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Abstract. Simulations using the fully kinetic neoclassical code XGCa were
undertaken to explore the impact of kinetic effects on scrape-off layer (SOL)
physics in DIII-D H-mode plasmas. XGCa is a total-f , gyrokinetic code which
self-consistently calculates the axisymmetric electrostatic potential and plasma
dynamics, and includes modules for Monte Carlo neutral transport.

Previously presented XGCa results showed several noteworthy features,
including large variations of ion density and pressure along field lines in the
SOL, experimentally relevant levels of SOL parallel ion flow (Mach number∼0.5),
skewed ion distributions near the sheath entrance leading to subsonic flow there,
and elevated sheath potentials [R.M. Churchill, Nucl. Mater. & Energy,
submitted].

In this paper, we explore in detail the question of pressure balance in the SOL,
as it was observed in the simulation that there was a large deviation from a simple
total pressure balance (the sum of ion and electron static pressure plus ion inertia).
It will be shown that both the contributions from the ion viscosity (driven by ion
temperature anisotropy) and neutral source terms can be substantial, and should
be retained in the parallel momentum equation in the SOL, but still falls short
of accounting for the observed fluid pressure imbalance in the XGCa simulation
results.
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1. Introduction

Scrape-off layer (SOL) physics in tokamak devices
are typically simulated using fluid codes, due to the
generally high collisionality in this region. However,
research has revealed a number of discrepancies
between experiment and leading SOL fluid codes
(e.g. SOLPS), including underestimating outer target
temperatures[1], radial electric field in the SOL[2, 3, 1],
parallel ion SOL flows at the low field side[4, 3, 5], and
impurity radiation[6]. It was hypothesized by Chankin
et al.[3] that these discrepancies stem from the ad-hoc
treatment of kinetic effects in fluid codes.

To determine the importance of kinetic effects
in the SOL, simulations were undertaken using the
XGCa code[7], a total-f , gyrokinetic code which self-
consistently calculates the axisymmetric electrostatic
potential and plasma dynamics, and includes modules
for Monte Carlo neutral transport. General features
of the simulation results are investigated for kinetic
effects, but also in the future comparisons will be
made to the fluid SOL transport code SOLPS[8]. We
note here that the present study is without turbulence.
Turbulence may alter the results presented here.

Here we focus on the question of parallel pressure
balance in a low-density, low-power DIII-D H-mode
plasma. A significant deviation from standard total
pressure balance (pe + pi + miniV

2
i,‖ = const) occurs

in the SOL of these XGCa simulations, and here we
explore whether the addition of main ion viscosity and
neutral source terms can account for this deviation.

The rest of the paper is organized as follows:
Section 2 briefly describes the XGCa code, Section
3 details some of the simulation setup, Section 4
discusses details of the pressure balance parallel to
magnetic field lines, including main ion viscosity and
neutral source terms, and Section 5 wraps up with
conclusions and plans for future work.

2. XGCa

XGCa is a total-f, gyrokinetic neoclassical particle-in-
cell (PIC) code[7, 9, 10]. The ions are pushed according
to a gyrokinetic formalism, and the electrons are drift-
kinetic. XGCa is very similar to the more full featured,
gyrokinetic turbulence version XGC1[9, 11, 10], the
main difference being that XGCa solves only for the
axisymmetric electric potential (i.e. no turbulence,
hence the ”neoclassical” descriptor). An important

feature of XGCa is that the poloidally varying electric
potential is calculated by solving a gyrokinetic Poisson
equation, so that the resulting electric field is self-
consistent with the gyrating kinetic particles. XGCa
also uses a realistic magnetic geometry, created directly
from experiment magnetic reconstructions (normally
from EFIT EQDSK files), including X-points and
material walls. Particle drifts (magnetic and E ×
B) are included on the particle motion. Kinetic
effects of neutrals from charge-exchange and ionization
are included, along with consistent neutral rates set
by global recycling. The Debye sheath region isn’t
resolved, but rather a modified logical sheath boundary
condition[12, 13] is used to impose ambipolar flux to
the material walls. There are two main differences
between XGCa and the previous neoclassical version
XGC0. XGC0 calculates only flux-averaged potential
and includes the gyro-averaging effect in a simplified
manner.

3. XGCa Simulation Setup

The results presented in this paper are from an XGCa
simulation of a low-power H-mode discharge of the
DIII-D tokamak[14], shot 153820 at time 3000 ms. The
simulation parameters, including experimental inputs
of ion and electron density and temperature, can be
found in Ref. [12]. This discharge was chosen for its
lower density, so that the SOL collisionality would be
low, where kinetic effects would be expected to be more
significant (so called ”sheath-limited” regime).

4. Pressure Balance

Pressure balance in the SOL (pe + pi + miniV
2
i =

const) is often used to derive expected target plasma
profiles, for example using two-point modeling[15]. For
small midplane ion flows, and target flows satisfying
the Bohm criterion (Vi,‖ = cs), the midplane static
pressure (pe + pi) should be 2x the divertor static
pressure[15, 16]. SOL measurements of upstream ne,
Te, and Ti, with downstream ne and Te done in DIII-D
attached ELMing H-mode plasmas showed[17] seem to
agree with this. However, assumptions of low midplane
flows and Ti ≈ Te in the divertor had to be made,
since main ion measurements are notoriously difficult
to measure in the SOL generally.

Previously presented XGCa results showed large
variations of ion density and pressure along field lines
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Figure 1: The ratio (upstream over target) of total
pressure (ptot = pe + pi + miniV

2
i‖) between the LFS

divertor target and upstream midplane, plotted versus
height (Z). The X-point is located at Z=-1.14.

in the SOL, and significant parallel ion flows (Mach
number 0.5) throughout the SOL[12]. A natural check
was to ensure pressure balance was satisfied. As a
simple test, the total fluid pressure (ptot = pe +
pi + miniV

2
i‖) in the SOL at the low-field side (LFS)

from this XGCa simulation is plotted in Figure 1,
normalized to the LFS target total pressure. A large
imbalance is seen, ranging from near balanced in the
farthest out flux surfaces to factors of 2.5 for flux
surfaces in the near-SOL.

Here we consider adding the momentum drag
from neutrals and the main ion viscosity into the
parallel momentum equation, to determine if this will
balance the momentum equation between the target
and upstream. As will be seen, these simple fluid terms
cannot account for the pressure imbalance from the
kinetic simulation, requiring future work on a more
complete fluid momentum balance equation.

4.1. Parallel Momentum Equation

A total parallel momentum equation[18, 19] can be
formed using the procedure and assumptions outlined
in Ref. [18], arriving at:

b · [miniVi · ∇Vi +∇(pe + pi) +∇ · πi] +

miVi,‖nn (νion + νcx) = 0

where νion = ne〈σionv〉 and νcx = ni〈σcxv〉 are the
ionization and charge exchange rates. Elastic collisions
were turned off, as they should only become important
for cold, detached divertors[20]. We further simplify
the ion inertia term as b ·Vi · ∇Vi = b · ∇(V 2

i /2) −
Vi ×∇×Vi ≈ b · ∇(V 2

i /2), noting that Vi ×∇×Vi

can contain important terms. We also simplify the
viscosity using only the parallel viscosity (neglecting

perpendicular gyroviscosity) in the Chew-Golberger-
Low form[19, 21], b ·∇·πi‖ = 2

3b ·∇(pi‖−pi⊥)− (pi‖−
pi⊥)b · ∇ lnB. Substituting these simplifications, and
integrating over the parallel direction from `‖ = 0 at
the divertor target to x, an upstream value, we arrive
at the final pressure balance in Equation 1.:

ptot|`‖=x

ptot|`‖=0
+ Fvisc + Fneu = 1 (1)

where we have written:

ptot = pe + pi +
1

2
miniV

2
i (2)

Fvisc =

2
3 (pi‖ − pi⊥)|`‖=x

`‖=0 −
∫ x

0
d`‖ [(pi‖ − pi⊥)b · ∇ lnB

ptot|`‖=0
(3)

Fneu =

∫ x

0
d`‖miVi‖nn(νion + νcx)

ptot|`‖=0
(4)

4.2. Ion temperature anisotropy

Ion parallel and perpendicular pressure anisotropy
is the drive in the parallel viscosity term, which is
not normally considered in fluid codes since strong
collisionality would generally reduce anisotropies in
confined plasmas. The kinetic XGCa simulation results
show that there is a strong main ion temperature
anisotropy in the SOL, beginning just inside the
separatrix in the pedestal region, and increasing in
the SOL. The plot of SOL Ti‖/Ti⊥ in Figure 2 shows
the ion temperature (or more precisely the average
kinetic energy) anisotropy ratio reaches levels of 0.25,
but also has regions where Ti‖ > Ti⊥, with the ratio
as high as 1.35 at the top of the machine. The LFS
region ion temperature anisotropy can be explained
by a significant trapped ion fraction, which leads to
a predominantly higher perpendicular energy. The
region of Ti‖ > Ti⊥ near the top is also due to kinetic
effects with the higher parallel-energy ions flowing
more freely to the top avoiding trapping at LFS. The
low end anisotropy ratio is near the simple theoretical
limit of ion viscosity[15] (πi > −pi), which translates
to pi‖/pi⊥ > 2/5.

The ion viscosity in this case works to decrease
the total pressure (it’s identically negative), and does
contribute a non-negligible amount to the pressure
balance. It dominantly affects flux surfaces in the
middle of the SOL ψn range.

Note, however, that it does not fix the total
pressure balance discrepancy in Figure 1.

4.3. Neutral source

Having investigated the main ion viscosity, we now
turn our attention to the neutral momentum term,
which acts as a drag. This is due to dominantly colder
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Figure 2: Ion temperature anisotropy ratio, Ti‖/Ti⊥.
X-point locations are marked with the black X’s.
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Figure 3: Main ion viscosity contribution (Fvisc) to the
total pressure balance, between the LFS divertor target
and midplane, plotted versus height (Z). The X-point
is located at Z=-1.14.

neutrals joining the ion population through charge-
exchange or ionization. Shown in Figure 4 is the
neutral term contribution to the total pressure balance,∫
miVinn(νion+νcx)/(b·∇(pe+pi+miniV

2
i‖+2/3(pi‖−

pi⊥))|target. This term can be substantial, especially
for near-SOL flux surfaces. It also, however, does not
fix the total pressure balance discrepancy in Figure 1.

4.4. Pressure balance updated

Using the contributions from the main ion viscosity and
neutral source, we update the plot of Figure 1, to plot
the more complete pressure balance equation, Equation
1 in Figure 5. As seen, there is a significant deviation
from 1 for flux surfaces in the near- to mid-SOL, but
only for regions above Z > −1.0 m (recall the X-point
is at Z = −1.14 m). For the flux surfaces further
in the far-SOL, where the collisionality is higher, the
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Figure 4: Neutral source contribution (Fneu) to total
pressure balance, between the LFS divertor target and
midplane, plotted versus height (Z). The X-point is
located at Z=-1.14.
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Figure 5: The pressure balance using Equation
1, showing that adding main ion viscosity and
neutral sources cannot account for the total pressure
imbalance. The X-point is located at Z=-1.14.

agreement is fairly good, deviating on the level of 10%
between the target and midplane.

The pressure imbalance is dominated by the
variation in the ion temperature, and so is likely due
to not including kinetic effects from high energy ion
contributions not included in this fluid picture. It
is possible that including the in-surface flows in the
inertia term (V ×∇×V) can also be important, and
needs to be explored.

5. Conclusions and Future Work

The XGC codes are useful for probing and predicting
kinetic effects in the edge region, including the scrape-
off layer, as they include many of the interconnected
physics necessary for realistic modelling. An XGCa



Total Fluid Pressure Imbalance in the Scrape-Off Layer of Tokamak Plasmas 5

simulation of a DIII-D H-mode showed several novel
features. The ion density and temperature are larger
at the LFS, indicating effects from fat ion orbits from
the confined pedestal region. The parallel ion Mach
number at the LFS midplane reaches experimental
levels (Mi ∼ 0.5), and shows a poloidal variation
consistent with the parallel ion flows being dominated
by Pfirsch-Schlütter flows (recall XGCa includes
drifts), with stagnation points near the X-point at
both the LFS and HFS and flows directed towards the
divertor below the X-point. The normalized sheath
potential at the divertor plates is higher than standard
textbook assumptions, along with subsonic ions at the
sheath edge, which both implicate kinetic effects in the
establishment of the sheath potential in this discharge.

Pressure balance in the SOL of these simulations
was explored, showing a strong deviation when using
total pressure only. Significant ion temperature
anisotropies are present in the pedestal and SOL of
this simulation, indicating main ion viscosity could
play a significant role in the pressure balance. Main
ion viscosity and neutral source terms were included
in the momentum equation, and, while significant in
the SOL, they could not account for the entire fluid
pressure imbalance seen in XGCa , especially for flux
surfaces in the near- and mid-SOL.

The present physics results are without turbulence
or impurity particles, leaving them for future work.
Turbulence and impurities could modify the results
presented here.
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1. Introduction

Scrape-off layer (SOL) physics in tokamak devices
are typically simulated using fluid codes, due to the
generally high collisionality in this region. However,
research has revealed a number of discrepancies
between experiment and leading SOL fluid codes
(e.g. SOLPS), including underestimating outer target
temperatures[1], radial electric field in the SOL[2, 3, 1],
parallel ion SOL flows at the low field side[4, 3, 5], and
impurity radiation[6]. It was hypothesized by Chankin
et al.[3] that these discrepancies stem from the ad-hoc
treatment of kinetic effects in fluid codes.

To determine the importance of kinetic effects
in the SOL, simulations were undertaken using the
XGCa code[7], a total-f , gyrokinetic code which self-
consistently calculates the axisymmetric electrostatic
potential and plasma dynamics, and includes modules
for Monte Carlo neutral transport. General features
of the simulation results are investigated for kinetic
effects, but also in the future comparisons will be
made to the fluid SOL transport code SOLPS[8]. We
note here that the present study is without turbulence.
Turbulence may alter the results presented here.

Here we focus on the question of parallel pressure
balance in a low-density, low-power DIII-D H-mode
plasma. A significant deviation from standard total
pressure balance (pe + pi + miniV

2
i,‖ = const) occurs

in the SOL of these XGCa simulations, and here we
explore whether the addition of main ion viscosity and
neutral source terms can account for this deviation.

The rest of the paper is organized as follows:
Section 2 briefly describes the XGCa code, Section
3 details some of the simulation setup, Section 4
discusses details of the pressure balance parallel to
magnetic field lines, including main ion viscosity and
neutral source terms, and Section 5 wraps up with
conclusions and plans for future work.

2. XGCa

XGCa is a total-f, gyrokinetic neoclassical particle-in-
cell (PIC) code[7, 9, 10]. The ions are pushed according
to a gyrokinetic formalism, and the electrons are drift-
kinetic. XGCa is very similar to the more full featured,
gyrokinetic turbulence version XGC1[9, 11, 10], the
main difference being that XGCa solves only for the
axisymmetric electric potential (i.e. no turbulence,
hence the ”neoclassical” descriptor). An important

feature of XGCa is that the poloidally varying electric
potential is calculated by solving a gyrokinetic Poisson
equation, so that the resulting electric field is self-
consistent with the gyrating kinetic particles. XGCa
also uses a realistic magnetic geometry, created directly
from experiment magnetic reconstructions (normally
from EFIT EQDSK files), including X-points and
material walls. Particle drifts (magnetic and E ×
B) are included on the particle motion. Kinetic
effects of neutrals from charge-exchange and ionization
are included, along with consistent neutral rates set
by global recycling. The Debye sheath region isn’t
resolved, but rather a modified logical sheath boundary
condition[12, 13] is used to impose ambipolar flux to
the material walls. There are two main differences
between XGCa and the previous neoclassical version
XGC0. XGC0 calculates only flux-averaged potential
and includes the gyro-averaging effect in a simplified
manner.

3. XGCa Simulation Setup

The results presented in this paper are from an XGCa
simulation of a low-power H-mode discharge of the
DIII-D tokamak[14], shot 153820 at time 3000 ms. The
simulation parameters, including experimental inputs
of ion and electron density and temperature, can be
found in Ref. [12]. This discharge was chosen for its
lower density, so that the SOL collisionality would be
low, where kinetic effects would be expected to be more
significant (so called ”sheath-limited” regime).

4. Pressure Balance

Pressure balance in the SOL (pe + pi + miniV
2
i =

const) is often used to derive expected target plasma
profiles, for example using two-point modeling[15]. For
small midplane ion flows, and target flows satisfying
the Bohm criterion (Vi,‖ = cs), the midplane static
pressure (pe + pi) should be 2x the divertor static
pressure[15, 16]. SOL measurements of upstream ne,
Te, and Ti, with downstream ne and Te done in DIII-D
attached ELMing H-mode plasmas showed[17] seem to
agree with this. However, assumptions of low midplane
flows and Ti ≈ Te in the divertor had to be made,
since main ion measurements are notoriously difficult
to measure in the SOL generally.

Previously presented XGCa results showed large
variations of ion density and pressure along field lines
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Figure 1: The ratio (upstream over target) of total
pressure (ptot = pe + pi + miniV

2
i‖) between the LFS

divertor target and upstream midplane, plotted versus
height (Z). The X-point is located at Z=-1.14.

in the SOL, and significant parallel ion flows (Mach
number 0.5) throughout the SOL[12]. A natural check
was to ensure pressure balance was satisfied. As a
simple test, the total fluid pressure (ptot = pe +
pi + miniV

2
i‖) in the SOL at the low-field side (LFS)

from this XGCa simulation is plotted in Figure 1,
normalized to the LFS target total pressure. A large
imbalance is seen, ranging from near balanced in the
farthest out flux surfaces to factors of 2.5 for flux
surfaces in the near-SOL.

Here we consider adding the momentum drag
from neutrals and the main ion viscosity into the
parallel momentum equation, to determine if this will
balance the momentum equation between the target
and upstream. As will be seen, these simple fluid terms
cannot account for the pressure imbalance from the
kinetic simulation, requiring future work on a more
complete fluid momentum balance equation.

4.1. Parallel Momentum Equation

A total parallel momentum equation[18, 19] can be
formed using the procedure and assumptions outlined
in Ref. [18], arriving at:

b · [miniVi · ∇Vi +∇(pe + pi) +∇ · πi] +

miVi,‖nn (νion + νcx) = 0

where νion = ne〈σionv〉 and νcx = ni〈σcxv〉 are the
ionization and charge exchange rates. Elastic collisions
were turned off, as they should only become important
for cold, detached divertors[20]. We further simplify
the ion inertia term as b ·Vi · ∇Vi = b · ∇(V 2

i /2) −
Vi ×∇×Vi ≈ b · ∇(V 2

i /2), noting that Vi ×∇×Vi

can contain important terms. We also simplify the
viscosity using only the parallel viscosity (neglecting

perpendicular gyroviscosity) in the Chew-Golberger-
Low form[19, 21], b ·∇·πi‖ = 2

3b ·∇(pi‖−pi⊥)− (pi‖−
pi⊥)b · ∇ lnB. Substituting these simplifications, and
integrating over the parallel direction from `‖ = 0 at
the divertor target to x, an upstream value, we arrive
at the final pressure balance in Equation 1.:

ptot|`‖=x

ptot|`‖=0
+ Fvisc + Fneu = 1 (1)

where we have written:

ptot = pe + pi +
1

2
miniV

2
i (2)

Fvisc =

2
3 (pi‖ − pi⊥)|`‖=x

`‖=0 −
∫ x

0
d`‖ [(pi‖ − pi⊥)b · ∇ lnB

ptot|`‖=0
(3)

Fneu =

∫ x

0
d`‖miVi‖nn(νion + νcx)

ptot|`‖=0
(4)

4.2. Ion temperature anisotropy

Ion parallel and perpendicular pressure anisotropy
is the drive in the parallel viscosity term, which is
not normally considered in fluid codes since strong
collisionality would generally reduce anisotropies in
confined plasmas. The kinetic XGCa simulation results
show that there is a strong main ion temperature
anisotropy in the SOL, beginning just inside the
separatrix in the pedestal region, and increasing in
the SOL. The plot of SOL Ti‖/Ti⊥ in Figure 2 shows
the ion temperature (or more precisely the average
kinetic energy) anisotropy ratio reaches levels of 0.25,
but also has regions where Ti‖ > Ti⊥, with the ratio
as high as 1.35 at the top of the machine. The LFS
region ion temperature anisotropy can be explained
by a significant trapped ion fraction, which leads to
a predominantly higher perpendicular energy. The
region of Ti‖ > Ti⊥ near the top is also due to kinetic
effects with the higher parallel-energy ions flowing
more freely to the top avoiding trapping at LFS. The
low end anisotropy ratio is near the simple theoretical
limit of ion viscosity[15] (πi > −pi), which translates
to pi‖/pi⊥ > 2/5.

The ion viscosity in this case works to decrease
the total pressure (it’s identically negative), and does
contribute a non-negligible amount to the pressure
balance. It dominantly affects flux surfaces in the
middle of the SOL ψn range.

Note, however, that it does not fix the total
pressure balance discrepancy in Figure 1.

4.3. Neutral source

Having investigated the main ion viscosity, we now
turn our attention to the neutral momentum term,
which acts as a drag. This is due to dominantly colder
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Figure 2: Ion temperature anisotropy ratio, Ti‖/Ti⊥.
X-point locations are marked with the black X’s.
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Figure 3: Main ion viscosity contribution (Fvisc) to the
total pressure balance, between the LFS divertor target
and midplane, plotted versus height (Z). The X-point
is located at Z=-1.14.

neutrals joining the ion population through charge-
exchange or ionization. Shown in Figure 4 is the
neutral term contribution to the total pressure balance,∫
miVinn(νion+νcx)/(b·∇(pe+pi+miniV

2
i‖+2/3(pi‖−

pi⊥))|target. This term can be substantial, especially
for near-SOL flux surfaces. It also, however, does not
fix the total pressure balance discrepancy in Figure 1.

4.4. Pressure balance updated

Using the contributions from the main ion viscosity and
neutral source, we update the plot of Figure 1, to plot
the more complete pressure balance equation, Equation
1 in Figure 5. As seen, there is a significant deviation
from 1 for flux surfaces in the near- to mid-SOL, but
only for regions above Z > −1.0 m (recall the X-point
is at Z = −1.14 m). For the flux surfaces further
in the far-SOL, where the collisionality is higher, the
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Figure 4: Neutral source contribution (Fneu) to total
pressure balance, between the LFS divertor target and
midplane, plotted versus height (Z). The X-point is
located at Z=-1.14.
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Figure 5: The pressure balance using Equation
1, showing that adding main ion viscosity and
neutral sources cannot account for the total pressure
imbalance. The X-point is located at Z=-1.14.

agreement is fairly good, deviating on the level of 10%
between the target and midplane.

The pressure imbalance is dominated by the
variation in the ion temperature, and so is likely due
to not including kinetic effects from high energy ion
contributions not included in this fluid picture. It
is possible that including the in-surface flows in the
inertia term (V ×∇×V) can also be important, and
needs to be explored.

5. Conclusions and Future Work

The XGC codes are useful for probing and predicting
kinetic effects in the edge region, including the scrape-
off layer, as they include many of the interconnected
physics necessary for realistic modelling. An XGCa
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simulation of a DIII-D H-mode showed several novel
features. The ion density and temperature are larger
at the LFS, indicating effects from fat ion orbits from
the confined pedestal region. The parallel ion Mach
number at the LFS midplane reaches experimental
levels (Mi ∼ 0.5), and shows a poloidal variation
consistent with the parallel ion flows being dominated
by Pfirsch-Schlütter flows (recall XGCa includes
drifts), with stagnation points near the X-point at
both the LFS and HFS and flows directed towards the
divertor below the X-point. The normalized sheath
potential at the divertor plates is higher than standard
textbook assumptions, along with subsonic ions at the
sheath edge, which both implicate kinetic effects in the
establishment of the sheath potential in this discharge.

Pressure balance in the SOL of these simulations
was explored, showing a strong deviation when using
total pressure only. Significant ion temperature
anisotropies are present in the pedestal and SOL of
this simulation, indicating main ion viscosity could
play a significant role in the pressure balance. Main
ion viscosity and neutral source terms were included
in the momentum equation, and, while significant in
the SOL, they could not account for the entire fluid
pressure imbalance seen in XGCa , especially for flux
surfaces in the near- and mid-SOL.

The present physics results are without turbulence
or impurity particles, leaving them for future work.
Turbulence and impurities could modify the results
presented here.
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