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Conductivity tensor for anisotropic plasma in gyrokinetic theory.
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It has been argued that the oblique firehose and mirror instabilities are important

candidates for regulation of temperature anisotropy in the solar wind. To quantify

the role of anisotropy driven instabilities, global kinetic simulations of the solar wind

would be extremely useful. However, due to long time scales involved, such simula-

tions are prohibitavely expensive. Gyrokinetic theory and simulations have proven to

be valuable tools for the study of low frequency phenomena in nonuniform plasmas,

however there are discrepencies between the anisotropy driven instabilities appearing

in the gyrokinetic theory and those of a fully kinetic one. We present a derivation of

the conductivity tensor based on the arbitrary frequency gyrokinetics, and show that

relaxing the condition that ω/Ω ≪ 1, where ω is the wave frequency, and the Ω is the

cyclotron frequency, eliminates these discrepencies, while preserving the advantages

of the gyorkinetic theory for global kinetic simulations.
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I. INTRODUCTION

Recently it has been shown that anisotropy driven instabilities, especially the firehose and

mirror type, are important candidates for the regulation of temperature anisotropy in the

solar wind1,15,17. Valuable insights into underlying mechanisms of these regulating processes

may be gained via computer simulations. Athough fluid simulation models are sufficiently

fast to capture the global nature of the problem, they lack the ability to resolve the equally

essential kinetic physics. For this reason, fully kinetic simulations are commonly employed

to investigate the behavior of these instabilities, e.g. Gary 8 , Seough et al. 34 , Yoon et al. 41 .

However, when the phenomena of interest are much slower than the cyclotron period of

the simulated species, fully kinetic simulation models can overwhelm the computational re-

sources by computing unnecessary details. Although hybrid simulations, with fully kinetic

ions and massless fluid electrons4,12–14, are frequently employed to balance these two ex-

tremes, in the case of oblique firehose and mirror instabilities the time scales of interest are

still much longer that the ion cyclotron period, motivating an inquiry into a more efficient

simulation model.

Gyrokinetic simlulations are currently the most important tool for global studies of low

frequency kinetic phenomena in fusion plasmas, i.e. phenomena whose time scales are longer

than the cyclotron period; and they are becoming more common in the studies of space

and astrophysical plasmas7,23–25,27,32,39. However, the gyrokinetic theory, and corresponding

simulation codes, generally assume that k‖ ≪ k⊥, i.e. the wavelength of perturbations

along the magnetic field line is much longer than perpendicular to it3. As it turns out, the

most unstable Alfvenic perturbations in fusion devices indeed satisfy this criterion, which

represents minimum bending of the magnetic field lines. However, temperature anisotropy

modifies the relative importance of the stabilizing effect of the field line bending, and the

high β anisotropy driven instabilities such as the mirror and the oblique firehose are most

unstable when k‖ ≈ k⊥, while k⊥ρ ∼ 1 is still valid (β is the ratio of plasma pressure to

magnetic pressure, ρ is the Larmor radius,and the directions of k-vectors are relative to

the magnetic field). Consequently, a simulation model based on a gyrokinetic theory which

does not take this into account will result in their incomplete description. For example,

the growth rate for the mirror instability will not capture the stabilization at large k‖,

i.e. the field line bending eventually has to stabilize the mode; and the oblique firehose,
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will be completely missed. However, the advantage of the gyrokinetic theory results from

the decoupling of the gyro-motion from the rest of the particle dynamics, and not from

the frequency ordering, or the related k‖ ≪ k⊥ assumption28. As has been shown using

the gyrocenter phase space transformations, such decoupling can be accomplished without

the requirement that these conditions be satisfied, and corresponding efficient gyrokinetic

simulations can still be designed19,20,31.

The gyrokinetic theory has been initially extended to arbitrary frequencies by Brizard 2 ,

Chen and Tsai 5 , Chiu 6 , Lee et al. 22 . Later it was reformulated in terms of the generating

function of phase space transfromations, the gyro-gauge function, by Qin 28 , who then used

the approach to show how the fast compressional Alfven wave may be reintroduced into the

gyrokinetic theory, and the ideal MHD may be recovered from it28,30. The formulation of

the gyrokinetic theory in terms of phase space transformations enable one to systematically

decouple the particle’s gyro-motion from the rest of its dynamics. This is the key advantage

of the formulation, and what makes it suitable for efficient computer simulations. The

approach has been shown to reduce computation time in particle-in-cell simulations even in

cases when the time scales of the order of the cyclotron period are important to consider,

such as RF heating16,21,42.

In this manuscript we use the arbitrary frequency gyrokinetic kinetic theory, or the gyro-

gauge kinetic theory, and outline the derivation of the gyrokinetic conductivity tensor for

an anisotropic plasma, without assuming that the wave frequency is much less than the

cyclotron frequency, or k‖ ≪ k⊥. We then numerically solve thus obtained dispersion relation

for the mirror instability and the oblique firehose instability, and compare the results with

solutions obtained using the fully kinetic conductivity tensor12,18. The motivation is to

demonstrate that the key instabilities that regulate the anisotropy in the solar wind may

be correctly recovered using this approach, which can therefore be used as the basis of an

efficient global simulation model for the study of the solar wind.

II. PRELIMINARY CONSIDERATIONS

In this section we outline the derivation of the conductivity tensor. After stating our

working assumptions, we discuss the relationship between the fields (δφ, δA‖, δB‖), in terms

of which the current in gyrokinetic theory is expressed, and the electric field components
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(Ex, Ey, Ez). Once the expression for the gyrokinetic current is obtained, this relationship

may be used to find the conductivity tensor components.

For simplicity we assume a two component plasma with bi-Maxwellian ions and Maxwellian

electrons,

Fi0 = n0

√
mi

(2π)3Ti‖T 2
i⊥
e
−
(

miv
2

‖
2Ti‖

+
µB0

Ti⊥

)

, (1)

Fe0 = n0

√
me

(2πTe)3
e
−
(

mev
2

‖
2

+µB0

)

/Te

, (2)

where ms is the particle mass of species s, v‖ is the component of the velocity parallel to

the magnetic field; B0 is the magnitude of the background magnetic field; µ is the magnetic

moment, given by msv
2
⊥/2B0, for species s; v⊥ is the magnitude of the velocity perpendicular

to the background magnetic field; Te is the electron temperature, which is assumed to be

isotropic; Ti‖ and Ti⊥ are the parallell and perpendicular temepratures of ions;

In this section we use the following normalizations: time is normalized to the cyclotron

period Ω−1
i = mic/eB0, space to the proton Larmor radius ρi =

√
Ti⊥/mi/Ωi, magnetic field

to B0, and electric field to Ti⊥/eρi. Here, c is the speed of light, e is the proton charge, mi

is the proton mass, Ti⊥ is the temperature of ions perpendicular to magnetic field, and B0 is

the background magnetic field. The background magnetic field is assumed to be uniform and

along the z-axis, which therefore corresponds to the “parallel” direction; the “perpendicular”

direction is along the x-axis.

The normalized wave equation may be written as,

k× k× E+
ω2

c2
E+ iω

βi⊥
2

J = 0, (3)

J =
∑

s

σs · E = − 2iω

βi⊥c2

∑

s

χs · E, (4)

where the the index of the sum corresponds to species s,and βi⊥ is the radio of kinetic

pressure to magnetic pressure, explicitly given by 4πn0Ti⊥/B
2
0 . In gyrokinetic theory, the

electromagnetic fields are expressed in terms of the scalar potential (δφ), the compressional

component of magnetic field perturbation (δB‖) and the magnitude of the vector potential

in the parallel direction (δA‖)
3. In terms of these quantities, the electric field is (using above
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normalizations)

Ex = −ik⊥δφ− iω
k‖
k⊥

δA‖, (5)

Ey =
ω

k⊥
δB‖, (6)

Ez = −ik‖δφ+ iωδA‖, (7)

in the Coulomb gauge (∇ ·A = 0). The above transformation equations can be written as

E ≡




Ex

Ey

Ez


 =




−ik⊥ −iω
k‖
k⊥

0

0 0 ω
k⊥

−ik‖ iω 0




︸ ︷︷ ︸
G




δφ

δA‖

δB‖




︸ ︷︷ ︸
E

′

≡ GE′.

Then, using Eq. 4, the current can be written in terms of E′ as

J =
∑

s

σs · E =
∑

s

σs ·GE′ =
∑

s

σ
′
s · E′. (8)

The explicit expression for current is found from the gyrokinetic equation, and is therefore

in terms of σ′
s and E′. The corresponding conductivity tensor is

σs = σ
′
sG

−1, (9)

where

G−1 =




ik⊥
k2

0
ik‖
k2

ik‖k⊥
ωk2

0 − ik2⊥
ωk2

0 k⊥
ω

0


 .

In this manner a clear comparison between the matrix elements obtained from the fully

kinetic theory and the gyrokinetic theory can be made.

III. OBTAINING THE CURRENT

The gyrokinetic equation determines the ion gyrocenter distribution function, designated

by δFi, and related to the particle distribution function by

δfi(z, t) ≈ e−ρ·∇δFi(Z, t)|z + eρ·∇δZ · eρ·∇∂ZFi0(Z, t)|z (10)
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where z ≡ (x,v), and Z ≡
(
X, v‖, µ, ξ

)
are guiding center variables

X ≡ x− ρ (11)

v‖ ≡ b̂ · v

ξ ≡ tan−1 1̂ · v/2̂ · v

corresponding to the guiding center position (X), parallel velocity (v‖), magnetic moment

(µ), and phase angle (ξ), respectively. The Larmor radius is defined by ρ = Ω−1
i b̂ × v⊥ =

ρ⊥
(
1̂ cos ξ + 2̂ sin ξ

)
, whereρ⊥ ≡ v⊥Ωi, and (1̂, 2̂, b̂) is an orthogonal triad of unit vectors

which in our case correspond to (x̂, ŷ, ẑ). Treating only ions gyrokinetically, for simplicity,

and with the above considerations, the perturbed current may be written as,

J =

∫
vδfidv−

∫
vδfedv.

=

∫
e−i

√
2λµ cos ξ

(
ẑv‖ − ŷ

√
2µ cos ξ − x̂

√
2µ sin ξ

)(
δFi + δv‖∂v‖Fi0 + δµ∂µFi0

) ∣∣∣
z

dv‖dµdξ

−
∫

vδFedv, (12)

where the λ parameter is given by k2
⊥ρ

2
i in unnormalized units, and

δFi =−
[(
δφ− sδA‖

)
J0

(√
2λµ

)
+ µδB‖

2

λµ
J1

(√
2λµ

)](
1− s

s− v‖

)
F0i, (13)

δv‖ =δA‖J1

(√
2λµ

)
2i cos ξ + ik‖S, (14)

δµ =µδB‖
2√
2λµ

{
−J1

(√
2λµ

)
+

[
J0

(√
2λµ

)
− 1√

2λµ
J1

(√
2λµ

)]
2i cos ξ

}
+ ∂ξS,

(15)

where s = ω/k‖, and S = S(v‖, µ, ξ) is the gyro-gauge function, which contains all the details

of the transformation between particles and gyrocenters, as will be later discussed. δFi rep-

resents the linear response of the gyrokinetc distribution function of ions; δv‖ corresponds to

the modification of the parallel velocity of ions due to the perturbation; and δµ corresponds

to the modification of the magnetic moment of ions due to the perturbation. Both, δv‖

and δµ, depend on the gyrogauge function S, which essentially defines their meaning. The

reader is referred to28,29 for more details. Eq. 12 determines the dependence of J on the field

quantities (δφ, δB‖, δA‖). From it, the elements of σ′
s may be found, and used to compute

the conductivity tensor, and the susceptibility tensor χs.
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The gyro-gauge function plays the central role in gyrokinetic theory, containing all the

details of the transformation between particles and gyrocenters28. It is the generating func-

tion for the transformation between the two, and thus it determines how the gyro-motion

is decoupled from the particle motion. This decoupling is the reason why gyrokinetic sim-

ulations can provide significant advantage over the fully kinetic schemes. The gyro-gauge

function is the solution to28

(
∂t + v‖b̂ · ∂X + ∂ξ

)
S =δ̃φ− ṽ · δA, (16)

where

δ̃φ =
[
ei

√
2λµ cos ξ − J0

(√
2λµ

)]
δφ, (17)

ṽ‖δA‖ =
[
ei

√
2λµ cos ξ − J0

(√
2λµ

)]
δA‖v‖, (18)

˜v⊥ · δA⊥ =

[
2i√
2λµ

ei
√
2λµ cos ξ cos ξ +

2√
2λµ

J1

(√
2λµ

)]
µδB‖, (19)

which corresond to oscillatory components of the field quantities. The solution is,

S = −
∑

n 6=0

i
(
δφ− v‖δA‖

)

n+ k‖v‖ − ω
inJne

inξ −
∑

n 6=0

2√
2λµ

µδB‖
n+ k‖v‖ − ω

in−1J ′
ne

inξ. (20)

Any approximations of Eq. 20 determine how much of the detail of particle motion is

retained. For example, standard gyrokinetics is obtained when S is expanded assuming that

ω ≪ Ωi, and only the lowest order in ω/Ωi is kept. Instead of transforming to the Fourier

space to obtain Eq. 20, in gyrokinetic particle simulations, Eq. 16 may be treated as other

phase-space variables and integrated in time21. For simplicity of expression, we keep only

the n = ±1 components, removing higher order cyclotron resonances,

S =
(
δφ− v‖δA‖

)
J1

(
eiξ

k‖v‖ − ω + 1
+

e−iξ

k‖v‖ − ω − 1

)

− 2µδB‖√
2λµ

(
J0 −

1√
2λµ

J1

)(
eiξ

k‖v‖ − ω + 1
+

e−iξ

k‖v‖ − ω − 1

)
(21)

The first integral in Eq. 12 can be written as a sum of two contributions, one coming

from the guiding center distribution function δFi, which can be designated by JδF , and

the other coming from finite Larmor radius (FLR) corrections, which can be designated by

JFLR. Combining Eq. 12 with Eq. 20 the following expressions for the components of JδF
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are obtained,

JδF
x =0, (22)

JδF
y =− i

√
λe−λ

2Ti‖
(δA‖s− 2δB‖ − δφ)(−I0 + I1)

(
s√
2Ti‖

Z + 1

)
βi, (23)

JδF
z =

e−λs

2Ti‖

([
δA‖s− δB‖ − δφ

]
I0 + δB‖I1

)
(

s√
2Ti‖

Z + 1

)
βi. (24)

The components of JFLR are equally straightforward, but due to their length were placed in

the Appendix. The elements of σ′
s can be directly read from these expressions for current,

and the conductivity tensor may then be found using Eq. 9.

IV. APPLICATION TO MIRROR AND OBLIQUE FIREHOSE

The mirror instability10,35,38 is a kinetic instability which results when

2−
∑

s

βs⊥

(
Ts‖
Ts⊥

− 1

)
< 0. (25)

A gyrokinetic set of equations has been previously used to analyze the mirror instability,

however these derivations were based on the low frequency version of the gyrokinetic theory,

in which the terms of order k‖v‖/Ωi are treated as small and are systematically neglected.

The neglect of the higher order terms results in a dispersion relation in which k‖ enters

only as a scaling factor of ω, so that the growth rate is linearly proportional to k‖. Not

only is such a description of the mirror instability incomplete, a simulation model based

on it would produce grid-scale instabilities. To recover the stabilization at high k‖ the

previous derivations thus introduce higher order terms into the perpendicular Ampere’s law

ad hoc26,32,33. Here we obtain the correct behavior of the mirror instability by working

systematically with the gyro-gauge function, the gyrokinetic equation, and the Maxwell’s

equations. The result is shown in the left panel of Figure 1, for ion parameters R = Ti⊥/Ti‖ =

6, β⊥ = 4πn0Ti⊥/B
2
0 = 0.43, and c/

√
Ti⊥/mi = 103. The electrons are isotropic with

Te/Ti = 10−4. The growth rate agrees with the fully-kinetic derivation, shown in the right

panel, for comparison. In both cases, the stabilization at large k‖ is clearly displayed.

The oblique firehose instability has been first investigated in detail by Hellinger and

Matsumoto 12 , while many of its essential features were captured earlier by Yoon et al. 40 .
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FIG. 1. Left panel shows the growth rate of the mirror instability obtained using the numerical

solution of the gyrokinetic dispersion relation. The right panel shows the fully kinetic solution.

The parameters were R = 6, β⊥ = 0.43 for ions, and electrons were isotropic with Te/Ti = 10−4.

Like the classical firehose, which propagates along the magnetic field11, the oblique firehose

instability requires that the parallel temperature of the unstable species be larger than the

perpendicular temperature, specifically

N +
∑

s

βs⊥

(
1− Ts‖

Ts⊥

)
< 0, (26)

for some positive number N . For classical firehose N = 2, but for the oblique firehose

N ∼ 1.412. The stability threshold for the latter is therefore slightly less, suggesting that

it may be more important at controlling anisotropy near marginal stability. Furthermore,

unlike the classical firehose, the maximum growth rate for the oblique firehose occurs at
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FIG. 2. Left panel shows the growth rate of the oblique firehose obtained using the numerical

solution of the gyrokinetic dispersion relation. The right panel shows the fully kinetic solution.

The parameters were R = 0.4, β⊥ = 1.2 for ions, and electrons were isotropic with Te/Ti = 10−4.

k‖ ∼ k⊥. This property is again the reason why this instability can not be recovered in the

framework of low frequency gyrokinetics, for which ω/Ωi ≪ 1, while k⊥ρi⊥ ∼ 1. The left

panel of Figure 2 shows the dispersion surface for the oblique firehose where the ions were

treated gyrokinetically, with parameters R = 0.4, and β⊥ = 1.2, and electrons were isotropic

with Te/Ti = 10−4 The right panel shows the growth rate as obtained from the fully kinetic

theory. The slight shift in the location of the maximum growth rate is a result of keeping

only n = ±1 cyclotron resonances in the gyrokinetic solution. The proton resonant firehose

instability9, or the whistler firehose12, is also visible.
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V. DISCUSSION

The conductivity tensor for a two-component plasma, with bi-Maxwellian protons and

Maxwellian electrons, has been derived above using the gyro-gauge kinetic formalism, with-

out frequency ordering, but retaining only n = ±1 proton cyclotron resonances. The mirror

and the oblique firehose instabilities were recovered by numerically solving the dispersion

relation derived from the gyrokinetic plasma response, and the results agree well with fully

kinetic solutions. Because no assumtion was made on wave frequency with respect to the

cyclotron frequency, the result can be considered to be an alternative way to derive the

fully kinetic conductivity tensor for a magnetized, bi-Maxwellian plasma, by retaining all

harmonics of the cyclotron frequency, n = −∞, ...,∞. Equivalently, one may obtain quan-

titatively same matrix elements of the conductivity tensory by retaining only the n = ±1

cyclotron harmonics in the fully kinetic expressions found in the literature, such as Stix 36

or Swanson 37 . The significance of this approach lies, however, mainly in its implications for

kinetic simulations. The approach allows one to systematically manipulate time-scales re-

tained in the simulation model without the need to significantly alter the simulation model,

or the simulation code. This flexibility is realized through suitable approximation of the

gyro-gauge function, which contains all information about the transformation between par-

ticles and guiding centers28. How much detail is retained in the simulation model is therefore

governed, in a mathematically rigorous and transparent way, by how much detail is retained

in the gyro-gauge function.
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Appendix A: Explicit Form of the FLR Current Components

The explicit form of the current components is given here for completeness. Combining

Eq. 12 with Eq. 20 the following expressions for the components of JFLR may be obtained,

JFLR
x =

δφe−λ

√
2λ3/2k‖T

3/2
i‖

{
λI1Z+

(
k‖ζ+ − Ti‖

)
− λI1Z−

(
k‖ζ− + Ti‖

)}

+
δB‖e

−λ

√
2λ3/2k‖T

3/2
i‖

{
−λI0Z+

(
k‖ζ+ − Ti‖

)
+ I1Z+

(
k‖ζ+ − Ti‖

)
+ λI1Z+

(
k‖ζ+ − Ti‖

)

+λI0Z−
(
k‖ζ− + Ti‖

)
− I1Z−

(
k‖ζ− + Ti‖

)
− λI1Z−

(
k‖ζ− + Ti‖

)}

− δA‖e
−λ

√
2λ3/2k‖T

3/2
i‖

I1
{
Z+ (1 + λζ+)

(
k‖ζ+ − Ti‖

)
+ Z− (1− λζ−)

(
k‖ζ− + Ti‖

)

−
√
2Ti‖k‖λ (ζ− − ζ+)− 23/2

√
Ti‖
(
λTi‖ − k‖

)}
, (A1)

JFLR
y =

iδφe−λ

√
2λ3/2k‖T

3/2
i‖

{
λ2I0Z+

(
k‖ζ+ − Ti‖

)
− λ(1 + λ)I1Z+

(
k‖ζ+ − Ti‖

)
+ 2

√
2λ2k‖I0

√
Ti‖

−2
√
2λk‖I1

√
Ti‖ − 2

√
2λ2k‖I1

√
Ti‖ + λ2I0Z−

(
k‖ζ− + Ti‖

)
− λ(1 + λ)I1Z−

(
k‖ζ− + Ti‖

)}

+
iδB‖e

−λ

√
2λ3/2k‖T

3/2
i‖

{
2λ2I0Z+

(
k‖ζ+ − Ti‖

)
+
(
−1− 2λ− 2λ2

)
I1Z+

(
k‖ζ+ − Ti‖

)

+2
√
2k‖T

3/2
i‖
(
−λ2I0 + (1 + λ)2I1

)
+ 4

√
2λ2k‖I0

√
Ti‖ − 2

√
2k‖I1

√
Ti‖ − 4

√
2λk‖I1

√
Ti‖

−4
√
2λ2k‖I1

√
Ti‖ + 2λ2I0Z−

(
k‖ζ− + Ti‖

)
+
(
−1− 2λ− 2λ2

)
I1Z−

(
k‖ζ− + Ti‖

)}

+
iδA‖e

−λ

√
2λ3/2T

3/2
i‖

(I1 + λI1 − λI0)

{(
k‖ζ+ − Ti‖

)( λ

k‖
Z+ζ+ + Z+

)

+
(
k‖ζ− + Ti‖

)( λ

k‖
Z−ζ− − Z−

)
+
√

2Ti‖λ (ζ− + ζ+)

}
, (A2)
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JFLR
z =− δφe−λ

2λk‖T
3/2
i‖

{√
2λI1Z+ζ+

(
k‖ζ+ − Ti‖

)
+ 2bk‖I1ζ−

√
Ti‖ + 2λk‖I1ζ+

√
Ti‖

+
√
2λI1Z−ζ−

(
k‖ζ− + Ti‖

)}
− δB‖e

−λ

2λk‖T
3/2
i‖

{
−
√
2λI0Z+ζ+

(
k‖ζ+ − Ti‖

)
+
√
2I1Z+ζ+

(
k‖ζ+ − Ti‖

)

+
√
2λI1Z+ζ+

(
k‖ζ+ − Ti‖

)
− 2λk‖I0ζ−

√
Ti‖ + 2k‖I1ζ−

√
Ti‖ + 2λk‖I1ζ−

√
Ti‖ − 2λk‖I0ζ+

√
Ti‖

+2k‖I1ζ+
√

Ti‖ + 2λk‖I1ζ+
√

Ti‖ −
√
2λI0Z−ζ−

(
k‖ζ− + Ti‖

)
+
√
2I1Z−ζ−

(
k‖ζ− + Ti‖

)

+
√
2λI1Z−ζ−

(
k‖ζ− + Ti‖

)}

+
δA‖e

−λ

√
2λT

3/2
i‖ k‖

I1
{(

k‖ζ+ − Ti‖
) (

2Z+ζ+ +
√
2Ti‖

) (
λζ+ + k‖

)

+
(
k‖ζ− + Ti‖

) (
2Z−ζ− +

√
2Ti‖

) (
λζ− − k‖

)
+
(
k‖ζ+ − Ti‖

)√
2Ti‖k‖ −

(
k‖ζ− + Ti‖

)√
2Ti‖k‖

}
,

(A3)

where Z = Z

(
s√
2Ti‖

)
, ζ± =

ω ± 1

k‖
, Z± = Z

(
ζ±√
2Ti‖

)
.
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