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The role of annulus resonances in edge losses of wave-heating

power in cylindrical plasmas, and applications to NSTX

R. J. Perkins and J.C. Hosea and N. Bertelli and G.Taylor and J. R. Wilson

Princeton Plasma Physics Laboratory, Princeton, NJ 08540

(Dated: December 22, 2016)

Abstract

Efficient high harmonic fast-wave (HHFW) heating on the National Spherical Torux eXperiment

Upgrade would facilitate experiments in turbulence, transport, fast-ion studies, and more. However,

previous HHFW operation on NSTX exhibited a large loss of fast-wave power to the divertor along

scrape-off layer (SOL) field lines. It was postulated that the RF field amplitude is being enhanced

in the SOL due to cavity-like modes, and that these enhanced fields are driving sheath losses

through RF rectification. As part of ongoing work to confirm this hypothesis, we have developed

a cylindrical cold-plasma model to identify and understand instances where a substantial fraction

of wave power remains confined to the plasma periphery. We previously identified a peculiar class

of modes, named annulus resonances, that conduct approximately half of their wave power in the

periphery and can also account for a significant fraction of the total wave power. Here, we study

the influence of annulus resonances on full three-dimensional reconstructions. We find instances

where the annulus resonant modes dominate the specrum and trap over half of the total wave

power in the edge. The work is part of an ongoing effort to determine the mechanism underyling

these SOL losses on NSTX, identify optimal conditions for operation on NSTX-Upgrade, and check

whether this mechanism could be present in future machines such as ITER.
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I. INTRODUCTION

High-harmonic fast-wave (HHFW) heating is a promising heating scheme for the National

Spherical Torus eXperiment Upgrade (NSTX-U). HHFW is complimentary to neutral beam

injection in that it provides heating without particle or momentum input. Efficient fast-wave

heating would enable a new generation of experiments on NSTX-U, including transport

studies, low-rotation scenarios, and interacting with or even suppressing of fast-particle

modes. Furthermore, as NSTX-U transitions to a high-Z metal wall in the upcoming years,

HHFW may provide a crucial role in providing central RF heating, which has been shown

on other machines to faciliate outerward impurity transport and avoid radiative collapse.

Unfortunately, previous experience with NSTX showed that efficient fast-wave heating

was difficult to achieve in certain scenarios. Poor heating efficiency was observed for lower

phasing and lower toroidal field [1, 2]. HHFW operation also improved with the lower

SOL density provided by lithium deposition, provided that the machine was not vented to

produce lithium compounds that proved very detrimental to HHFW performance [3]. That

this lower heating efficiency is caused by SOL losses is evidenced by bright spirals that

form in the upper and lower diveror [4] along field lines passing in front of the antenna [5];

infrared cameras measure a heat flux up to 2 MW/m2 under the spirals for an applied HHFW

power of 1.8 MW. Given the parametric dependence of the losses, it was hypothesized that

the losses are caused by significant fast-wave propagation was occuring in the SOL when

the righthand cutoff layer, defined by n2
‖ = R, with n‖ the parallel refractive index and

R the cold-plasma dielectric component from Stix notation, was positioned close to the

antenna [2]. Subsequent conversion of HHFW power to the observed heat flux would occur

through another process such as RF rectification [6]. Further support of this hypothesis

was found in full-wave simulations of NSTX using the full-wave code AORSA [7] with the

solution domain extended to include the SOL [8]. In a detailed scan of the SOL density in

these simulations, the RF electric field amplitude grows to large values in the SOL when

the SOL density is large enough that there is no cutoff region in front of the antenna [9]. It

is important to note that there have been several instances of successful HHFW operation,

including record-high Te obtained from HHFW-only discharges[10], and plasmas that were

70% non-inductive [11], indicating that efficient heating is obtainable under the proper

circumstances.
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Motivated by these findings, we developed a cylindrical cold-plasma model to identify

modes that carry significant wave power in the peripheral plasma. Such a model clearly

lacks many details included in full-wave codes, but it provides a simplified framework the

study the fundamentals of wave-propagation across a steep edge density gradient. We pre-

viously identified a peculiar class of modes, named “annulus resonances,” that fit a half

wavelength into the combined annulus/vacuum regions of the model. These modes have an

enhanced loading resistance compared to other modes and propagate significant power in

the edge. They are thus strong candidates to explain the edge losses on NSTX, and the

present paper the influence of the annulus resonaces on three-dimensional reconstructions of

the RF wavefields. This paper is structured as folows. Section II describes the model and the

parameters chosen to represent NSTX discharges. In Sec. III, we explore properties of the

annulus resonance with respect to m, the azimuthal mode number. We introduce families of

modes, which appear as smooth curves in scatter plots of loading resistance and that clarify

the behavior of the annulus resonant modes. In Sec. IV, the impact of the annulus reso-

nance on the three-dimensional reconstruction is evaluated for a scan of the annulus density.

The annulus-resonance condition forms a “ridge” in the k‖ − kθ plane, which, by changing

parameters such as the magnetic field, annulus density, and annulus width, moves relative

to the peaks in the antenna spectrum. We find instances where the annulus resonant modes

dominate the spectrum and leave over half the wave power trapped in the edge. We also find

other instances where the role of the annulus resonant modes are less than dominant and

core propagation in above 80%. That being said, the scaling of edge power percentage with

plasma parameters obtained in the model do not always match observations, and Sec. V

discusses the potential influence of field pitch in this discrepancy.

II. DESCRIPTION OF THE MODEL

The model geometry, illustrated in Fig. 1, consists of three radial regions: a core plasma,

a lower-density annulus, and an outer vacuum region. The annulus region represents the

SOL, and the vacuum region represents the extremely low density region behind the limiter

and inside the antenna box. The core extends to radius rc with constant density nc. The

annulus extends from r = rc to ra with constant density na. The vacuum region extends

from r = ra up to a conducting wall of radius rw. The two-step density profile surrounded
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by vacuum is a coarse approximation of the actual density but is partially justified on the

basis that SOL density profiles are relatively steep near the separatrix but become nearly

flat in the mid- to far-SOL [12, 13]. The perpendicular wavelength of the fast wave in the

SOL is at smallest around 7 cm and is typically much larger; therefore, approximating a

gradient of scale length 1 - 2 cm [14] is not obscene. A uniform axial magnetic field is used

throughout. The use of a uniform magnetic field is partially justified since the focus of our

study in on the SOL, over which the magnitude and direction of the magnetic field does not

change appreciably, at least not as much as the density. The larger error comes in neglecting

the poloidal field, which is substantial on NSTX. Field angles tan−1(Bpol/Btor) up to 40◦

have been measured during HHFW experiments. The potential impact of this sizable tilt is

discussed in Sec. V, but we note that large RF field amplitudes were observed in simulations

using only a toroidal field [15]. The antenna is modelled as current straps carrying current

in the θ direction at r = rs with a Faraday screen at r = rF .

FIG. 1: Cartoon of the model showing the two-step density profile and orientiation of the

antenna straps.

We chose values for the model parameters that resemble as much as possible NSTX

discharges. For radii, we use a core radius of rc = 0.88 m, an annulus outer radius of

ra = 0.915 m, a Faraday-screen radius of rF = 0.9315 m, and a wall radius of rw = 0.9715

m. The model core radius is chosen to keep the plasma cross-section area roughly the same

as shot 120740, yielding an effective circular radius of 0.88 m. The annulus width ra − rc
chosen to be 3.5 cm based on average values of the experimental “outer gap” as determined

from equilibrium magnetics for the L-mode discharges studied in Ref. [2]. The distance from

the edge of the annulus to the Faraday screen is fixed at 1.65 cm, the distance between the

outer boron nitride limiter and the Faraday screen at the midplane. The distances from the

Faraday screen to the antenna strap is likewise fixed at ??, and from the antenna to the
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vacuum wall at ??. nc = 5× 1019 m−3, f = 30 MHz, B = 0.32 T (approximate field at the

edge for a 0.55 T on-axis field).

A “mode” refers to a global solution which satisfies the wave equation in each region

and which is matched at interfaces. Modes assume the form Ẽz(r,m, k‖) = Ẽz(r) exp(imθ+

ik‖z − iωt), based on Fourier analysis in the axial and azimuthal directions. With k‖ given,

k⊥ is fixed in each region by the plasma regions by the cold-plasma dispersion: we use the

notation kfast⊥,c and kslow⊥,c for the fast/slow wave k⊥ in the core and corresponding notation

kfast⊥,a and kslow⊥,a in the annulus. The slow-wave and vacuum k⊥ are always cutoff. Radial

RF field profiles are found by the method detailed in Ref. [16]. Each region admits four

independent solutions. In plasma, there are two fast-wave solutions and two (cutoff) slow-

wave solutions; in vacuum there are exponentially decaying and growing Ez (transverse

magnetic) and Hz (transverse electric) modes. By specifying the boundary conditions are

each interface, a system of equations is developed, whose simultaneous solution only exists

when a determinant, denoted by the function F (k‖) vanishes, as described in Ref. [17]. As

might be anticipated for oscillation in a bounded system, the roots of F (k‖) are such that

an integral number of half wavelengths occur in the radial profile of Eθ. Thus, we can label

modes with two numbers, (m,n), with m the azimuthal wavenumber and n the radial mode

number. Because the fast-wave dispersion gives k⊥ as a decreasing function of k‖, lower n

corresponds to larger k‖.

The total fields are found by inverse Fourier transform:

Eθ =
∑
m

∫
Ẽθ(r,m, k‖)J̃ant(m, k‖)e

imθ+ik‖zdk‖, (1)

The expression for Ẽθ contains F (k‖) in the denominator, so that the integral reduces to a

sum of residues, one for each mode. In Eq. (1), J̃ant(m, k‖) is the antenna spectral current

density and Ẽθ the azimuthal electric field per unit antenna spectral current density. The

amplitude of each mode is thus given by two factors: (i) the amplitude of J̃ant(m, k‖) at the k‖

and m of the mode, and (ii) the size of the residue, which is proportional to (dF (k‖)/dk‖)
−1.

As described in Ref. [17], the large amplitude of an annulus resonance is due to a near

vanishing of dF (k‖)/dk‖ independent of the particulars of the antenna configuration. Indeed,

this paper describes the relative influence between antenna spectral weighting and “bare”

mode amplitude in the relative strength of annulus resonances.

The antenna strap current distribution is modelled as twelve infinitely thin filaments. The
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Fourier spectrum in the axial direction is therefore a sum of twelve plane waves. Given that

the height of the antenna straps is 68.9 cm, and using the effective plasma radius above, we

approximate the antenna angular span as 0.724 radians in the model. We assume a uniform

current distribution in the azimuthal (poloidal) direction due to the long vacuum wavelength

compared to the strap length. Given a phase difference of φ between straps, a strap spacing

of d and the current of each I0 and an angular span of α,

Jant(r, θ, z) = I0δ(r − ra) [Θ(θ + α/2)−Θ(θ − α/2)]×
12∑
i=0

δ(z + (11− 2i)d/2)e−iφ(11−i)/2 (2)

where Θ is a Heaviside step function. Jant can be decomposed into a Fourier series in the

azimuthal direction and a Fourier transform in the axial direction

J̃ant(r,m, k‖) = I0δ(r − ra)J̃θ(m)J̃‖(k‖) (3)

J̃θ(m) =
sin(mα/2)

mπ
(4)

J̃‖(k‖) =
12∑
i=0

eik‖(11−2i)d/2e−iφ(11−i)/2 (5)

We note that J̃θ scales as 1/m and is nearly zero whenever mα/2 is an integer multiple of

π. This clearly favors low m modes. On the other hand, J̃‖ is peaked around k‖ = φ/d.

For NSTX, d = 21.5 cm, and typically phasings are π/6, π/2 and 5π/6. This model clearly

ignores (i) the finite width of the antenna straps, (ii) the radial feeds [??], (iii) effects of

sidewalls [18], and (iv) the change in current along the length of the straps.

In this paper, the term “mode amplitude” refers to the amount of wave power a mode

conducts axially along the cylinder. We denote the amplitude of the (m,n) mode as Pm,n

but will also express this as a loading resistance Rm,n defined by Rm,nI
2
0/2 = Pm,n, with I0

defined in Eq. (2). Pm,n can be calculated as the power output of the antenna, also refered

to as the induced EMF method [19].

Pm,n =
∫ 〈

Ẽ(r,m, k‖) · J̃ant(m, k‖)
∗
〉
dV, (6)

where < . . . > denotes time-averaging of complex quantities. Equivalently, Pm,n can be

computed by integrating the axial Poynting flux over the cross-section of the cylinder

Pm,n =
∫ r=rw

r=0

∫ θ=2π

θ=0
ẑ ·
〈
E(r,m, k‖)×H(r,m, k‖)

∗
〉
rdrdθ, (7)
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Equation 7 gives the same result regardless of the z position used to evaluate the integral,

and both Eq. (6) and (7) yield the same result, as expected for a system without dissipation.

We emphasize that this cylindrical model is motivated by the need to qualitatively un-

derstanding and is not intended for precise calculations of loading resistances. The model

is cylindrical, so toroidal effects are clearly excluded. The model does not include any of

the surrounding the strap and Faraday screen; substantial reasearch has been done to study

the effects of such components, especially when misaligned with the magnetic field and their

possible excitation of an electric field component parallel to the background magnetic field.

Finite-temperature and non-linear effects are omitted, including conversion to ion Bernstein

waves, parametric decay instability, and RF rectification. Indeed, no form of dissipation is

included; wave energy coupled from the antenna propagates out the ends of the cylinder

without absorption. The mechanism converting HHFW power in the SOL to a divertor heat

flux is not yet identified, but dissipation by far-field RF sheaths is a leading candidate [6].

Core absorption is the usual Landau damping and transit-time magnetic pumping. We

presume that the high edge field amplitude of the annulus resonance will drive a high rate

of edge absorption relative to core absorption once the proper SOL damping mechanism is

identified and included, but this remains a crucial future step to verify. We also observe that

this present model treats the tokamak as a plasma-filled waveguide, whereas the AORSA

simulations including the SOL resemble more a plasma-filled cavity. We emphasize again

that the cylindrical model allows for relatively rapid computation time and faster explo-

ration of parameter space as well as the ability to resolve individual modes and separate the

contribution between fast and slow waves.

III. PROPERTIES OF ANNULUS RESONANCES OVER SEVERAL AZIMUTHAL

MODE NUMBERS

The annulus resonance condition is that a half-wavelength structure in Eθ fits into in the

combined annulus/vacuum regions. The modes that most nearly satisfy this condition have

a greatly enhanced loading resistance and propagate over half of their wave power in the

edge. What we call “annulus resonant modes” are the mode, for each m, the most closely

satisfies this condition and consequently has the largest loading resistance. Indeed, when

the bare loading resistances for all modes of a single m are plotted against k‖, the annulus
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resonances, if present, appears as a peak in an otherwise monotonically decreasing curve, as

shown in Fig. 2. “Bare” loading resistance means omitting the factor of J̃ant(m, k‖) in Eq. (1);

alternatively, it is the loading resistance calculated using a point-source antenna Jant(θ, z) =

I0δ(z)δ(θ), which gives a uniform power spectrum. For the typical SOL parameters modelled

here, one generally finds at most one annulus resonance per m. It is possible at there is no

annulus resonance present, as shown in Fig. 2.

FIG. 2: Loading resistance for m = 6 (black) and m = 0 modes (red) for an annulus density

of 1.5× 1018 m−3, showing typical behavior both with and without an annulus resonance.

This section will focus on the behavior of these modes for different m. As mentioned,

there is typically at most one annulus resonance per m, but the k‖ of the resonance increases

with m. This is demonstrated in Fig. 3.a, where the bare loading resistance is plotted against

k‖ for select azimuthal mode numbers m. There is one annulus resonance for every m, and

the k‖-value of these peaks increases with increasing m. For low enough m (in this case,

m ≤ 0), this peak begins to disappear into the vacuum cutoff k‖ = ω/c. In Fig. 3.b, the k‖

value of the largest mode for each m is plotted against m; there appears to be a functional

relationship. Figure 3.c is similar to Figure 3.b except the vertical axis is kfast⊥,c , the fast wave

k⊥ in the core. This last plot appears piecewise linear with “breaks,” consecutive modes

that have similar kfast⊥,c .

Figure 3.b is important to understand. The “trajectory” of the annulus resonance condi-

tion through k‖−m space determines whether or not these modes will intercept the peaks on

the antenna spectrum. It is also important to understand how parameters such as magnetic

field and annulus density effect this “trajectory.”
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FIG. 3: a) An overlay of loading resistance plots versus k‖ for m = 0 to 8. For m ≥ 2 a

peak can be seen, corresponding to the annulus resonance. b) The k‖ value of the largest

mode for each m in (a) [e.g. the “annulus resonances”]. c) Similar to b) but with kfast⊥,c as

the abscissa.

A. Radial Mode Number n

The general behavior of the nth radial mode as a function of m can be roughly understood

as follows. We introduce the change in wave phase across a radial region as

δφ =
∫ r

r0
k⊥dr. (8)

This borrows from the eikonal approximation. However, it is poorly defined, since in the

vacuum region k⊥ is imaginary, and also there can be abrupt changes in phase at the

boundaries of regions. Nonetheless, this definition is useful, as will be shown. For the

nth radial mode, the total phase change over the entire radial profile is πn. The vast

majority of this phase change occurs over the core region as opposed to the combined

annulus/vacuum region for two reasons: first, the higher core density greatly increases kfast⊥
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in the core relative to the annulus, and second the radius of the core is much larger than

the width of the annulus/vacuum gap. To simplify notation, we will use the symbol ν to

denote the fast-wave k⊥, kfast⊥,c , and further let νm,m denote this value for the mth azimuthal

mode and nth radial mode. The core fast wave fields are linear combinations of Jm(νm,nr)

and Jm+1(νm,nr) and can be approximated by their asymptotic forms:

Jm(νm,nr) ≈ sin
(
νm,nr −m

π

2
− π

4

)
, (9)

so that we take the fast wave phase at the core-annulus boundary, denoted φm,n to be

φm,n ≈ νm,nr −m
π

2
− π

4
(10)

Suppose we increase m by one but keep n fixed. With n fixed, the total fast wave phase

across the entire radial profile is fixed, but since this is dominated by the phase across the

core (φm,n), we could say φ is approximately fixed. The factor mπ/2 in Eq. (10) would

tend to decrease φ with increasing m, so it follows νm+1,nrc must be larger than νm,nrc by

approximately π/2:

νm+1,nrc ≈ νm,nrc +
π

2
. (11)

Increasing ν means decreasing k‖. To test Eq. 11, Fig. 4 tracks the n = 65 mode from m = 0

to m = 18; for larger m, the annulus resonance disappears into the vacuum cutoff. The

vertical axis is φ/π. For m < 14, the curve is very flat and nearly constant, which validates

the above arguments and Eq. 11. As mentioned above, the deviation from flatness is likely

due to the much smaller variation in phase across the annulus/vacuum regions (which is

hard to quantify since the vacuum region and sometimes the annulus region are cutoff).

At m = 14, there is an abrupt change in phase. For m = 14, the n = 65 mode is indeed

an annulus resonance, and for larger m there is a node in the edge, explaining the abrupt

change in phase in Fig. 4.

B. Mode Families

There appear to be families of modes whose loading resistances, when plotted against k‖,

lie on smooth curves that rise to a peak and then fall off into exponential decay. Figure 5a

is a scatter plot of loading resistance versus k‖ for all modes from m = 0 to m = 40. This

is similar to Fig. 3 but on a logarithmic scale, with more azimuthal mode numbers, and no
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FIG. 4: Core phase φm,65 for the n = 65 radial mode, tracked over several m numbers.

coloring to distinguish m. Figure 5 shows some structure: certain families of modes appear

to lie on smooth curves that rise to a crest and then fall in amplitude with increasing k‖.

Figure 5b shows the same scatter plot with modes of the same m colored. With a given m,

the modes jump across these smooth curve. Inspection of these smooth curves show that

consecutive modes along the curve are obtained by increasing m by one and decreasing n by

one, so that the sum m+n is constant along any given curves. In Fig. 5c, modes with m+n

fixed are colored to differentiate different families. As one curve falls, another rises to take

its place so that the crests of these curves defines an envelope curve, and annulus resonant

modes are those modes that lie along this envelope. This feature is particularly emphasized

by the m = 4 modes highlighted in Fig. 5b, where there is not one dominant mode but two

closely spaced and nearly equal modes, each coming from a different family as the annulus

resonance condition transitions from the m+ n = 77 curve to the m+ n = 78 curve.

Within a family of modes, the radial wavelength in the edge varies relatively slowly across

modes. This is demonstrated in Fig. 6. In the lefthand column, m is held fixed at 6, but

n is decreased by one from 73 (Fig. 6a) to 72 (Fig. 6b) to 71 (Fig. 6c). The width of the

outermost half wavelength grows and sweeps across the annulus-core boundary, denoted by

the dashed line at r = 0.88 m. The n = 72 mode most nearly satisfies the annulus resonance

condition, and it correspondingly the largest mode. Increasing n by one to n = 71, the

outermost wavelength is now larger than the edge width. In the righthand column of Fig. 6,

however, we simultaneously decrease n by one and raise m by one, going from m = 5 and

n = 73 (Fig. 6d) to m = 6 and n = 72 (Fig. 6e) to m = 7 and n = 71 (Fig. 6f). The

width of the outermost wavelength now varies almost imperceptibly and remains close the
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FIG. 5: (a) Scatter plot of all modes with k‖ against the natural logarithm of loading

resistance. Certain families of modes form smooth curves in this plot. (b) Scatter plot of

all modes with the m = 4 modes highlighted red, highlighting the transition from one

family to the next of the annulus resonance condition. (c) As in (a) with color and lines

connecting all modes satisfying m+ n = constant.

annulus resonance condition. As one continues to increment m and decrement n keeping

m + n constant, the width of the outermost wavelength eventually growths larger than

the edge width, losing the annulus resonance condition and leading to the fall off in mode

amplitude. However, as the m + n = 78 family falls off, the m + n = 79 family begins to

satisfy the annulus resonance condition more closely. It is currently not clear why holding

m+ n constant slows the variation in the width of the outermost wavelength.

We can now reason out the dependence of k‖ of the annulus resonance with m shown in

Fig. ??. Within a family, m+ n = constant. Using Eq. 11 and φm,n+1 = φm,n + π, we get

νm+1,n−1rc = νm,nrc −
π

2
, (12)
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FIG. 6: Edge radial profiles of Eθ for various modes. In the left column, m is fixed at

m = 6 while n is decreased by one moving down. In the right column, m is increased by

one while n is decreased by one moving down.

form which the k‖-dependence follows from the fast-wave dispersion:

n2
⊥ =

(R− n2
‖)(L− n2

‖)

S − n2
‖

. (13)

Thus, increasing m within a family decreases ν but increases k‖. Again, the smaller phase

variation in the annulus/vacuum region will modify Eq. 12. Equation 12 is valid within a

family and thus describes the behavior of the annulus resonance versus m over the k‖ range

for which this family has the dominant loading resistance. As mentioned above, though, the

loading resistance of a particular family rises and falls while the next family rises. Thus,

there are “transitions” or “handoffs” where we can expect a “break” in the m dependence

of k‖. This explains the piecewise linear behavior seen in Fig. 3.c.

To summarize the findings of this section, there is generally at most one annulus resonance

per m, and the k‖ value of this resonance increases with m in a predictable fashion.

IV. THREE-DIMENSIONAL RECONSTRUCTIONS

In this section, we evaluate the role that AR modes play in full three-dimensional recon-

struction of the wavefields. While the AR modes have a very large unweighted or “bare”

loading resistance, if they do not coincide with the peak in the antenna spectrum, then
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they will not be strongly excited. The dependence of k‖ of the AR modes for different m

studied in the previous section plays a central role: it defines the “trajectory” of the AR

modes through the k‖−kθ plane and how closely it overlaps with the antenna spectral peak.

This in turn determines how strongly the AR modes are excited in comparison with non-AR

modes.

Section IV A, we introduce several useful concepts, including the amount of power that

oscillates between the core and edge resions. Sections IV B and IV C present results for

an inter-strap phasing of π/2 and 5π/6 respectively. For several values of annulus density,

we compute all the modes present in the system using a very inclusive m-range. While

quantitative results are presented, the main emphasis is on the qualitatively behavior of the

AR modes and in particular their location relative to the peaks in the antenna spectrum. We

find instances where (i) the AR modes account for a large fraction of the total wave power,

and (ii) a large fraction of the total wave power is “trapped” in the edge, as discussed in

Sec. III. Indeed, the two features are fairly well-correlated, as expected. We have also

found instances where the core loading is much better, and furthermore that the power in

the edge can oscillate into the core. That being said, we find, in the case of π/2 antenna

phasing, the opposite trending with annulus density with increasing annulus density, namely,

in this model, power trapping in the edge tends to decrease with increased density. In the

5π/6 phasing case, though, the power trapping is observed to increase initially with annulus

density. We discuss the important role of magnetic pitch in Sec. V.

A. Power partition

We make some preliminary comments regarding the axial Poynting flux. The expression

for the Poynting flux through a surface normal to the axial direction is

〈Sz〉 =
∑

m,n,m′,n′

∫ ∫
〈Er(r,m, n)H∗θ (r,m′, n′)− . . .

Eθ(r,m, n)H∗r (r,m′, n′)〉 ei(k‖−k
′
‖)z+i(m−m

′)θ
rdrdθ,

from which we can appreciate that the presence of cross-terms leads to interefence between

modes. If integration occurs over the entire azimuthal angle, then there is zero contribution

unless m = m′. If integration occurs over the entire radial domain, then there is orthogo-

nality of n and n′. In the case of both, then expression for axial wave power reduces to the

14



sum of individual fluxes from each mode with no interference between modes.

We consider the case where integration occurs over the entire azimuthal angle but not

over the entire radial domain:

〈Sz〉 = 2π
∑
m,n,n′

∫
〈Er(r,m, n)H∗θ (r,m, n′)− . . .

Eθ(r,m, n)H∗r (r,m, n′)〉 ei(k‖−k
′
‖)zrdr

For each m, the sum over n and n′ can be thought of as both diagonal terms (n = n′)

and cross-terms (n 6= n′). The diagonal terms have no z-dependence, but the cross-terms

do. If we take the region of integration to be the core, then the diagonal terms define a

fixed amount of power that remains in the core, while the cross-terms define an oscillating

power that can be added to and taken from the core and given to the edge. In general, the

oscillating power consists of a number of terms which different beat wavelengths and must

be computed numerically and each z-location of interest. A convenient and global metric of

the total power available for oscillation can be obtained by

Posc = 2π
∑
n 6=n′

∫
〈Er(r,m, n)H∗θ (r,m, n′)− . . .

Eθ(r,m, n)H∗r (r,m, n′)〉 rdr, (14)

which is reminscent of an L1-norm. Again, when considering the flux integrated from θ = 0

to θ = 2π, there is no oscillation of power between different m values. Also, if there is one

dominant mode per m, then the amount of oscillating power can be expected to be a small

fraction of the total wave power contained in these m-modes.

B. π/2-phasing: Current-drive phasing

The results of changing the annulus density in the range of 5.0×1017 m−3 to 2.0×1018 m−3

are summarized in Table I and shown graphically in Fig. 7. The general trend with increasing

annulus density is that (i) total loading increases, (ii) the fractional loading to the core

increases, and (iii) the percent contribution of the AR modes decreases. The increase in

total loading results from increases in both AR and non-AR modes. The non-AR loading

steadily increases with increasing annulus density, which improves core loading. Meanwhile

the AR loading is not monotonically increasing for reasons discussed below, and contributes

less to the total loading as na rises. We note that the amount of power that oscillates
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Annulus Loading AR contribution

Density Total Core (%) Edge (%) Oscillating Core (%) Edge (%) Total (%)

0.5× 1018 2.37 1.60 (45%) 1.31 (55%) 0.24 14% 97% 62%

1.0× 1018 3.96 1.91 (48%) 2.04 (52%) 0.74 27% 94% 63%

1.5× 1018 3.93 2.68 (68%) 1.25 (32%) 0.85 23% 81% 42%

2.0× 1018 5.58 4.18 (75%) 1.41 (25%) 1.31 19% 76% 34%

TABLE I: Effect of increasing annulus density on the loading, and the role of the annulus

resonant modes in each case. The lefthand columns show the total loading and its

partition into edge and core power. Also noted is the amount of power that oscillates

between core and edge. The righthand columns contain information about the AR modes.

“Total” denotes the percent contribution of the AR modes to the total loading,

while“Edge” and “Core” columns denote the percent contribution of the AR modes to the

total loading in each region. For instance, 97% in the “Edge” column means that the edge

power of the AR modes is 97% of the total edge power.

FIG. 7: Trend in loading resistance as annulus density is increased; stars: total loading,

diamonds: core loading, plus: edge loading, triangles: oscillating power.

between the edge and the core steadily increases from a small fraction (∼ 10%) to nearly

the full power in the edge. We might say that the power in the edge is no longer trapped

there. This is shown in Fig. 8, which plots the percentage in the core and edge as a function

of z moving awaw from the antenna. In the low density case of na = 5.0× 1017 m−3, shown

in Fig. 8a, the amount of oscillating power is small, and the amount of power in the edge is
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close to its fixed value. In the case of na = 2.0×1018 m−3 shown in Fig. 8b, the overall power

in the edge is lower, but a greater portion of it can oscillate into the core. Absorption is not

included in this model, but with the relatively strong absorption predicted for NSTX-like

plasmas, one may expect that any wave power that penetrates the core will be absorbed

there.

FIG. 8: Percentage of power contained in the core (red) and edge (blue) as a function of

axial distance away from the antenna. Dashed lines indicated fixed percentage of power

(Sec. IV A). (a) na = 5.0× 1017 m−3, and (b) na = 2.0× 1018 m−3.

A more detailed perspective is afforded by Figs. 9a and 9b. Each figure is a contour plot

of the antenna spectral power plotted in the k‖ − kθ plane, with each line denoting a factor

of 2 drop/rise in spectral power. Each star denotes a mode, with lighter colors signifying a

larger loading resistance. In these figures, only the largest fifty modes are plotted for clarity;

this captures about 90% of the total wave power. The diamonds denote locations of the

AR modes. These are plotted to show the trajectory of the AR trajectory and are plotted

whether or not the AR is in the top fifty modes. That is, an empty diamond is an AR

mode that is not in the top fifty modes. At an annulus density of 1.0 × 1018 m−1, the AR

ridge lies directly on top of the first azimuthal sideband, with m = 12 being the strongest

AR mode excited. This explains the relatively strong contribution of the AR modes for

this density. One can notice many non-AR modes on the primary antenna spectral peak.

In Fig. 9b, the results of increasing the annulus density to 1.75 × 1018 m−3 moves the AR

ridge off of the peak of the sideband. At the peak of the axial spectrum (k‖ = 7.3 m−1),

the AR ridge lies near the node in the azimuthal spectrum at m = 8. This explains the

non-monotonic behavior in AR loading. Also, note that, for the strongest AR modes at the

17



FIG. 9: Location of the AR ridge (diamonds) and top 100 modes (stars) relative to

antenna spectral power (contour lines). (a) pi/2 phasing and na = 1.0× 1018 m−3, (b) π/2

phasing and na = 1.75× 1018 m−3, (c) 5π/6 phasing and na = 1.0× 1018 m−3, (d) 5π/6

phasing and na = 2.0× 1018 m−3.

m = 5, m = 6, and m = 7, neighboring modes of the same m are also strongly excited. With

several large modes of the same m, the power oscillating between core and edge increases,

as explained in Sec. IV A, this oscillation is caused by interference of modes of the same m.

As evidenced in Fig. 9a, typically there is only one mode strongly excited at each m in the

case of na = 1.0× 1018 m−3.

Also, for the entire set of AR modes, the fraction of power that they conduct in the edge

decreases from ∼ 86% power at na = 5.0×1017 m−3 to 56% at na = 2.0×1018 m−3. This is
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Annulus Loading AR contribution

Density Total Core (%) Edge (%) Oscillating Core (%) Edge (%) Total (%)

0.5× 1018 0.75 0.60 (81%) 0.14 (19%) 0.14 3% 97% 23%

1.0× 1018 1.10 0.75 (68%) 0.35 (32%) ??? 8% 97% 36%

1.5× 1018 1.51 1.03 (68%) 0.48 (32%) 0.17 14% 93% 39%

2.0× 1018 2.16 1.46 (67%) 0.71 (33%) 0.35 18% 91% 42%

TABLE II: Effect of raising annulus density on both total loading and contribution from

AR modes. Inter-strap phasing of 5π/6

because higher-m AR modes conduct more power in the edge. Since the effect of increasing

annulus density is to move the AR ridge to the right in k‖−kθ space, decreasing the m-value

of the AR modes that lie over the antenna k‖ peak.

FIG. 10: Contour plot (black lines) of antenna spectral power and annulus resonances

(diamonds) for different annulus densities. Changing the annulus density shifts the annulus

resonance ridge relative to the antenna spectral peaks.

C. 5π/6-phasing: Heating phasing

For this phasing, the axial spectrum peak increases to k‖ = 12.2 m−1. This means that

the AR that have a k‖ matching the antenna need a higher m value, up to m =?? at
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na = 5.0× 1017 m−1. Since the azimuthal spectral weighting of the antenna scales like m−2,

we may anticipate that the AR modes are not as strongly excited. Table II and Fig. ??

does indeed reflect this trend. The total loading is reduced and, as in the π/2 case, steady

increases as the annulus density increases. However, both the percent loading to the edge

and the contribution from AR modes rise as na is raised from 0.5 to 1.0×1018 m−1 but then

level off in the range of 1.0 - 2.0×1018 m−1. The edge loading as a function of na is steadily

increasing, as opposed to its behavior for π/2 phasing.

FIG. 11: Trend in loading resistance as annulus density is increased; stars: total loading,

diamonds: core loading, plus: edge loading, triangles: oscillating power.

As shown in Fig. ??, at an annulus density of 1.0 × 1018 m−3, the strongest modes are

the m = 33 and 34 modes, which lie over the third azimuthal sideband. The AR modes

accout for 36% of the wave power, and the power in the edge is accordingly not too high,

32%. Also, at this phasing, the wave power is distributed over many modes; at π/2 phasing,

90% of the total power was carried by ∼ 50 modes, whereas for 5π/6 phasing it takes ∼ 100

modes. As the annulus density is increased, there is again an increase in loading to non-AR

modes, but the fractional increase is not as high as in the π/2 phasing case. However, the

loading to AR modes greatly increases as the AR ridge intercepts k‖ = 12 m−1 at stronger

azimuthal sidebands. Notice that the “slope” of the AR ridge at k‖ = 12.2 m−1 is greater

than at k‖ = 7.3 m−1, meaning the AR ridge is likely to cross two adjacent azimuthal

sidebands and is less likely to lie in a null between them as in Fig. ?? of the π/2 case. At

an annulus density of 2.0 × 1018 m−3, the annulus-resonance ridge moves over the second

angular sideband, giving relatively strong excitation of the m = 21, 22, and 23 AR modes.
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This is remarkable, since the second angular sideband is ??? of the main peak, and yet the

natural “bare” amplitude of the annulus resonance is large enough to make it the dominant

mode. Increasing the density to 3e18 move the annulus resonance ridge over the first angular

sideband, which increases both overall loading and also the percentage of power trapped in

the edge.

V. DISCUSSION

The previous sections presented a conceptual framework that the annulus resonance

modes form a ridge in the k‖ − kθ plane, and that increasing the annulus density, for the

current model parameters, moves this ridge line close to the peak in antenna spectrum.

In particular, the model predicts that the fraction of power coupled to the edge region

decreases as the annulus density is raised. This contradicts operational experience [2] and

also results from full-wave calculations [9].

We focus here on the potential role of field tilt of NSTX. Being a spherical torus, NSTX

has a relatively weak toroidal field and a correspondingly large magnetic pitch at the out-

board side, typically 30◦ to 40◦. As a lowest order approximation to incorporate this pitch,

one could rotate the projection of the k-vectors of the modes in the kz−kθ plane. Figure 12

shows how a rotation of 30◦ can move AR trajectory relative to the anntenna spectal peak for

5π/6 phasing, and the effect is quite dramatic compared to the unrotated case of Fig. 10b.

The rotated AR modes are decreased in kθ, which would greatly increase their amplitude

since the azimuthal spectal weighting scales as m−2. Also, since the AR trajectory it is much

more horizontal, we may expect a broad range of AR modes to be excited by axial sidebands

of the antenna spectrum. While these speculations are based on a very coarse prescription

of simply rotating k, it does suggest that field pitch could have a profound impact on the

model.

VI. CONCLUSIONS

In a cylindrical magnetized cold-plasma model with a two-step density profile, there exists

a special class of modes that have nearly a half wavelength in the combined annulus-vacuum

regions, have a large loading resistance, and propagate over half their wave power in the
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FIG. 12: Effect of a 30◦ rotation on the position of the annulus resonance ridge relative to

the antenna spectral peaks for different densities: 0.5× 1018 m−3 (purple), 1.0× 1018 m−3

(orange), 1.5× 1018 m−3 (blue), 2.0× 1018 m−3 (red)

edge. There is typically at most one such mode per azimuthal modenumber m, and the k‖

value of this mode increases with m. For the model parameters selected for this paper, the

underlying reason behind this relationship between k‖ and m is explained modes with the

same m+n, with n the number of radial nodes, maintain the half wavelength condition over

wide range of m. Viewed in the k‖−kθ plane, these modes line on a trajectory whose distance

from the antenna spectral peaks changes with parameters such as annulus density. We have

computed the relative contributions of AR and non-AR modes as well as the fractional

loading to the edge and core regions over a scan of annulus density. As expected, edge

loading is large when the AR modes contribute a substantial fraction to the total loading.

We note cases where over half of the total wave power propagates in the edge with little

flux of power between the edge and core. However, while total loading always increases with

annulus density, the edge loading behaves non-monotonically for the π/2-phasing case, as

the AR ridge moves onto and off of azimuthal sideband of the antenna spectrum. In the

case of π/2 phasing, this leads to the results that the fraction of power coupled to the core

improves with edge density, in contradiction to experiments and full-wave computations.

The case of 5π/6 phasing shows a degradation in core loading as annulus density increases

in the range of 0.5−1.0×1018 m−3 but levels off in the range 1.0−2.0×1018 m−3. Magnetic
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pitch could play an important role; a coarse treatment indicates that rotating the k vectors

of modes by the magnetic pitch at the antenna may bring the AR modes closer to the main

spectral peak of the antenna, resulting in strong AR excitation.
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