers et al., 2000), giving way to turbulent transport. While
the qualitative aspects of the Dimits shift are understood, there is yet no tech-
nique that adequately calculates important quantities of the shift, such as its size.
Understanding the essential aspects of this phenomenon is critical, as it is known
that E×B poloidal shear flows have the ability to suppress turbulence in physical
systems. Such a mechanism is one candidate for explaining the L-H transition seen
in tokamaks (Burrell, 1997). Being able to predict the saturated level of zonal flows
and their effects on turbulence is crucial for the enhancement of plasma confine-
ment.
The Dimits shift was first witnessed in gyrokinetic simulations of electrostatic

† E-mail address for correspondence: dstonge@princeton.edu



2 D. A. St-Onge

toroidal plasmas (Dimits et al., 1998), and was eventually demonstrated in nonlin-
ear gyrofluid models with Landau-fluid closures (Beer and Hammett, 1998). This
culminated in a landmark comparative study of various gyrokinetic and gyrofluid
codes by Dimits et al. (2000). The shift has also been captured in some fluid mod-
els, using a variety of simplifications. One such model is the two-field Hasegawa-
Wakatani model (studied separately by Numata et al. 2007 and Farrell and Ioannou
2009), which is a model that includes both ion-density-gradient drift waves and
non-adiabatic electron effects. Another important model in the study of the Dimits
shift has been the minimal two-field ion-temperature-gradient (ITG) mode, which
retains both the ion continuity equation and an equation for the perpendicular ion
temperature (Ottaviani et al., 1997; Kolesnikov and Krommes, 2005a,b).
Progress has been made into understanding the behaviour of the shift using

both numerical simulation and analytical techniques, with much work focusing on
the two-field Hasegawa-Wakatani and ITG systems. Numata et al. (2007) were
able to show a sharp transition between steady turbulent states and relatively
quiescent states dominated by zonal flows. However, their simulations had similar
levels of viscous damping on both the drift-wave and zonal modes, which prevented
them from making a connection to the steady Rosenbluth-Hinton states. They also
made a prediction on the boundary of the shift using a stability analysis based
on the Kelvin-Helmholtz instability, though the result greatly over-predicts the
shift’s size. Farrell and Ioannou (2009) used statistical closure techniques to clearly
separate the dynamics of the zonal flows and of the drift-wave modes using a closure
called the second-order cumulant expansion, or CE2. Here, the equations of motion
are separated into zonally averaged and fluctuating parts, with eddy-eddy self-
interaction terms being dropped in the fluctuation evolution equation. This closure
is equivalent to a quasilinear system when ergodicity is assumed. They were able to
demonstrate that the essential physical effects are captured even without the eddy-
eddy self-interactions. As the drift-wave and zonal equations are also separated,
they were able to use a physically relevant frictional zonal damping (as would
result from ion-ion collisions, see Lin et al. 1999) that was distinct from the drift-
wave damping. However, their simulations were also stochastically forced to imitate
the homogeneous turbulence lost upon neglecting the eddy-eddy self-interactions.
This approach is invalid when studying the Dimits shift, however, as there is no
turbulence in this regime, thus they were not able to observe a Dimits shift.
Analytical work has also been done using the minimal two-field toroidal ITG

model. Kolesnikov and Krommes (2005a,b) were able to calculate the Dimits shift
of a four-mode truncated system (4MT) using the tools of dynamical systems.
However, the size of the shift was found to be strongly dependent on the truncation
number of the system. Additionally, the system failed to saturate beyond the Dimits
shift. This model has also been studied under the CE2 framework by St-Onge
and Krommes (2017), in which the effect of discrete-particle noise on the onset
of zonostrophic instability was studied. Even for such a simple two-field system,
the CE2 results in a system of five quantities (two zonal-averaged fields and three
independent components of a covariance tensor with the off-diagonal component
being complex) and even the simplest of linear calculations can quickly become
tedious. It is worth noting here that the two-field ITG model also suffers a flaw in
that, beyond the point of linear instability, the eigenvalues of the system become
purely imaginary and the system ceases to exhibit any linear wave physics, such
as dispersion. It will be shown herein that dispersive effects can play an important
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role on the behaviour of the Dimits shift. In addition, both the Hasegawa-Wakatani
and minimal two-field ITG systems are non-normal, and as a result can be made to
exhibit subcritical turbulence, a phenomena that can obfuscate the essential physics
of drift waves and zonal flows.
What, then, is the simplest model that exhibits the Dimits shift with a minimal

amount of physics? To be successful, the model must

(a) contain a nonlinear boost in zonal flow interactions. This would enable efficient
energy transfer between zonal and non-zonal modes, leading to the quenching
of turbulence through the shearing of eddies;

(b) allow for the existence of steady states consisting purely of zonal modes. For
these solutions to be proper steady states, zonal modes would necessarily be
linearly undamped;

(c) exhibit a finite Dimits shift. In other words, given a sufficient amount of linear
drive, steady zonal states must give way to turbulence leading to a finite amount
of turbulent transport;

(d) have the ability for saturation beyond the Dimits shift without the need for
zonal damping. Otherwise, saturated states may depend on the amount of zonal
damping, in contrast with the original numerical studies of Dimits et al. (2000).

The goal of this article, then, is to show that the Terry-Horton equation can be
made to exhibit all four traits with reasonable physically-motivated modifications.
This equation will henceforth be referred to as the modified Terry-Horton Equation
(mTHE). I shall also show that various simplifications of this equation also exhibit
the four properties. These simplifications will be used to gain insight into how the
energy transfer by zonal modes is different than the usual Kolmogorov-type cascade,
as well as how the termination of the Dimits shift is related to the destabilization
of well-coupled modes. Using this insight, I shall show how one can estimate the
size of the Dimits shift for the fully nonlinear system in a way that elucidates the
fundamental aspects of the shift’s mechanism.
The remainder of this article is organized as follows. In Sec. 2 I describe the

historically important models that lead up to the mTHE, which is described in
Sec. 3. In Sec. 4 I demonstrate by direct numerical simulation that the mTHE
exhibits the Dimits shift. Analytical results are presented in Sec. 5, starting with
analysis of the 4MT, followed by an estimation of the size of the Dimits shift for
the nonlinear system. This is done in Sec. 5.3. Finally, the work is summarized in
Sec. 6.

2. Review

2.1. The (Modified) Hasegawa-Mima Equation

The paradigmatic model for density-gradient-driven drift waves is the Hasegawa-
Mima equation (HME), which captures E×B advection of the electrostatic poten-
tial caused linearly by background ion-density gradients and nonlinearly by density
fluctuations on a local segment of the bad-curvature side near the midplane. The
system is two-dimensional in that it neglects any toroidal variation in the electro-
static potential (i.e. k‖ ≪ k⊥); thus the fields can be described with just radial and
poloidal coordinates.
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The HME is given by

∂tζ + v ·∇ζ − β∂yϕ = 0, (2.1)

where v = (−∂yϕ, ∂xϕ) is the E×B drift velocity, β
.
= a/Ln parameterizes the den-

sity gradient, L−1
n = − d lnn0/ dr is the background density gradient scale length,

ζ = (∇2
⊥ − 1)ϕ (2.2)

is the generalized vorticity, derived from the gyrokinetic Poisson equation with adi-
abatic electron response, and ϕ

.
= (eφ/Te)(a/ρs) is the dimensionless perturbation

to the electrostatic potential. Throughout this paper, time and space are normal-
ized by a/cs and ρs, respectively, where a is the minor radius, ρs

.
= cs/ωci is the

sound radius, and cs
.
= (ZTe/mi)

1/2 is the sound speed. Coordinates are in a lo-
cal Cartesian grid where x represents the radial coordinate and y represents the
poloidal coordinate. The operator ∇⊥ denotes the gradient perpendicular to the
magnetic field, which acts in the x and y direction for this particular setup. For
any function f ,

v ·∇f =
∂ϕ

∂x

∂f

∂y
− ∂ϕ

∂y

∂f

∂x
≡ {ϕ, f} (2.3)

which defines the Poisson Bracket {. , . }.
The nonlinear interaction of the HME conserves two quadratic invariants. These

are the energy density

E .
=

1

LxLy

∫ Lx

0

dx

∫ Ly

0

dy
1

2

[
(∇⊥ϕ)

2 + ϕ2
]
, (2.4)

and the generalized enstrophy density

Z .
=

1

LxLy

∫ Lx

0

dx

∫ Ly

0

dy
1

2
ζ2. (2.5)

Because the HME is a two-dimensional equation with two nonlinearly conserved
quantities, the system experiences a dual cascade where injected energy at some
intermediate scale simultaneously causes a flow of energy to larger scales and a flow
of enstrophy to smaller scales. Note that conservation of the generalized enstrophy
Z is a direct result of the nonlinear interaction being in the form of a Poisson bracket
and does not depend on the specific form of ζ given by (2.2). This is important for
the Terry-Horton equation, which will be discussed in Sec. 2.2.
One shortcoming of the HME is that it does not capture the correct zonal flow

physics as seen in more complete gyrokinetic simulations (Hammett et al., 1993).
This stems from how one derives the adiabatic electron response. In the HME, this
is done via parallel force balance in the electron momentum equation:

−eneE‖ −∇‖Pe = 0. (2.6)

where E‖ is the electric field parallel to the magnetic field, ne and Pe are respectively
the electron density and pressure, and ∇‖ is the gradient along the magnetic field
(∇‖ ≡ ∂z for HME). Assuming isothermal electrons, this leads to

∇‖ (ϕ− δne) = 0 (2.7)

in dimensionless units. This has the solution

δne = ϕ+ C, (2.8)
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where C is constant along the magnetic field. Näıvely, one could set this constant
to zero and arrive at the HME. However, to correctly determine the value of C, one
must use an additional constraint.
Physically, electrons that evolve adiabatically will experience no radial transport,

so the density perturbation averaged over a flux surface must vanish. This leads to
C = −〈ϕ〉ψ , or

δne = ϕ− 〈ϕ〉ψ , (2.9)

where 〈. . .〉ψ denotes the flux-surface average. In two dimensions, this is equivalent
to the zonal average 〈f〉,

〈f〉 .
=

1

Ly

∫ Ly

0

dy f. (2.10)

Equation (2.2) is thus modified to now read

ζ = ∇2
⊥ϕ− ϕ+ 〈ϕ〉 .

= (∇2
⊥ − α̂)ϕ, (2.11)

where α̂ is an operator that is zero when acting on zonal modes and is unity
otherwise.
The Hasegawa-Mima equation that uses this form of the modified vorticity is

referred to as the modified-Hasegawa-Mima equation (mHME). While the nonlinear
interaction is changed by this new Poisson equation, it still conserves both the
energy density E and the generalized vorticity density Z, where ζ in Z is now given
by (2.11). It is helpful to define the zonal (ky = 0) and drift-wave (ky 6= 0) energy
densities,

EZF =
1

Lx

∫ Lx

0

dx
1

2
∂x〈ϕ〉2, (2.12)

EDW =
1

LxLy

∫ Lx

0

dx

∫ Ly

0

dy
1

2

[
(∇⊥ϕ

′)2 + ϕ′2
]
, (2.13)

where ϕ′ = ϕ − 〈ϕ〉. These quantities will be helpful when determining whether a
system is in a zonal-flow-dominated state or a turbulence-dominated state, and will
be later used in Sec. 4.2.
Both the HME and the mHME have been extensively studied in terms of both

the modulational instability (Connaughton et al., 2010), which concerns the insta-
bility of background drift wave to a zonal flow, and the more general zonostrophic
instability (Parker and Krommes, 2013, 2014; Srinivasan and Young, 2012) which
encompasses the instability of any statistically homogeneous steady state (including
steady states of single realizations) to a zonal flow.

2.2. The Terry-Horton Equation

Another shortcoming of the HME is the lack of irreversibility. Studies of the HME
usually add dissipation by hand and are stochastically forced to drive the system.
An alternative to adding forcing is to include destabilizing effects in the electron
response obtained from kinetic theory. These effects materialize most simply as an
additional non-Hermitian operator δ̂ in the Poisson equation (2.2), resulting in

ζ = (∇2
⊥ + iδ̂ − 1)ϕ, (2.14)

or

ζ̂ = −(k2⊥ − iδ̂k + 1)ϕ̂ (2.15)
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when Fourier transformed. Here, δ̂k is a real variable that depends on the wavevector
k. The resulting system is named the Terry-Horton Equation (THE) and has been
extensively studied (Terry and Horton, 1983, 1982). It has, however, fallen out
of favour with respect to the more rigorously derived Hasegawa-Wakatani system,
which has now become the standard system of equations for dealing with linearly
unstable drift waves in a two-field fluid system.
The non-adiabatic part of the electron response δ̂k for the THE can be chosen to

describe various types of physical mechanisms. As an example, for the untrapped
collisionless electron-wave resonance, one has in physical units (Tang, 1978)

iδk = i(π/2)1/2
[
ωk − ω∗e

(
1− 1

2
ηe

)]/
|k‖|vthe, (2.16)

where ω∗e
.
= ckyTe/eB0Ln is the electron diamagnetic drift frequency, and ηe

.
=

d lnTe/ d lnn0. To proceed, ωk is taken to be the frequency of the linearized HME.
Then, in dimensionless units,

iδ̂k = iδ0ky

(
k2⊥

1 + k2⊥
− 1

2
ηe

)
, (2.17)

where δ0 = (π/2)1/2(me/mi)
1/2/|k‖Ln| is a constant of order unity that parameter-

izes the parallel wavenumber k‖ (as Ln is already parameterized by β). One arrives

at the original form of δ̂k = δ0ky(k
2
⊥ − ηe/2) given in Terry and Horton (1983)

by taking the long-wavelength (k2⊥ ≪ 1) limit. As another example, for trapped
collisional electron dynamics,

iδ̂k = iδ0ky, (2.18)

where δ0 = ηe(ǫ/2)
1/2(6/π1/2)/νeff is a constant of order unity, ǫ is the inverse

aspect ratio and νeff is the collisional detrapping rate. A thorough review of such
mechanisms is given in Tang (1978).
In addition to instability, the THE equation introduces non-zero particle trans-

port. For instance, if one takes the non-adiabatic electron response to be simply
iδ̂k = iky , one obtains a particle flux

Γn
.
=

∫
dxdy vxδni =

∫
dxdy ζ∂yϕ =

∫
dxdy (∂yϕ)

2, (2.19)

which is positive-definite. Another important distinction of the THE is that it has
only one nonlinearly conserved quantity, the generalized vorticity ζ, which can alter
the system’s ability to experience a dual-cascade. For instance, δ̂k as given by (2.18)
becomes much larger relative to ∇2

⊥ at large scales, leading to degeneracy between
E and Z. This has been shown by Liang et al. (1993) to disable the dual cascade.

However, δ̂k as given by (2.17) is small relative to ∇2
⊥ at both small and large scales,

thus for this type of system the dual cascade is expected to remain prevalent.

3. The Modified Terry-Horton Equation

3.1. Description

The model that is the focus of this article is a modified version of the THE that
is designed to capture the essential zonal physics found in gyrokinetic simulations.
The resulting system is hence referred to as the modified Terry-Horton Equation
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(mTHE), and is given by

∂ζ

∂t
+ v ·∇ζ = β

∂ϕ

∂y
− α̂Dζ, (3.1)

where v = (−∂yϕ, ∂xϕ) and

ζ̂ = −(k2⊥ − iδ̂k + α̂k)ϕ̂. (3.2)

in Fourier space. Here, D is a damping operator that, in Fourier space, is assumed
to be even in both kx and ky. This model contains two modifications to the original
THE. First, the adiabatic electron response is modified to ensure that electrons
do not respond to a potential that is constant along a flux surface. This results
in an enhancement of the zonal interaction between drift waves in the nonlinear
term. The second modification is the appearance of the α̂ operator in front of the
damping term, which ensures that only the drift-wave modes (ky 6= 0) are linearly
damped. By doing so, the mTHE is made to model the residual Rosenbluth-Hinton
zonal states (Rosenbluth and Hinton, 1998) witnessed in the simulations performed
in Dimits et al. (2000). As a result, any state that consists purely of zonal flows
is a steady-state solution to (3.1). The damping on the drift waves can then be
interpreted to be related to Landau damping of the potential fluctuation. As this
is a fluid model, it is agnostic to the eventual fate of the fine-scale velocity-space
structure that would result in the ion distribution function.
One may also add a separate damping component to the zonal flows, as was

done in Lin et al. (1999). This typically results in bursty behaviour involving tran-
sitions between zonally dominated states and turbulence-dominated states within
what would normally be the region of the Dimits shift. While this phenomena is
interesting in its own right, it is not touched upon in this article.
A question that should be raised is whether or not adding non-adiabatic effects

to the electron response will also require modification to the constant of integration
when solving the parallel electron force balance. For the remainder of the paper,
however, I shall assume that these non-adiabatic effects are sufficiently small as to
not destroy good flux surfaces. Thus, electrons will continue to not respond to a
potential that is constant along a flux surface. Finally, I require that the flux-surface
average of the non-adiabatic electron response 〈iδ̂k〉ψ = 0, which is the case for the
examples noted in Sec. 2.2. This is akin to saying that the background density
gradients lie in the radial direction.

3.2. Linear Properties

The eigenvalues of (3.1) for the linearization around the zero state can be read-
ily calculated. For drift-wave modes, the growth rates and frequencies for a time
dependence of eλkt where λk = γk − iωk are, respectively,

γk = −Dk +
βky δ̂k

(1 + k2⊥)
2 + δ̂2k

, (3.3)

ωk =
βky(1 + k2⊥)

(1 + k2⊥)
2 + δ̂2k

. (3.4)

For zonal modes, both are identically zero by construction, as I’ve neglected colli-
sional damping.
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3.3. Quasilinear Model

I also consider numerous approximations to (3.1). The typical first step is to decom-
pose the modified vorticity into zonal and non-zonal components, viz. ζ = 〈ζ〉+ ζ′.
By zonally averaging (3.1) and subtracting the result from the original equation,
one obtains the new system of equations

∂ζ′

∂t
= −U

∂ζ′

∂y
− u′ ∂

2U

∂x2
+ β

∂ϕ′

∂y
+Dζ′ − F ′, (3.5a)

∂U

∂t
= − ∂

∂x
〈u′v′〉 − (〈u′δ̂ϕ′〉 − 〈〈u′δ̂ϕ′〉〉), (3.5b)

where u′ .
= −∂yϕ

′, v′
.
= ∂xϕ

′, U(x)
.
= ∂x〈ϕ〉 is the zonal velocity, F ′ .

= {ϕ′, ζ′} −
〈{ϕ′, ζ′}〉, and 〈〈· · ·〉〉 denotes the total spatial average. The last term in (3.5b) results
from integrating in x to arrive at the equation for zonal velocity and is chosen to
ensure mathematical consistency for kx = 0. So far, this is an exact description of
the original equation (3.1). One arrives at the quasilinear system (QL) when the
eddy-eddy interactions in the fluctuation equation (3.5a) are neglected. This is done
by simply setting F ′ = 0.

The physical effects that the quasilinear equations neglect are the eddy-eddy
self-interactions. However, they do retain the eddy-eddy interactions that act on
zonal modes, which appear in the form of a Reynolds stress (first term on the
right-hand side of (3.5b)), as well as a term unique to the Terry-Horton equation

(second term on the right-hand side of (3.5b)). For the model δ̂k given by (2.17),
this term describes radial E×B advection of the background electron gradients. It
has already been shown that these interactions play a dominant role in the creation
of zonal flows (Parker and Krommes, 2013), as well as in catalyzing the transfer
of energy from large-scale drift-wave modes to smaller scales (Farrell and Ioannou,
2009), which are subsequently damped.

3.4. Four-Mode Truncation

Previous work on the HME and the two-field ITG model has concentrated on low-
order Galerkin truncations, focusing on the modulational instability of a single
mode to calculate zonal-flow growth rates, as well as on calculating the Dimits
shift using the tools of dynamical systems (Kolesnikov and Krommes, 2005a,b).
To connect this article to this previous work, I formulate a four-mode truncation
(4MT) of (3.1); in Fourier space,

∂ϕk

∂t
= (γk − iωk)ϕk +

1

α̂k − iδ̂k + k2⊥

∑

k1,k2

k1xk2yϕk1
ϕk2

× δk−k1−k2
[α̂k2

− α̂k1
− i(δ̂k2

− δ̂k1
) + k22⊥ − k21⊥]. (3.6)

In the 4MT, I retain a pure drift-wave mode p = (0, py), a pure zonal mode q =
(qx, 0), and two sidebands r± = (±qx, py). In addition, the complex conjugate
modes are retained in order to satisfy the reality condition. I also assume that
δ̂r−

= δ̂r+
= δ̂r, which is the case for the two examples of δ̂k given in Sec. 2.2.

Finally, α̂q is kept arbitrary to compare with previous results.
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The resulting set of equations is

∂tϕp = (γp − iωp)ϕp +Mp(ϕr−
ϕq − ϕr+

ϕ∗
q), (3.7a)

∂tϕr+
= (γr − iωr)ϕr+

+Mrϕpϕq, (3.7b)

∂tϕ
∗
r−

= (γr + iωr)ϕ
∗
r−

−M∗
rϕ

∗
pϕq, (3.7c)

∂tϕq =
qxpy

α̂q + q2x
[q2x(ϕr+

ϕ∗
p − ϕ∗

r−

ϕp)− iδ̂+(ϕr+
ϕ∗
p + ϕ∗

r−

ϕp)], (3.7d)

along with their complex-conjugate counterparts. Here, δ̂±
.
= δ̂p± δ̂r, and the Mk’s

are mode-coupling coefficients of the interaction between zonal flows and drift waves
and are given by

Mp = qxpy
1 + p2y − iδ̂r − α̂q

1 + p2y − iδ̂p
, (3.8a)

Mr = qxpy
1− q2x + p2y − iδ̂p − α̂q

1 + q2x + p2y − iδ̂r
. (3.8b)

It will be useful to express these coefficients in terms of their real and imaginary
parts,

MRe
p =

qxpy[(1 + p2y)
2 + δ̂pδ̂r − α̂q(1 + p2y)]

(1 + p2y)
2 + δ̂2p

, (3.9a)

M Im
p =

qxpy[δ̂−(1 + p2y)− α̂q δ̂p]

(1 + p2y)
2 + δ̂2p

, (3.9b)

MRe
r =

qxpy[(1 + p2y)
2 − q4x + δ̂pδ̂r − α̂q(1 + q2x + p2y)]

(1 + q2x + p2y)
2 + δ̂2r

, (3.9c)

M Im
r = −

qxpy[δ̂+q
2
x + δ̂−(1 + p2y) + α̂q δ̂r]

(1 + q2x + p2y)
2 + δ̂2r

. (3.9d)

To obtain these, I have used the fact that δ̂
−k = −δ̂k.

4. Numerical results

4.1. Setup

The nonlinear (NL) system (3.1) and quasilinear (QL) system(3.5) are simulated
pseudospectrally and dealiased on a square Cartesian grid with L = 20π and N =
256 on each side. Time stepping is performed using third-order Adams-Bashforth
with an integrating factor. The vorticity at t = 0 is initialized with Gaussian noise
of zero mean and standard deviation 5× 10−3, with no energy in zonal modes. The
random number generator used for the initial state is initialized with the same seed
for all simulations. For all simulations, D = µ − ν∇2

⊥ where µ = 1 and ν = 10−2.
To simulate the four-mode truncation, I choose modes with qx = py = 1 (the
dependence of this system on the specific values of qx and py will be understood
in Sec. 5). Finally, the value of β at which the Dimits shift ends is denoted as a
critical density gradient β∗. The size of the shift then is ∆β

.
= β∗ − βlin.

I run separate simulations using the different δ̂k’s given by (2.17) and (2.18),
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Figure 1: Snapshot of the evolution of the NL2 from direct numerical simulation
with D = 1 − 0.01∇2

⊥, β = 5.5 and δ̂k = 1.5iky. This value of β corresponds to
slightly below the end of the Dimits shift. Top left displays the evolution of the
potential ϕ, while the top right displays the evolution of the modified vorticity ζ,
with their respective power spectra displayed underneath.

the former with δ0 = 2 and ηe = 0, and the latter with δ0 = 1.5. To differentiate
between the two systems, I denote the former by (NL1), (QL1), etc., and the latter

by (NL2), (QL2), etc. For results that are insensitive to the details of δ̂k, I simply
use the unnumbered abbreviations. The parameters given above correspond to a
threshold of linear instability at βlin ≈ 4.74 for δ̂k given by (2.17), and βlin ≈ 4.21

for δ̂k given by (2.18).

4.2. Direct Numerical Simulation

Figure 1 contains an animation that shows the evolution of the NL2 system (3.1)

with δ̂k = 1.5iky within the Dimits-shift regime (β = 5.5). Additional movies with
varying values of β for the nonlinear system (β = 4.5, 7.5) as well as a movie of
the quasilinear system (3.5) with β = 5.5 are included as supplementary material,
which can be accessed online. Every simulation begins with a short period of linear
damping of stable drift-wave modes and linear growth of unstable ones. If the system
begins below the threshold of linear instability (β < βlin) then all modes damp and
the final state is the zero state; otherwise, growth of the drift-wave modes are
clustered around the most unstable mode with growth rate γ = γmax. Because the
perturbation level at this stage is quite small (ϕk ≪ 1), these modes are allowed to
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Figure 2: Direct numerical simulation of the NL2 system (3.1) with D = 1−0.01∇2
⊥

and δ̂k = 1.5iky for three values of density-gradient parameter β. The solid line
denotes the zonal component of the energy density, while the dashed line denotes
the energy density in all non-zonal modes.

grow without any influence from the nonlinear interaction. As the drift-wave energy
density EDW grows and becomes of order unity, the nonlinear interaction becomes
effective in transferring energy to zonal modes, resulting in fast exponential growth
in zonal energy.
Once EZF ∼ EDW, the nonlinear interaction becomes the dominant interaction

for all modes and two different scenarios can take place. One possibility is for the
system to find a stable zonal state that occurs after a burst of turbulent interac-
tions (Kolesnikov and Krommes, 2005a,b). Once a stable zonal spectrum is found,
the system then relaxes to a pure zonal state with the non-zonal modes damped
away to zero. For simulations near the end of the Dimits shift, the system can cycle
through a number of zonal spectra until finding one that is ultimately stable. The
time for this to happen typically increases with β, though for a given realization
this may not always strictly be true. The other possibility is that no such stable
zonal spectrum can be reached, if it even exists. In this case the system remains
in a turbulent state with finite particle flux. As an example, the nonlinear system
with β = 6.5 and δ̂k = iδ0ky was run for a time of t = 25 000 without ever reaching

a stable zonal state. The system with δ̂k given by (2.17), on the other hand, tends
to always find a stable zonal state, thus it does not exhibit a finite Dimits shift.
This is further discussed below. The qualitative behaviour of both the QL system
and 4MT are similar, though the quantitative aspects of the 4MT, which will be
discussed, are quite different.
Figure 2 shows the evolution of both zonal and drift-wave energy densities of the

NL2 system for three values of β versus time scaled by the respective growth rate
of the fastest growing mode. The first case (β = 4.5) is slightly above the threshold
for linear instability. Here, the stable zonal state is found in a short time, as can
be seen in the supplemental movie DS b5.5 NL.mp4. The second case is near the
end of the Dimits shift (β = 5.5). Now the system spends significantly more time
cycling through several zonal spectra until a final one is found. This is shown in
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Figure 3: Particle flux for the NL2, QL2 and 4MT2 systems with D = 1− 0.01∇2
⊥

and δ̂k = 1.5iky as a function of ion-density-gradient parameter β. The medium-
dashed line denotes the linear threshold for instability βlin. The dotted-line line
denotes predicted end of the Dimits shift β∗ given from the solution of (5.20).

figure 1. Finally, the third state is past the end of the Dimits shift (β = 7.5). Now,
the turbulent energy persists and no stable zonal state is found (see supplemental
movie DS b7.5 NL.mp4). These are quantitatively similar for the quasilinear system,
and a representative evolution of this system is shown in the supplemental movie
DS b5.5 QL.mp4.

Figure 3 shows the long-time turbulent flux as a function of β for the NL2, QL2
and 4MT2 systems with δ̂k = 1.5iky. (This plot serves the same purpose as figure
3 in Dimits et al. 2000.) As expected, the Dimits shift is observed as a distinct lack
of any flux immediately beyond the point of linear instability. Once the end of the
Dimits shift is reached (β∗ ≈ 5.75 for both the NL2 and QL2 systems), turbulence
is again allowed to persist and turbulent transport ensues. It is important to note
that the Dimits shift is quantitatively similar between the NL and the QL systems.
This is a rather profound result, as the NL system contains additional avenues of
energy dissipation through the direct cascade, where turbulent eddies continuously
self-interact, forming smaller turbulent eddies which eventually leads to damping.
On the other hand, eddies in the QL system can only be sheared via zonal flows.
However, this is the dominant mechanism when the enhancement of the nonlinear
zonal interaction is introduced via proper adiabatic electron response. (I shall show
what this means in Sec. 5.2.3.) As a result, energy transfer is principally in the
direction of kx. This has interesting consequences, the important one being that a
QL-like closure, such as CE2, suffices to capture all the relevant physics needed for
the Dimits shift.

It is also important to note the discrepancy of the size of the Dimits shift, as well
as the saturation levels, of the 4MT. This is simply a result of the fact that there
is only a single stable mode that can accept energy. This also explains the sharp
discrepancy between the saturated levels of flux between the NL/QL and 4MT;
because there are far fewer stable modes, the effective damping rate is greatly
reduced in the 4MT, resulting in larger levels of saturation when the system strikes
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Figure 4: The time taken to reach a steady zonal state ∆t for the NL system with
D = 1 − 0.01∇2

⊥ and δ̂k given by (2.17) with δ0 = 2 and ηe = 0 as a function of
ion-density-gradient parameter β. Two separate regimes can clearly be seen, one
where the system quickly settles into a zonal states (β < 7), and one where the
system takes an extended amount of time to settle (β > 7).

a balance between energy production (which has not changed significantly for the
4MT as the most unstable mode is retained) and energy dissipation (which has).

I have mentioned that the system with δ̂k given by (2.17) does not exhibit a
finite Dimits shift; rather, a steady zonal state seems to be always found. Even
so, two different regimes materialize, as shown in figure 4. Here, the time taken
to reach a steady zonal state is defined as ∆t

.
= tf − ti, where ti is the first time

where EZF = EDW, and tf is the first time where EDW/EZF = 10−6. In the first
regime where β < 7, steady zonal states are found within ∆t ∼ 500. When β > 7,
this time increases by at least a full order of magnitude. One possible explanation
is that in the first regime, the zonal shearing associated with the Dimits shift is
operational and zonal states that can sufficiently quench the drift wave turbulence
are quickly found, while in the second regime additional channels of energy transfer
are eventually established, thereby aiding the zonal modes to dissipate energy. The
existence of the dual cascade could possibly explain the appearance of a second
regime for this system, though more work is needed.

5. Analytical Results

I begin this section with a linear stability analysis of both the secondary and tertiary
instabilities for the 4MT. With these results in hand, the size of the Dimits shift
can be estimated for the fully nonlinear system, and a new understanding of the
Dimits shift is gained.

5.1. Zonal growth rates of the secondary instability

At the beginning of the simulation, the most unstable drift-wave mode grows with-
out any influence from the zonal or side-band modes in what I shall call the
secondary-instability regime. One can then solve (3.7b–d) with ϕp = ϕ0e

(γp+iωp)t,
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which renders the remaining equations a linear system:

∂tϕr+
= (γr − iωr)ϕr+

+Mrϕ0e
γpt−iωptϕq, (5.1a)

∂tϕ
∗
r−

= (γr + iωr)ϕ
∗
r−

−M∗
rϕ

∗
0e
γpt+iωptϕq, (5.1b)

∂tϕq =
qxpye

γpt

α̂q + q2x
[q2x(ϕr+

ϕ∗
0e

iωpt − ϕ∗
r−

ϕ0e
−iωpt)

− iδ̂+(ϕr+
ϕ∗
0e

iωpt + ϕ∗
r−

ϕ0e
−iωpt)]. (5.1c)

The goal is now to determine the growth rate of the zonal flow against this growing
drift wave mode.
At this point, one can make a further approximation by focusing on the region

where the zonal mode grows much faster than the drift-wave mode, making the
assumption γp = γr = 0. Alternatively one can also proceed, without any further
assumptions, to derive an evolution equation for ϕq ; this is done here.
To do so, the transformations ϕr+

= ϕ0ϕ
′
r+

e−iωpt and ϕ∗
r−

= ϕ∗
0ϕ

′∗
r−

eiωpt are
made to eliminate the rapid oscillatory behaviour of the drift-wave mode. New
equations of motion are then formulated for the variables Λ±

.
= ϕ′

r+
±ϕ′∗

r−

. Defining

γ±
.
= γp ± γr and ω±

.
= ωp ± ωr, (3.7a–c) become

∂tΛ+ = γrΛ+ − iω−Λ− + 2iM Im
r eγptϕq, (5.2a)

∂tΛ− = γrΛ− − iω−Λ+ + 2MRe
r eγptϕq, (5.2b)

∂tϕq =
|ϕ0|2qxpyeγpt

α̂q + q2x

(
q2xΛ− − iδ̂+Λ+

)
. (5.2c)

From here, it is a simple exercise to derive an ordinary differential equation for the
zonal mode by combining (5.2a–c):

ϕ′′′
q −Aϕ′′

q +
(
B − Ce2γpt

)
ϕ′
q −De2γptϕq = 0, (5.3)

where

A = 2γ+, (5.4a)

B = ω2
− + γ2

+, (5.4b)

C =
2|ϕ0|2qxpy
α̂q + q2x

(
q2xM

Re
r + δ̂+M

Im
r

)
, (5.4c)

D =
2|ϕ0|2qxpy
α̂q + q2x

[
γ−

(
q2xM

Re
r + δ̂+M

Im
r

)
+ ω−

(
q2xM

Im
r − δ̂+M

Re
r

) ]
. (5.4d)

The usual dispersion relation of the modulational instability for the HME is recov-
ered by setting δ̂k = 0 and α̂q = 1 (Connaughton et al., 2010).
The goal is to analyze (5.3) in the asymptotic limits t → 0 and t → ∞. The latter,

however, is made difficult by the fact that C, D ∝ |ϕ2
0| ≪ 1. Futhermore, C and

D can be of different orders relative to each other, exacerbating the situation. The
limit t → ∞ cannot be taken at face value then, as this asymptotic time may occur
well beyond the range of validity of this approximation (that is to say, beyond the
secondary-instability regime). Thus, (5.3) must be analyzed in the asymptotic limit
t → “∞”, which is coarse-grained according to the relative size of the coefficients
A, B, C and D, based on a given set of parameters qx, py and β.
For t → 0, the C and D coefficients become subdominant. The resulting equation
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is solved readily,

y ∼ exp
[
t
(
A±

√
A2 − 4B

)
/2

]
, (5.5)

and y ∼ c where c is a constant. The last solution is the one pertaining to the zonal
mode, while the other two are related to the linear evolution of the sideband modes.
To analyze the limit t → “∞”, the Ansatz ϕq ∼ eS(t) is used in (5.3), resulting

in

S′′′ + 3S′′S′ + S′3 − A(S′′ + S′2) + (B − e2γptC)S′ − e2γptD = 0. (5.6)

Two cases are now considered. First, let both C and D be of the same order. One
then finds the leading order behaviours ϕq ∼ exp(−Dt/C) and

ϕq ∼ exp(±aeγpt + bt), (5.7)

where

a =
√
C/γp, (5.8a)

b = (AC +D − 3γbC)/2C. (5.8b)

These apply equally well to the case where D → 0. For the other case where C is
subdominant, one finds the leading order behaviour

ϕq ∼ exp(I3a
′e2γpt/3 + b′t), (5.9)

where

a′ =
3D1/3

2γp
, (5.10a)

b′ = (A− 2γb)/3, (5.10b)

and I3 is a cube root of unity. Both (5.7) and (5.9) represent instabilities of Kelvin-
Helmholtz type (γ ∼ |qxpyϕp|ε ∼ |qxvx|ε where ε is a constant of order unity). This
agrees with the usual picture of the secondary instability given by Rogers et al.
(2000).
Again, it is emphasized that which asymptotic behaviour is relevant depends on

the specific values of qx, py, and β, as well as where the kinematic regime ends. For
instance, with qx = 0.6, py = 1.3 and β = 5, C is subdominant for t . 200, and so
the second situation applies. Figure 5 shows the evolution of the drift-wave energy
and the zonal energy for the 4MT with β = 5. Both the numerical solution of (5.3)
and the scaling given by (5.9) are displayed, showing excellent agreement.
Unfortunately, it is difficult to extend this analysis to the NL or QL systems in

order to determine the dominant zonal mode, as the cumulative effect of the asymp-
totic behaviour of every mode is somewhat unclear. Even then, such a prediction
would only predict a dominant zonal mode during the initial kinematic stage. There
is no a priori reason why this mode would remain the dominant one once the fully-
nonlinear interaction stage comes to an end. More sophisticated approaches, such
as the wave-kinetic equation (Diamond et al., 2005; Ruiz et al., 2016), have been
used in the past to calculate zonal growth rates with some success. However, this
approach assumes a homogeneous background of drift-wave turbulence (Krommes
and Kim, 2000), which isn’t the case in this regime. The zonal flows are also as-
sumed to be quasi-static (Parker, 2016), an assumption that breaks down during
the short turbulent interaction phase of the Dimits shift, so the usefulness of the
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Figure 5: Typical energy evolution for the 4MT system as described in Sec. 5.1 with
qx = 0.6, py = 1.3, D = 1 − 0.01∇2

⊥, β = 5 and δ̂k given by (2.17) with δ0 = 2
and ηe = 0. The solid line denotes the drift-wave mode energy while the dot-dashed
line denotes the zonal mode energy. The numerical solution to (5.3) is plotted with
points, with the t → “∞” asymptotic behaviour being shown as a dotted line.

wave-kinetic equation for calculating zonal growth rates of the secondary instability
during the Dimits shift is at this point uncertain.

5.2. Zonal mode stability analysis of the tertiary instability

This calculation can be repeated to study the stability of a zonal mode to a drift-
wave perturbation, otherwise known as the tertiary instability. A similar calculation
has been performed in Rogers et al. (2000) where those authors dealt with the ITG
mode. For a background zonal state ϕq = ϕ0, the linearized equations of motion
are

∂tϕp = λpϕp +Mp(ϕ0ϕr−
− ϕ∗

0ϕr+
), (5.11a)

∂tϕr+
= λrϕr+

+Mrϕpϕ0, (5.11b)

∂tϕr−
= λrϕr−

−Mrϕpϕ
∗
0. (5.11c)

The eigenvalues are quickly found: λ = (γr − iωr) and

λ± =
1

2

[
λp + λr ±

(
(λp − λr)

2 − 8|ϕ0|2MpMr

)1/2]
. (5.12)

The destabilizing root is the positive branch which has the real component

Re(λ+) =
1

2

[
γ+ +

√
1

2

(
Ω+

√
Ω2 +Θ2

)1/2 ]
, (5.13)

where

Ω
.
= γ2

− − ω2
− − 8|ϕ0|2(MRe

p MRe
r −M Im

p M Im
r ), (5.14)

Θ
.
= 2ω−γ− + 8|ϕ0|2(MRe

p M Im
r +M Im

p MRe
r ). (5.15)

Immediately, certain terms appear with physical importance. For instance, ω− rep-
resents the modulational part of the dispersion relation that is due to dispersive
effects, while γ+ is the coupling of the linear growth rates by the nonlinear inter-
action.
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Equation (5.13) contains a wealth of information that must be carefully parsed.
This shall be done in subsections.

5.2.1. Maximally-Coupled Modes When the outer discriminant of (5.13) vanishes,
the real part of both the unstable and stable eigenvalues becomes Re(λ+) = γ+/2.
This corresponds to a special situation where both the drift-wave and sideband
modes become maximally coupled, and occurs when Θ = 0 and Ω ≤ 0. Here,
both modes work together in tandem to create a coupled mode with an effective
damping rate that is the average of the individual growth rates. This coupled mode
will be referred to as the Maximally-Coupled Mode (MCM). In principle, MCMs can
exist for arbitrary drift-wave/sideband pairings where the primary drift-wave mode
contains a non-zero component along kx. However, for the rest of this discussion I
make the approximation that for the quantitative aspects of the Dimits shift, only
the most unstable drift-wave mode (which must be purely radial with wavenumber
p∗y) is relevant.
The upper bound of the Dimits shift for the 4MT can then be quickly found as

the solution to the equation γ+ = 0, or

β∗ =
(Dp +Dr)

py

[(1 + p2y)
2 + δ̂2p][(1 + q2x + p2y)

2 + δ̂2r]

δ̂r[(1 + p2y)
2 + δ̂2p] + δ̂p[(1 + q2x + p2y)

2 + δ̂2r]
. (5.16)

This predicts the end of the Dimits shift for the system considered in Sec. 4.2 to
be β∗ = 5.2, in excellent agreement with the simulation result in figure 3.

5.2.2. The most stable zonal amplitude In order to develop MCMs, the condition
Θ = 0 must be satisfied. There then exists a zonal amplitude that is most stable,
given by

|ϕ0|2 = − ω−γ−
4(MRe

p M Im
r +M Im

p MRe
r )

. (5.17)

The stability of such a mode has been verified numerically. Two important special
cases are now apparent. If ω− = 0 and M Im

p , M Im
r 6= 0, then no amount of zonal

amplitude is stabilizing, thus the frequency mismatch between drift-wave and side-
band modes is needed to stabilize the zonal mode. However, if M Im

p = M Im
r = 0 and

ω− 6= 0 (as would be the case if linear instability was introduced by hand without
modifying the Poisson equation) then maximal coupling can only be achieved with
ϕ0 → ∞. Finally, if M Im

p = M Im
r = ω− = 0, then any amount of zonal amplitude is

stabilizing. Additional zonal amplitude beyond a certain limit, however, ceases to
make any further difference.

5.2.3. The zonal Kelvin-Helmholtz instability The other condition that must be
satisfied is Ω < 0. Here, the modulational instability that materializes as ω− is a
stabilizing effect. More importantly, however, is that

MRe
p MRe

r −M Im
p M Im

r > 0. (5.18)

It is important to realize that Mk ∼ qxpy times a factor of order unity. This term
then clearly represents a Kelvin-Helmholtz-type destabilization of the zonal mode,
and can become dominant for sufficiently large zonal amplitudes and negative values
of the mode-coupling factor. However, this term only needs to be comparable to
γ2
− −ω2

− in order to spoil the coupling between drift-wave modes. This happens for
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a sufficiently large value of qx (denoted by q∗x) and signifies the smallest scale where
the last MCM is formed.
I now make clear what is meant when I say that the introduction of the α̂ operator

to the Poisson equation results in a boost to the nonlinear zonal interaction. Con-
sider the mode-coupling coefficients of the HME ((3.8) with δ̂k = 0 and α̂q = 1).
Solution of MRe

p MRe
r = M Im

p M Im
r ≡ 0 leads to the Kelvin-Helmholtz stability

threshold of q∗x = p∗y, implying local zonal interaction. However, the α̂ operator in

the mHME (viz. (3.8) with δ̂k = 0 and α̂q = 0) leads to the stability threshold

q∗2x = 1 + p∗2y . (5.19)

Typically, p∗y ≪ 1 in toroidal plasmas, leading to q∗x and p∗y that are of disparate
scales. This is a rather surprising result, as this means that the energy transfer
caused by zonal shearing can be non-local. This example illustrates the fact that
this boost materializes as an increase in the range of radial scales where MCMs can
develop, emphasizing the importance of contributions from small-scale zonal flows.
Even when p∗y ∼ 1, this slight increase in range can still lead to dramatic effects.
This is in stark contrast to the scale-by-scale transfer due to the Kolmogorov-type
cascade with a transfer rate that is limited by the local eddy turnover time.

5.3. Estimation of the Dimits shift

Motivated by the numerical results presented in Sec. 4.2, I now leverage the above
calculations to make an estimate of the Dimits shift for the fully nonlinear system,
giving new insights into the nature of the tertiary instability. The physical picture
is as follows: as zonal flows are generated from the secondary instability, drift-waves
become sheared, resulting in a direct transfer of energy to smaller scales. As energy
flow is principally horizontal in k space (i.e. energy is not transferred between
bands with different ky), the relevant value of py that determines stability is that
given by the most unstable drift-wave mode, denoted by p∗y. This transfer can only
be done efficiently down to the scale given by q∗x, as the Kelvin-Helmholtz-type
destabilization acts to spoil the coupling between drift waves to this scale. This is
the last point where energy generated by the most unstable mode can be efficiently
transferred through an MCM. Thus the Dimits shift will roughly terminate when
the last MCM at this scale itself becomes unstable.
Quantitatively, this situation can be described as a system of four equations,

∂γp
∂py

∣∣∣∣
py=p∗y

= 0, (5.20a)

Θ = 0, (5.20b)

Ω = 0, (5.20c)

γ+(q
∗
x, p

∗
y) = 0, (5.20d)

and four unknowns q∗x,, p
∗
y, |ϕ0|2, and β∗. The first equation relates p∗y of the most

unstable drift-wave mode to the instability parameter β∗. The second equation
determines the most-stable zonal amplitude for the given triad and relates |ϕ0|2,
q∗x, and p∗y. The third equation gives the point at which the zonal mode cannot
efficiently couple drift-wave modes and relates |ϕ0|2, q∗x, and p∗y. Finally, the last
equation indicates the point where the last MCM becomes unstable and relates q∗x,
p∗y, and β∗.

Numerical solution of this system of equations with δ̂k = 1.5ky and D = 1 −
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Figure 6: Parameter scan of the nonlinear system with δ̂k given by (2.17). The left
panel (a) uses Dk = 1 + 0.01k2⊥, while the right panel (b) uses Dk = 0.3|ky|. Bold
dots denote system that end in steady zonal states while crosses denote systems
that end in turbulent states. The solid line marks the linear stability threshold,
while the dashed line denotes the predicted end of the Dimits shift β∗ given from
the solution of (5.20).

0.01∇2
⊥ yields β∗ ≈ 6.2 and results in a Dimits shift size of ∆β ≈ 2.0. This is

within the value obtained by the direct numerical simulation in Sec. 4.2 (β∗ &

5.75 and ∆β ≈ 1.5) by roughly 25%. This is a fairly good estimate, considering
it is the result of a straightforward linear calculation with only a few nonlinear
considerations. Notice that this analysis is insensitive to the details of the underlying
model; it applies equally well to any Hasegawa-Mima-like equation, and should be
generalizable to more complicated ones, such as the two-field ITG and Hasegawa-
Wakatani models. I stress that this is only an estimate; it is neither an upper bound,
as additional avenues of efficient energy transfer may exist, nor is it a lower bound,
as the existence of a stable state does not guarantee it is physically realizable.

Figure 6 shows a parameter scan of the system with δ̂k = iδ0ky over both δ0 and β.
The left panel (a) uses frictional and viscous damping with Dk = 1+0.01k2⊥, while
the right panel (b) uses a damping operator appropriate for a Landau-fluid closure
with Dk = 0.3|ky|. These simulations are run for a maximum time of t = 10 000.
Bold dots denote simulations that end in steady zonal states while crosses denote
systems that end with turbulence. The solid line shows the linear stability threshold
while the dashes line shows the threshold calculated from (5.20). This plot shows
good agreement between the estimation and the observed numerical boundary of
the Dimits shift. Surprisingly, in panel (a) the estimation also reasonably predicts
the boundary at δ0 = 2.

One important caveat to this estimation is it must be modified somewhat when
applied to a system with a strong dual cascade. In addition to nonlocal transfer
from the zonal flows, there can also be transfer to large scales that can lead to
dissipation by large-scale sinks. If the coupling to these modes is efficient, then the
Dimits shift could possibly be extended. A correction can then be made to the above
analysis by assuming maximal coupling between the most unstable drift-wave mode
and the most unstable mode at the box scale, which is typically purely radial with
wavevector pbox .

= (0, 2π/Ly). Then two critical values of β∗ must be calculated,
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one due to the zonal interaction (denoted by β∗
ZF) and the other due to the inverse

cascade (denoted by β∗
IC). The latter value is given by the solution to the system

of equations

∂γp
∂py

∣∣∣∣
py=p∗y

= 0, (5.21a)

γp∗ + γpbox = 0. (5.21b)

If the inverse cascade can achieve maximal coupling, then the new critical density
gradient would be β∗ = Max(β∗

ZF, β
∗
IC). Otherwise, the best one can do without

further analysis is to confine the critical density gradient within the interval β∗
ZF ≤

β∗ ≤ Max(β∗
ZF, β

∗
IC). The system considered in Sec. 4.2 with δ̂k given by (2.17) with

Ly = 20π leads to β∗
ZF ≈ 7.25 and β∗

IC ≈ 9.4, which lends further credence to the
existence of an inverse cascade. While it would be desirable to show that no steady
zonal state exists beyond this critical gradient, such simulations become unfeasible
as they would have to be run over an extended period of time, even beyond those
witnessed in figure 4. This will be left for future exploration.
Finally, this analysis says nothing about the possibility of coupling of modes on

stable and unstable branches at similar points in k space (see the recent work of
Makwana et al. 2014). This coupling does not exist in the present one-field model,
but this may be important when extending the analysis to the gyrokinetic equation.

6. Discussion and Conclusion

I have shown through direct numerical simulation that the Terry-Horton equation
can be made to exhibit the Dimits shift with two suitable modifications. First,
proper adiabatic electron response is added to ensure that electrons do not respond
to a potential that is constant along a flux surface. Secondly, zonal modes are made
to be explicitly undamped, thus capturing the residual Rosenbluth-Hinton states
seen in gyrokinetic simulations. This phenomenon persists after various simplifi-
cations. Analytical progress was made on a four-mode truncation of the system,
focusing on the behaviour of the zonal mode growth during the secondary instabil-
ity, and calculating an upper bound on the end of the Dimits shift. Importantly, it
was shown here that the system can only efficiently couple modes down to a scale
set by a Kelvin-Helmholtz-type destabilization. Using this information, the size of
the Dimits shift was estimatde for the nonlinear system and a intuitive picture
of the underlying mechanism emerged, providing new insights. In particular, the
role of small scale zonal flows was found to be an important mechanism of energy
transfer within the Dimits shift.
I reiterate that the goal of this model is to serve as a proving ground for analytical

techniques that can be used to quantify the shift in more complete systems. I
also believe this model possesses pedagogical merits as well. The model itself is
transparent and self-contained; the calculations presented in this article are simple
and intuitive, yet illuminating. One can then learn about the essential aspects
of the Dimits shift without needing to go into the methodology of gyrokinetics
and geometry, and can be used as a stepping stone to more difficult and relevant
problems.
Future work should focus on extending this analysis to more physically complete

(e.g., gyrokinetic) systems to see if one can derive the size of shift originally seen
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for the Cyclone Base Case in Dimits et al. (2000). Other quantities of interest are
the saturation levels and spectra of the zonal flows resulting from the secondary
instability, and the saturation levels of turbulent transport beyond the shift.
Finally, a better estimate of the size of the Dimits shift for the mTHE should

be derived using more rigorous methods. This can be done, in principle, by using
statistical closures to study the nonlinear mechanisms. However, as Krommes and
Parker (2015) have pointed out, it is necessary to begin with an inhomogeneous
closure in order that one can consider inhomogeneous symmetry-breaking pertur-
bations (zonal flows) to a state of homogeneous turbulence. (As was discussed by
St-Onge and Krommes 2017, here ‘turbulence’ below the point of zonostrophic in-
stability refers to homogeneous noise due to discrete particles.) Not only does an
inhomogeneous closure allow for symmetry breaking, it contains all of the physical
effects involved in destabilizing those flows and allowing for a transition from the
Dimits-shift regime to states of fully developed turbulence. Because the general
structure of an inhomogeneous closure is necessarily complicated, carrying out such
a program to completion represents a significant challenge for the future.
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