PPPL-5359

Perturbative momentum transport in MAST L-mode plasmas

Authors: W. Guttenfelder, S.M. Kaye, and Y. Ren

Abstract:    Non-axisymmetric magnetic fields are used to perturbatively probe momentum transport physics in MAST L-mode plasmas. The low beta L-mode target was chosen to complement previous experiments conducted  in  high  beta  NSTX  H-mode  plasmas (β N=3.5-4.6)  where  an  inward  momentum  pinch  was measured.  In  those cases  quasi-linear  gyrokinetic  simulations  of unstable  ballooning micro-instabilities predict weak or outward momentum convection, in contrast to the measurements. The weak pinch was predicted  to  be  due  to  both  electromagnetic  effects  at  high  beta  and  low  aspect  ratio  minimizing  the symmetry-breaking of the instabilities responsible for momentum transport. In an attempt to lessen these electromagnetic  effects  at  low  aspect  ratio,  perturbative  experiments  were  run  in  MAST  L-mode discharges  at  lower  beta  (βN=2).  The  perturbative  transport  analysis  used  the  time-dependent  response following the termination of applied 3D fields that briefly brake the plasma rotation (similar to the NSTX H-mode experiments).
Assuming time-invariant diffusive ( χϕ ) and convective (Vϕ) transport coefficients, an inward pinch is inferred  with magnitudes,  (RV ϕ/χϕ ) = (-1)-(-9), similar to those found in  NSTX H- modes  and  in  conventional  tokamaks.  However,  if  experimental  uncertainties  due  to  non-stationary conditions during and after the applied 3D field are considered, a weak pinch or even outward convection is  inferred,  (RV ϕ/χϕ )  =  (-1)-(+5).  Linear  gyrokinetic  simulations  indicate  that  for  these  lower  beta  L-modes, the predicted momentum pinch is predicted to be relatively small, (RV ϕ/χϕ )sim -1. While this falls within  the  experimentally  inferred  range,  the  uncertainties  are  practically  too  large  to  quantitatively validate  the  predictions.  Challenges  and  implications  for  this  particular  experimental  technique  are discussed,  as  well  as  additional  possible  physical  mechanisms  that  may  be  important  in  understanding momentum transport in these low aspect ratio plasmas.

Submitted to: Nuclear Fusion
_________________________________________________________________________________________________

Download PPPL-5359  2.5 MB (30 pp)
_________________________________________________________________________________________________