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Abstract:  Plasma-facing components (PFC’s) made from solid materials may not be able to 

withstand the large heat and particle fluxes that will be produced within next-generation fusion 

reactors.  To address the shortcomings of solid PFC’s, a variety of liquid-metal (LM) PFC 

concepts have been proposed.  Many of the suggested LM-PFC designs rely on electromagnetic 

restraint (Lorentz force) to keep free-surface, liquid-metal flows adhered to the interior surfaces 

of a fusion reactor.  However, there is very little, if any, experimental data demonstrating that 

free-surface, LM-PFC’s can actually be electromagnetically controlled.  Therefore, in this study, 

electric currents were injected into a free-surface liquid-metal that was flowing through a 

uniform magnetic field.  The resultant Lorentz force generated within the liquid-metal affected 

the velocity and depth of the flow in a controllable manner that closely matched theoretical 

predictions.  These results show the promise of electromagnetic control for LM-PFC’s and 

suggest that electromagnetic control could be further developed to adjust liquid-metal nozzle 

output, prevent splashing within a tokamak, and alter heat transfer properties for a wide-range of 

liquid-metal systems. 

1 Introduction & Background 

Developing plasma-facing components (PFC’s) that can withstand the heat and particle fluxes 

generated by fusion plasmas is an important step towards the creation of an economically viable 

fusion power reactor.  Accordingly, a variety liquid-metal (LM) PFC’s have been proposed since 

the 1970’s to address the limitations of solid PFC’s made from tungsten, graphite, or 

molybdenum [1, 2, 3].  Compared to solid PFC’s, LM-PFC’s have the potential to [2, 4, 5, 6]: 

 provide enhanced power-removal capability 

 enable PFC exposure to larger heat-fluxes 

 offer a ‘self-healing’ surface that is unaffected by radiation damage and thermal stresses 

 reduce overall system down-time and repair costs 

 facilitate tritium production 

Furthermore, several experiments have already shown that using lithium-PFC’s on portions of a 

tokamak interior can greatly improve plasma performance by reducing particle recycling, 

increasing energy confinement, and suppressing impurity emissions [7, 8, 9, 10]. 

 

For successful implementation in fusion power reactors, free-surface LM-PFC’s (first-walls, 

limiters, divertors, etc.) must accomplish three primary objectives.  First, PFC’s must be 

adequately covered with the appropriate thickness of liquid-metal [2, 11].  Second, LM-PFC’s 

must be fast-flowing in order to extract the desired amount of power from the system without 

becoming too hot.  (At elevated temperatures the increased vapor pressure of the liquid-metal 
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can adversely impact plasmas [4, 5, 11].)  Lastly, the surface of the LM-PFC must remain 

smooth under all operating conditions to prevent splashing and avoid ‘hot-spots’ caused by 

uneven heating [2, 4, 5, 12]. 

  

The electromagnetic restraint (EMR) concept proposed by Woolley [13, 14], and later by 

Zakharov [15], is a widely-cited approach to achieving these objectives.  During EMR operation, 

poloidal electric currents injected into the flowing liquid-metal interact with the toroidal 

magnetic field to generate a Lorentz force that presses the liquid-metal against the tokamak 

walls, as illustrated in Figure 1.  Due to the low density of lithium (~ 500 [kg/m
3
] [16, 17]), only 

modest current densities are required to generate forces many times stronger than gravity [13], as 

highlighted by Eq. 1 and Table 1.  (As a basis for comparison, the externally applied currents 

within tokamak toroidal field coils are approximately 3E7 [A/m
2
] [18, 19].)  

 

 
Figure 1 - A schematic of electromagnetically restrained liquid-metal within a tokamak.  (Adapted from [11, 13].) 
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Eq. 1 

 
Table 1 - The current density within a liquid lithium PFC required to exert a body-force equal to gravity (g = 9.8 [m/s2]) 

for various fusion reactors. 

Reactor / Ref. Toroidal Magnetic Field, B[T] Approx. Current Density, j[A/m
2
] 

NSTX-U / [20] 1 4,900 

ITER / [21] 5.3 920 

DEMO / [22, 23] 5.86 – 6 840 - 820 
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Fully-poloidal EMR could be used to promote nearly complete first-wall coverage within a 

reactor and possibly prevent splashing caused by LM-PFC interactions with the so-called 

‘plasma wind’ [12].  Localized control currents could also be used to adjust nozzle performance 

[24] or enable smooth flow around complicated geometries or penetrations on the tokamak walls 

[25].  However, despite the promise of EMR for LM-PFC applications, there is extremely scarce 

experimental data regarding the electromagnetic control of free-surface, liquid-metal flows.  

Until now, free-surface liquid-metal research has mostly focused on how different phenomena 

such as surface waves, heat-transfer, and flow-stability are affected by magnetic fields alone [26, 

27, 28, 29].  The few papers that have studied the impact of a Lorentz force on free-surface 

liquid-metals have either not studied flowing systems [30, 31] or have not studied configurations 

applicable to EMR within tokamaks [32].  For that reason, this paper will present data regarding 

the electromagnetic control of free-surface, liquid-metal flows relevant to fusion reactors and 

provide a simple, theoretical framework to explain the findings. 

2 Experiment Overview 

The Liquid Metal eXperiment (LMX), as described by others [33, 34], was designed and built to 

investigate free-surface, liquid-metal flows and MHD effects relevant to LM-PFC development.  

During LMX operation, galinstan (see Table 2) was pumped through a rectangular, acrylic duct 

(approx. 10.9 [cm] wide x 100 [cm] long) with a 0.6 [cm] tall weir at the outlet to maintain a 

minimum flow height in the channel.  The duct was held in the horizontal position, parallel to the 

floor.  A custom Archimedes-style screw pump was used to continuously circulate galinstan 

throughout the closed-loop system. The galinstan flow rate (approx. 4-10 [liter/min]) was 

monitored using a commercially-available Omega Engineering FMG83 electromagnetic 

flowmeter (see §7.1 for more detail). 

 
Table 2 – The properties of galinstan (Ga67In20.5Sn12.5 wt. %)  Refs. [28, 33, 35, 36]. 

Property Value Comments 

Density 6360 – 6440 [kg/m
3
] Density was measured at room temperature 

Electrical Conductivity 3.1E6 [1/Ω-m]  

Surface Tension 0.533 [N/m] 

This value is only valid for clean galinstan. It 

is possible that oxides on the surface can 

affect surface tension [37]. 

Kinematic Viscosity 2.98 – 4E-7 [m
2
/s]  

 

As shown in Figure 2, flow depth was measured using a laser-sheet diagnostic similar to those 

used on other open-channel, liquid-metal experiments [38].  The laser-sheet was generated by 

affixing a cylindrical lens onto a Uniphase 1101P HeNe Laser.  All laser sheet videos were taken 

with a Watec WAT-905H Ultimate CCD camera and equipped with a ZOOM 7000 Navitar lens.  
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Figure 2 – Schematic of laser-sheet height measurement setup at LMX. 

The laser-sheet depth measurements were calibrated by comparing the video data to 

corresponding height measurements taken using the electrical contact probe method [39, 40].  

The electrical contact probe setup used an Aerotech ATS-300 translation stage fitted with a 

vernier scale yielding 100 [µm] resolution.  (See § 7.2 for additional calibration data.) 

 

As shown in Figure 3, the liquid-metal flowed perpendicular to a magnetic field (B=0-0.33 [T]) 

that was generated by an external electromagnet (see § 7.3 for more details).  Copper electrodes 

near the inlet and outlet of the channel enabled electrical currents (I=0-140 [A]) to run parallel or 

antiparallel to the liquid-metal flow. 

 

 
Figure 3 – A depiction of the LMX duct.  The galinstan flows along the acrylic duct perpendicular to the magnetic field.  

The electrodes enable electrical currents to run parallel or antiparallel to the liquid-metal flow. 

The electrodes were attached to an adjustable AMREL SPS 8-150-000 constant-current power 

supply.  Current density calculations using FEMM [41] and COMSOL indicated that current 
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density is uniform within ~ 15 [cm] of the electrodes, as shown in Figure 4.  Since the duct was 

lined with electrically insulating acrylic, it was assumed that all of the supplied current traveled 

through the galinstan within the duct during experiments.  

 

More details regarding LMX setup and operating conditions are given in § 7.  An overview and 

comparison of LMX operating parameters can be found in Table 3. 

 

  
Figure 4 - A COMSOL simulation showing the electric current density vector and the liquid metal flow velocity vector.  

Both profiles are uniform towards the center of the duct where the height measurements were taken (Pump RPM = 1600, 

B = 0.3 [T], I = 70 [A]). 

 
Table 3 – LMX operating conditions compared to LM-PFC’s in other fusion reactors.  

Reactor / Ref. 
Magnetic  

Field 

Current Density 

Req. to Offset 

Gravity 

(see Eq. 1 / Table 1) 

Interaction 

Parameter 
Reynolds # 

Liquid 

Metal 

Units / Definition B[T] j[A/m
2
]    

      

  
     

   

 
  

LMX / § 7.3 0.33 14,850 5.3 2.6E3 Galinstan 

NSTX-U / [20] 1 4,900 6.7 

~ 1E5 
Lithium   

(Anticipated) 
ITER / [21] 5.3 920 187 

DEMO / [22, 23] 5.86 – 6 840 – 820 228 - 240 

Note 1:  LMX flow conditions were approximated as:  v = 0.1 [m/s], L = 1 [cm]. 

Note 2:  Anticipated lithium-PFC parameters are: v = 10 [m/s], L = 1 [cm], T = 400 [°C].   

Note 3:  The interaction parameter is the ratio of electromagnetic forces to inertial forces [34, 27].   

Note 4:  Galinstan properties are from Table 2.  Lithium properties were taken from [16, 17, 42].  

 

 

 

 



6 

 

 

3 Control of Liquid-Metal Flows Using Lorentz Force 

Neglecting MHD effects and assuming incompressible flow, the conservation of mass and the 

conservation of momentum for fixed-width (w), open-channel, steady-state flow can be 

described using the following equations [43]: 

 

Conservation of Mass: 

 

 

      
or 

          
 

Eq. 2 

 

Conservation of Momentum Flux: 

 

 

   
    

    
 

 
    

    
    

 

 
 

 

Eq. 3 

Where ‘Q’ is the volumetric flow rate, ‘h’ is the fluid depth, ‘v’ is average velocity, ‘ρ’ is the 

density of the fluid and ‘g’ is the acceleration due to gravity.  Typically, these parameters (Q, h, 

v, ρ, g) are sufficient to define the steady-state bulk properties of free-surface flows. 

 

However, by activating the electromagnet and adjusting the polarity of the electric current within 

the liquid-metal, LMX could generate a downward (parallel to gravity) or upward (antiparallel to 

gravity) Lorentz force on the flow.  Away from the inlet and outlet, where the current density 

and magnetic field were largely uniform and the surface waves were negligibly small, the nature 

of the additional Lorentz body-force acting upon the bulk-flow is analogous to an additional 

gravitational force [30] that must be accounted for in Eq. 3.  The modified equation can be re-

written as: 

 

 

 

   
    

    
 

 
    

    
    

 

 
 
      

 

 
 

 

Eq. 4 

 

where 

 

 

   
  

   
 

 

Eq. 5 

 

For convenience, Eq. 2, Eq. 4, and Eq. 5 have been rearranged to yield Eq. 6.  Analytical 

solutions for h1 can be readily found using Eq. 6 and mathematical software, but unfortunately, 



7 

 

the exact solutions are too cumbersome to be presented here.  Alternatively, the resultant changes 

in height and velocity due to the added Lorentz forces can also be calculated by numerically and 

iteratively solving the equations above and only accepting the real, physically possible solutions 

(e.g., no negative depths). 
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Eq. 6 

 

Figure 5 and Figure 6 show a comparison of experimentally measured data to theory.  Any 

abrupt bends in the theory curves are due to flow rate changes at larger magnetic field strength, 

which are accounted for by KFlow (see § 7.1). 

 

 
Figure 5 – Flow heights of liquid-metal as a function of applied Lorentz force.  For this study, g = 9.80665 [m/s2], ρ = 6400 

[kg/m3], w = 0.109 [m].  (Note:  Y-axis error bars correspond to a constant, maximum expected error of +/- 200 [µm].) 



8 

 

 

Figure 6 - Average flow velocity of liquid-metal as a function of applied Lorentz force.  For this study, g = 9.80665 [m/s2], 

ρ = 6400 [kg/m3], w = 0.109 [m]. 

4 Discussion of Results 

The simple theory described in § 3 was able to accurately predict experimental flows within 

LMX.  Hopefully, the given equations will provide LM-PFC designers with a useful 

approximation of free-surface liquid-metal behavior.  However, there are several topics that must 

receive additional consideration to more accurately predict free-surface liquid-metal flows within 

a fusion reactor. 

4.1 Magnetic Effects 

During this experiment, MHD drag affected the liquid-metal as it flowed across the magnetic 

field.  To account for changes in flow, an experimentally determined correction factor was used 

to predict changes in pump output when the magnitude of the magnetic field was adjusted 

between 0 ≤ B ≤ 0.33 [T] (see § 7.1). 

 

If experimental pressure-loss data is not available, LM-PFC designers must attempt to calculate 

the MHD losses and predict changes to the liquid-metal flow.  These calculations can be very 

difficult since they must account for flow properties, non-uniform magnetic fields, and electrical 

current paths through electrically conducting hardware [44, 45].  However, in general, MHD 

pressure-loss scales as [46, 47]: 

 

 

 

         
 

Eq. 7 
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So, for larger facilities like NSTX-U or ITER where the toroidal magnetic field could range from 

approximately 1 - 6 [T] and flow velocities could be as high as 10 [m/s], MHD drag on the 

system is expected to be orders of magnitude larger than what was seen in LMX, as 

approximated by Eq. 8. 

 

 

 

      
     

   
           

 

         
    

(  )(    ) 

 (   )(     )
         

 

Eq. 8 

 

4.2 Current Density Uniformity & Electric Boundary Conditions 

As previously mentioned, the galinstan flowed through an acrylic duct of uniform width.  

Therefore, it was assumed that all the injected electric current moved through the liquid-metal, 

which greatly simplified analysis [48].  Additionally, FEA modeling showed that the electric 

current density within the liquid-metal became uniform a short distance away from the 

electrodes. 

 

These simplifying assumptions will likely not be valid for LM-PFC’s for three reasons.  First, 

LM-PFC’s are typically made from stainless steel or other electrically conductive materials that 

offer an alternative path for electric currents.  Therefore, not all the injected electric current will 

pass through the liquid-metal.  Second, LM-PFC’s may be formed into complex, non-rectilinear 

geometries that do not produce uniform electrical current densities.  Finally, interactions between 

the liquid-metal and the base-material of the LM-PFC could cause thermoelectric currents to 

flow within the liquid-metal [31, 49, 50].  Depending on the geometry of the LM-PFC, these 

thermoelectric currents could complicate the overall distribution of the electric current density. 

4.3 Conservation of Mass 

The theory described in § 3 assumed that mass is conserved along the liquid-metal flow path.  

However, this assumption may not apply to all LM-PFC’s for several reasons.  First, liquid 

lithium could be ejected from the free-surface flow into the bulk plasma during operation [51].  

This sputtering of lithium into the plasma could be caused by plasma / PFC interactions or 

unexpected magnetic transients inducing unwanted Lorentz forces within the liquid-metal. 

 

Second, as previously mentioned, high-temperature operation can cause excessive liquid-metal 

evaporation [4, 5, 11, 52].  Lithium mass-loss due to evaporation within several full-scale reactor 

designs is expected to be > 10 [liter/s] [53, 54].  The actual evaporative mass-loss rate will 

depend on a number of factors including the LM-PFC operating temperature, the velocity of the 

liquid-metal, the duration of the plasma pulse, and the LM-PFC surface area. 

 

Lastly, lithium PFC’s can absorb a range of impurities (O, H, H2O, He, etc.) during operation 

that could cause a noticeable mass-imbalance [55, 56, 57].  In many regards this reactive or 
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‘gettering’ aspect is a positive aspect of lithium PFC’s since impurity levels in the plasma are 

reduced and plasma recycling is kept low.  However, continued or excessive uptake of impurities 

could change the properties of flowing, free-surface lithium and cause deviations from the theory 

given in § 3. 

 

Currently, most LM-PFC research efforts (CDX-U [8], FLiLi [9], etc.) deal with small amounts 

of lithium (~ 1-2 [kg]) so it is possible that even modest levels of impurity could cause changes 

to flow and mass-balance of the lithium [8, 9, 58].  Reactor-scale systems will require drastically 

larger lithium inventories and flow rates of approximately 1.2 [kg/s] per 1 [MWTh], as shown by 

Eq. 9 [17].  Therefore, adsorption of small amounts of impurity may not have a profound impact 

on larger systems operating over short time-sales.  However, over a long enough time, even 

reactor-scale LM-PFC systems will be susceptible to the accumulation of impurities unless 

continuously operating, lithium purification systems are developed [59, 60]. 

 

 

 

 

 ̇   ̇       

 

    [ ]   ̇ (     [
 

    
]) (    [ ]) 

 

 ̇       [    ] 
 

Eq. 9 

 

5 Conclusion & Future Work 

The ability to control the depth and velocity of a flowing liquid-metal within a magnetic field 

using externally applied electric currents was demonstrated. The experimental results closely 

agreed with the simple theoretical framework provided in § 3, which suggests that a similar 

model could be used to approximate the bulk performance of LM-PFC’s within fusion reactors.  

This model and the EMR technique could also be used to control hydraulic-jumps in LM-PFC’s 

[38], minimize splashing, and offer localized control over heat transfer and temperature profile 

of the liquid-metal in particular regions of the reactor interior [61, 62].   

 

Upgrades to LMX are planned to investigate the characteristics of higher flow speeds (v ≈ 1 

[m/s]).  Additional diagnostics are currently under development to investigate the impact of 

Lorentz force on hydraulic jump phenomena and surface wave properties.  Numerical 

simulations will also be performed to supplement experimental work and possibly validate other 

codes that were developed to model free-surface, liquid-metal flows [25]. 
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7 Appendix 
7.1 Pump & Flowmeter 

LMX was a closed-loop galinstan system that used a custom Archimedes-style screw pump to 

circulate galinstan around the system and through the rectangular duct.  The pump was powered 

by a 2 [HP] Leeson DC motor, and pump RPM measured using an Extech 461950 tachometer. 

Galinstan flow rate was monitored using an Omega Engineering FMG83 electromagnetic 

flowmeter. 

 

As shown in Figure 7, flowmeter measurements for B = 0 [T] operating conditions were taken on 

multiple days to ensure consistency between tests.  The EM flowmeter calibration was also 

verified using an IR-camera particle-tracking technique [40].  For analytical purposes, the output 

of the pump when B = 0 [T] could be accurately described using a linear fit. 

 

 
Figure 7 - The measured output of the LMX pump with B = 0 [T].  The pump provided repeatable flow rates over 

multiple days of testing. 

http://arks.princeton.edu/ark:/88435/dsp01x920g025r
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The performance of the pump changed when the electromagnet was operating and B > 0 [T].  As 

shown in Figure 8, for a given RPM the pump flow could change by approximately 15%.  This 

difference is most likely due to MHD drag on the flow [63, 64].  To account for changes in the 

flow rate a KFlow correction factor was calculated from experimental data, as shown in Figure 9 

and given in Table 4.  Using this correction factor, the flow rate during all tests could be 

accurately calculated using Eq. 10. 

 

 

 

 

             
 

Eq. 10 

 

 
Figure 8 – The measured LMX pump performance with magnetic field ranging from 0-0.33 [T]. 
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Figure 9 - The experimentally determined flow correction factor (KFlow) that accounts for changes in pump performance 

resulting from MHD drag. 

 
Table 4 - The experimentally determined KFlow correction factors. 

Electromagnet Current 

[A] 

Peak Magnetic Field 

[T] 

KFlow 

[-] 

0 0 1 (Defined) 

500 0.1 0.9970 ± 0.0047 

1000 0.2 0.9929 ± 0.0056 

1500 0.27 0.9272 ± 0.0102 

2000 0.31 0.8744 ± 0.0065 

2500 0.33 0.8490 ± 0.0072 

7.2 Height Measurement Calibration 

The laser-sheet height measurement technique was calibrated using an electrical contact probe.  

Results of the laser-sheet depth measurement calibration are given in Figure 10. 
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Figure 10 - Laser-sheet height calibration data.  The points below a height of 12.5 [mm] correspond to galinstan levels 

that did not spill over the weir.  When the depth of the galinstan was greater than 15 [mm] the laser-sheet data was 

calibrated using the extrapolated linear fit of the data.  As detailed in Figure 2, the actual height change and the change 

on the laser-sheet videos scale using a constant coefficient. 

7.3 Electromagnet Performance & Field Uniformity 

The LMX duct was installed horizontally within the air-gap of a C-shaped, water-cooled 

electromagnet.  The electromagnet was approx. 70 [cm] long (in the direction parallel to flow) 

and provided a magnetic field that was perpendicular to the flow (see Figure 3).  Before any 

experiments were performed, the electromagnet output was measured using a LakeShore model 

410 gaussmeter, as shown in Figure 11.  The magnetic field was found to be nearly uniform 

across the width of the duct, as shown in Figure 12. 

 
Figure 11 - The measured peak output of the electromagnet used in LMX.  The cooling system on the magnet did not 

allow for steady-state operation using larger electromagnet currents.  
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Figure 12 - The normalized magnetic field strength across the acrylic channel used in LMX.  These data can be 

represented using a parabolic fit. 
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