
Princeton Plasma Physics Laboratory 
 
 
 

PPPL-5335 
 
 
 
 

Full-wave simulations of ICRF and HHFW heating regimes in  
toroidal plasma with non-Maxwellian distribution functions 

 
 

N. Bertelli, E. J. Valeo, M. Gorelenkova, C. K. Phillips, M. Podest`a 
 

December 2016 
 
 
 
 
 

 
 

 
 

Prepared for the U.S. Department of Energy under Contract DE-AC02-09CH11466. 



Princeton Plasma Physics Laboratory 
Report Disclaimers 

 
 
Full Legal Disclaimer 

 

This   report was  prepared as  an  account of work   sponsored by  an  agency of the   United 
States Government. Neither the  United States Government nor  any  agency thereof, nor  any  of 
their  employees, nor   any   of  their  contractors, subcontractors or  their  employees, makes any 
warranty, express or implied, or assumes any  legal  liability or responsibility for the  accuracy, 
completeness, or  any  third party’s  use  or  the  results of such  use  of any  information, apparatus, 
product,  or  process  disclosed,  or  represents that  its   use   would   not   infringe privately  owned 
rights.  Reference herein to  any  specific  commercial product,  process, or  service by  trade name, 
trademark, manufacturer, or otherwise, does  not  necessarily constitute or imply  its  endorsement, 
recommendation,  or  favoring  by  the   United States  Government or  any   agency thereof  or  its 
contractors  or   subcontractors.   The   views   and   opinions  of  authors  expressed herein  do  not 
necessarily state or reflect those of the  United States Government or any  agency thereof. 

 
Trademark Disclaimer 

 

Reference herein to any  specific  commercial product, process, or service by trade name, 
trademark, manufacturer, or otherwise, does  not  necessarily constitute or imply  its  endorsement, 
recommendation,  or  favoring  by  the   United States  Government or  any   agency thereof  or  its 
contractors or subcontractors. 

 

 
 
 

PPPL Report Availability 
 
 
Princeton Plasma Physics Laboratory: 

 
http://www.pppl.gov/techreports.cfm 

 
Office of Scientific and Technical Information (OSTI): 

 

http://www.osti.gov/scitech/ 
 

 
 
Related Links: 

 
 
 
 

U.S. Department of Energy 
 
 
 

U.S. Department of Energy Office of Science 
 
 
 

U.S. Department of Energy Office of Fusion Energy Sciences 



Full-wave simulations of ICRF and HHFW heating

regimes in toroidal plasma with non-Maxwellian

distribution functions

N. Bertelli1, E. J. Valeo1, D. L. Green2, M. Gorelenkova1,
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Abstract. At the power levels required for significant heating and current drive
in magnetically-confined toroidal plasma, modification of the particle distribution
function from a Maxwellian shape is likely [T. H. Stix, Nucl. Fusion, 15:737
1975], with consequent changes in wave propagation and in the location and
amount of absorption. In order to study these effects computationally, both the
finite-Larmor-radius and the high-harmonic fast wave (HHFW), full-wave, hot-
plasma toroidal simulation code, TORIC [M. Brambilla, Plasma Phys. Control.

Fusion 41, 1 (1999) and M. Brambilla, Plasma Phys. Control. Fusion 44,
2423 (2002)], have been extended to allow the prescription of arbitrary velocity
distributions of the form f(v‖, v⊥, ψ, θ). For hydrogen (H) minority heating of a
deuterium (D) plasma with anisotropic Maxwellian H distributions, the fractional
H absorption varies significantly with changes in parallel temperature but is
essentially independent of perpendicular temperature. On the other hand, for
HHFW regime with anisotropic Maxwellian fast ion distribution, the fractional
beam ion absorption varies mainly with changes in the perpendicular temperature.
The evaluation of the wave-field and power absorption, through the full wave
solver, with the ion distribution function provided by either a Monte-Carlo particle
and Fokker-Planck codes is also examined for Alcator C-Mod and NSTX plasmas.
Non-Maxwellian effects generally tends to increase the absorption with respect to
the equivalent Maxwellian distribution.
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1. Introduction

The injection of waves in the ion cyclotron frequency
range is a well-established method of heating and
driving current in magnetically confined toroidal
plasma. A straightforward estimate suggests that,
at rf power levels which are sufficiently high that
finite enhancements in temperature or current are
achieved, the ion velocity distribution functions are
expected to be significantly modified from a thermal,
Maxwellian shape [1]. Since the absorption of
energy and momentum are overwhelmingly through
collisionless wave-particle interactions, local in velocity
space, these distribution function modifications will,
generally, result in finite changes in the amount and
spatial location of absorption. Inclusion of these
modifications, ultimately computed self-consistently
together with the wave fields, is required to more
faithfully model experimental results and to more
accurately design future devices.

There has been substantial progress recently to
address these considerations. More recently, the
all-orders (in Larmor radius to wavelength) global-
wave solver AORSA [2] has been coupled to the CQL3D

Fokker-Planck code [3, 4]. The combination has been
iteratively solved to self-consistently compute wave-
fields and ion distribution functions [5]. Similar work
has been done with other RF numerical tools, such
as METS [6, 7], GNET-TASK/WM [8], SSPQL/ TORIC v.6
package [9, 10], CYRANO [11] ORBIT-RF/AORSA [12],
VENUS-LEMan in the SCENIC package [13], EVE [14, 15],
and SELFO-light [16].

Here, we describe the extension of both the finite
Larmor radius (FLR) and the high harmonic fast
wave (HHFW) versions of the TORIC code [17, 18] to
include non-Maxwellian distribution functions. The
version of TORIC used in this work corresponds to the
TORIC’s version also named TORIC v.5 and currently
implemented in the TRANSP code [19]. Indeed, this
work is a starting point to be able to treat self-
consistently in TRANSP the evolution of the H minority
and beam ion population in the presence of RF heating.
As mentioned above, there are two versions of the
code: (i) FLR and (ii) HHFW regimes. The former
makes use of the assumption that the ion Larmor
radius ρi is small-but-finite compared to the scale of
wave field variation perpendicular to the local magnetic
field direction, b̂, i.e., ρi|b̂ × ∇A/A| << 1, for
any field component A. This approximation greatly
reduces computational burden while still accurately
reproducing results obtained from the more general
codes when the small-Larmor-radius approximation is
verified a posteriori. More specifically, TORIC takes
into account FLR corrections only up to ω = 2Ωc,i

(where ω and Ωc,i are the angular frequency and the
ion cyclotron angular frequency, respectively). On

the other hand, in the HHFW version of the code,
coefficients of the wave equation are replaced by the
corresponding elements of the full hot-plasma dielectric
tensor where the k (k is the wave-vector) value in the
argument of the Bessel functions is obtained by solving
the local dispersion relation for the fast wave (FW)
root.

The code extensions are presented in detail in
Section 2 together with a brief description of the
code. The numerical implementation is presented
in Section 3. Results of applications are presented
in Section 4 for both a isotropic and anisotropic
distribution functions in Alcator C-Mod [20] and
NSTX [21] plasmas . Finally, a discussion and the main
conclusions of the work are summarized in Section 5.

2. Code description

2.1. The finite-Larmor-radius full-wave TORIC version

The TORIC code solves the vector wave equation

∇×∇×E =
ω2

c2

[

E+
4πi

ω
(JP + JA)

]

(1)

for the vector electric field E. The undriven plasma is
assumed time independent and toroidally symmetric.
Therefore, the response to a prescribed antenna current
density JA(xp, φ, t) as a function of poloidal position
xp, toroidal angle φ, and time t, can be obtained by
summation of responses to each Fourier component
JA(xp, nφ, ω) exp[i(nφφ − ωt)] with frequency ω and
toroidal mode number nφ. The plasma current density
JP,

JP ≡
∑

s

qj

∫

dvv fs(x,v;ω) (2)

requires the solution for the particle distribution
functions fs(x,v;ω), for each species s, which is
computed by solving the linearized Vlasov equation
with several assumptions: the particle gyro-radii
are small compared to the scale of field variation
perpendicular to the local magnetic field direction,
b ≡ B/|B|; the effects of drifts across the magnetic flux
surfaces are negligible; multiple resonant wave-particle
interactions are uncorrelated. The small-Larmor-
radius approximation reduces the response to cross-
field variations of E from an integral to a differential
form. Spatial dependence is further decomposed into
variation within and across poloidal flux surfaces,
ψ(x) = const. Fourier decomposition of variation
within surfaces,

A(r, z) =
∑

m

Am(ψ) eimθ (3)

and projection of the wave equation onto test functions
F(ψ) with compact support transforms the system into
a dense block (in m) - tridiagonal (in ψ) system which
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is soluble using standard numerical methods. By virtue
of this decomposition, the local parallel component of
the wave-vector is explicitly represented as

k‖(θ, ψ) ≡ k · b = (m∇θ + nφ∇φ) · b (4)

This representation facilitates the required computa-
tion of the elements of the local susceptibility tensor
χs relating the current in species s, JP

s to the driving
electric field

JP
s = − iω

4π
χs · E . (5)

In the original version of TORIC code, the elements
of the local susceptibility tensor χs are restricted to
the Maxwellian case. However, in a local coordinate
(Stix [22]) frame (x̂, ŷ, ẑ), with ẑ = b, k · ŷ =
0, to second order in k⊥v⊥/Ωc (k⊥ and v⊥ are
the perpedicular components of the wave-vector and
the velocity, respectively), and for arbitrary velocity
distribution functions of the form

fs(v) = fs(v⊥, v‖) (6)

the components of χ can be written as [23]

χxx =
ω2
p,s

ω

[

1

2
(A1,0 +A−1,0)−

λ

2
(A1,1 +A−1,1)+

+
λ

2
(A2,1 +A−2,1)

]

χxy = − χyx = i
ω2
p,s

ω

[

1

2
(A1,0 −A−1,0)+

− λ (A1,1 −A−1,1) +
λ

2
(A2,1 −A−2,1)

]

χxz = + χzx = −χyx =
ω2
p,s

ω

(

1

2

k⊥
ω

)

[(B1,0 +B−1,0)+

− λ (B1,1 +B−1,1) +
λ

2
(B2,1 +B−2,1)

]

χyy =
ω2
p,s

ω

[

2λA0,1 +
1

2
(A1,0 +A−1,0)+

− 3λ

2
(A1,1 +A−1,1) +

λ

2
(A2,1 +A−2,1)

]

χyz = − χzy = i
ω2
p,s

ω

(

k⊥
ω

)

[B0,0 − λB0,1+

− 1

2
(B1,0 +B−1,0)− λ (B1,1 +B−1,1)

− λ

4
(B2,1 +B−2,1)

]

χzz =
2ω2

p

k‖w
2
⊥

[(1− λ)B0,0+

+

∫ +∞

−∞

dv‖

∫ +∞

0

dv⊥v⊥
v‖

ω
f0(v‖, v⊥)

]

+
λ

2

ω2
p

ω

[

2
ω − ωc

k‖w
2
⊥

B1,0 + 2
ω + ωc

k‖w
2
⊥

B−1,0

]

(7)

where

λ ≡ 1

2

(

k⊥w⊥

Ωc

)2

, (8)

with

w2
⊥ ≡

∫ ∞

−∞

dv‖

∫ +∞

0

2πv⊥dv⊥v
2
⊥f0(v‖, v⊥) . (9)

Here, the coefficients
{

An,j

Bn,j

}

=

∫ ∞

−∞

dv‖

{

1
v‖

}

1

ω − k‖v‖ − nΩc
×

×
∫ +∞

0

2πv⊥dv⊥Hj(v‖, v⊥) (10)

with

H0(v‖, v⊥) =
1

2

k‖w
2
⊥

ω

∂f0
∂v‖

−
(

1− k‖v‖

ω

)

f0(v‖, v⊥)

H1(v‖, v⊥) =
1

2

k‖w
2
⊥

ω

∂f0
∂v‖

v4⊥
w4

⊥

+

−
(

1− k‖v‖

ω

)

f0(v‖, v⊥)
v2⊥
w2

⊥

. (11)

These equations have been implemented in the new
code extension (see Section 3) in order to deal with
arbitrary distribution functions and its applications are
shown in Section 4.

2.2. The high-harmonic fast wave full-wave TORIC

version

The HHFW version of the code makes use of the so-
called “Quasi-local” approximation (see details in [18]).
The 0th-order FLR coefficients of the wave equation
are replaced by the corresponding elements of the full
hot-plasma dielectric tensor in which the k2 value in
the argument of the Bessel functions is obtained by
solving the local dispersion relation for FWs. At
each point the resulting wave equation, which is still
in differential form along the radial coordinate, has
the same dispersion relation as the full integral wave
equation, although only for FWs.

Similarly to the FLR case described above, the
extensions of HHFW version consists mainly in the
implementation of the full-hot susceptibility tensor χ
for arbitrary velocity distribution functions instead of
the original implementation which was restricted to
the Maxwellian case. In particular, the elements of
the local susceptibility tensor χ for arbitrary velocity
distribution functions are of the form [22]

χs =
ω2
ps

ω

∫ +∞

0

2πv⊥dv⊥ ×

×
∫ +∞

−∞

dv‖ẑẑ
v2‖

ω

(

1

v‖

∂f

∂v‖
− 1

v⊥

∂f

∂v⊥

)

s

+
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+
ω2
ps

ω

∫ +∞

0

2πv⊥dv⊥ ×

×
∫ +∞

−∞

dv‖

+∞
∑

n=−∞

[

v⊥U

ω − k‖v‖ − nΩcs
Tn

]

(12)

where

U ≡ ∂f

∂v⊥
+
k‖

ω

(

v⊥
∂f

∂v‖
− v‖

∂f

∂v⊥

)

(13)

and

Tn =









n2J2

n(z)
z2

inJn(z)J
′
n(z)

z

nJ2

n(z)v‖
zv⊥

− inJn(z)J
′
n(z)

z (J ′
n(z))

2 − iJn(z)J
′
n(z)v‖

v⊥
nJ2

n(z)v‖
zv⊥

iJn(z)J
′
n(z)v‖

v⊥

J2

n(z)v
2

‖

v2

⊥









,(14)

with z ≡ k⊥v⊥
Ωcs

.

3. Numerical implementation

The perpendicular velocity integrals produce smoothly
varying functions of v‖ whose product with the singular
function S = (ω − k‖v‖ − nΩ)−1 must then be
integrated in v‖. For a non-drifting Maxwellian
parallel-velocity distribution function with thermal
velocity vth, these integrals can be represented in terms
of the plasma dispersion function Z(ζ/vth) [24] where
ζ = (ω − nΩ)/k‖. For more general distributions, the
integrations must be done numerically. Since these
integrals are computed numerous times in forming the
matrix system of field equations, efficient evaluation
is essential. Further, since the co-factor of S is
smooth, the resultant parallel integral’s dependence on
ζ will be smooth as well. We use this observation by
evaluating the integrals at uniformly spaced points ζk
and then interpolating the results to the desired value
of ζ. Efficiency is gained by specifying the distribution
function, and thus the co-factors, on the same, uniform,
parallel velocity mesh, vk = k∆v. Specifically, at a
mesh point k, the integrals are of the form

Ik =

∫

dv
C(v)

v − vk
. (15)

We approximate the cofactors

C(v) =
∑

j

cjTj , (16)

where cj = C(vj) and where Tj is a linear tent function
surrounding vj

Tj =

{

1− |v−vj |
∆v if |v − vj | ≤ ∆v,

0 otherwise.
(17)

Then

Ik =
∑

j

∫

dv
fjTj
v − vk

=
∑

j

fjKj−k =
∑

fj+kKj. (18)

where the kernel

Kj =

∫ 1

−1

dv
1− |v|
v + j∆v

=







ln( j+1
j−1 )− j ln( j2

j2−1 ) |j| > 1,

± ln 4 j = ±1,
iπ j = 0.

(19)

The convolutions incur modest computational cost.
The approach described here has been originally

used for the non-Maxwellian extension of the TORIC

code in the lower hybrid frequency regime [25]. Fur-
thermore, such method also motivated an improvement
of the algorithm reducing the complexity from O(N2)
(which is what we use in this work) to O(N logN),
with N being the dimension of the core matrix [26, 9].

4. Applications

4.1. Parameters used when distribution function is
provided by an analytical functional form

To validate the algorithm, calculations are presented
of both minority hydrogen heating in a plasma
equilibrium constructed from Alcator C-Mod tokamak
data and HHFW heating regime in a NSTX plasma
equilibrium. The electron density profile as a function
of the square root of the normalized poloidal flux for
the Alcator C-Mod discharge is shown in Figure 1(a).
The electron and ion temperature profiles are shown in
Figure 1 (b). The corresponding plots for the NSTX
plasma are shown in Figure 2. The toroidal field at
the magnetic axis is 5 (0.53) Tesla for Alcator C-
Mod (NSTX). The toroidal plasma current is 627 (868)
kA for Alcator C-Mod (NSTX). The magnetic axis
major radius is 68.26 (101.34) cm for Alcator C-Mod
(NSTX). For Alcator C-Mod case: the plasma consists
of 7% fractional number density of hydrogen and 93%
deuterium. The wave parameters are: frequency f =
78 MHz and toroidal wavenumber nφ = 10, which
places the fundamental H and second harmonic D
resonances at 0.62 cm radially with respect to the
magnetic axis location. The ion-ion hybrid resonance
and cutoffs are at −2.9 and −1.8 cm, respectively (with
respect to the magnetic axis location). For NSTX
case: the plasma consists of 86.5% fractional number of
density of (thermal) deuterium 8% of beam deuterium
(fast ions). An effective temperature of the beam ions
(Tbi) given by [27]

Tbi =
2

3

u

nbi
(20)

is used. In Eq. 20 u and nbi are the total energy density
profile and the density of the beams ions, respectively,
evaluated by NUBEAM [28, 29]. The wave parameters
are: frequency f = 30 MHz and toroidal wavenumber
nφ = 8, which places the second and eleventh harmonic
D resonances at the very edge of the high-field side and
the low-field side, respectively. The choice of the nφ
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Figure 1. (a) The electron density profile, ne as a function of the square root of the normalized poloidal flux, ρpol for an Alcator
C-Mod plasma. (b) The electron and (common) ion temperature profiles as a function of ρpol.
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Figure 2. (a) The electron density (ne) and beam ion (nD−NBI) profiles as a function of the square root of the normalized poloidal
flux (ρpol) for a NSTX plasma. (b) The electron (Te), thermal deuterium (TD) and beam ion temperature (TD−NBI) (rescaled by a
factor 10) profiles as a function of ρpol.

value is mainly done to get a large absorption by fast
ions.

4.2. Isotropic Maxwellian distributions

4.2.1. IC minority heating regime The reference
calculation assumes isotropic Maxwellian distributions,
using the Z function to evaluate χ. Several qualitative
features are clearly visible in the surface plot of
Re(E−), where E

− ≡ Ex − iEy (in Stix coordinates)
shown in 3 . The long wavelength fast wave, launched
from the low-field side midplane is converted near
the magnetic axis into a combination of moderate
wavelength ion cyclotron waves (ICW, emanating
rightward, toward the low field side) and short
wavelength ion Bernstein waves (IBW, emanating
leftward, toward the high field side). The relative
power absorbed by second harmonic D, fundamental H
and by the electrons for each wave branch is presented

in Table 1 in the column labeled “Reference”. To
check the accuracy of the method, the results were re-
computed with the minority H susceptibility calculated
numerically as described in Section 3 for a Maxwellian
distribution prescribed on a uniform numerical mesh
of Nv‖ = 500 points and Nv⊥ = 100 points. The mesh
range is −c/100 6 v‖ 6 c/100 and 0 6 v⊥ 6 c/100
where c = 3×1010 cm/s is the speed of light. As shown
in Table 1, the power flow channels are well converged
to the reference case with differences less than 1− 2%.
A more discriminating measure of convergence is shown
in Figure 4 . Figure 4 shows the real part of the three
components of the wave electric field (E−, E+, and
E‖) on the midplane both in high (left column) and
low (right column) field regions. There one can see
an excellent agreement between the “Reference” (solid
(black) curve) and “Numerical” (dashed (red) curve)
cases.
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V/m/MW

Figure 3. Real part of the right-handed wave electric field,
Re(E−), for an Alcator C-Mod plasma described in subsection
4.1.

Absorbed fraction Reference Numerical
2nd Harmonic D 10.18 10.28
Fundamental H 69.95 68.81
Electrons - FW 11.35 11.91
Electrons - IBW 8.53 9.00

Table 1. Alcator C-Mod: Power flow to each species. The
reference simulation corresponds to the original Maxwellian case
while the numerical simulation numerically computed minority H
susceptibility χH (Eqs. 7-11) assuming a Maxwellian functional
form of the representation of the distribution function.

Other cases with different resolutions in v‖
and v⊥ (not shown here) have been performed
always obtaining an excellent agreement between
reference and numerical cases in terms of electric field
propagation, power density profiles, and total absorbed
power.

4.2.2. HHFW heating regime Figure 5 shows the
surface plot of Re(E−) where the long wavelength fast
wave are launched from the low-field side midplane.
The relative power absorbed by D, fast ions (D-NBI),
and electrons is presented in Table 2 in the column
labeled “Reference”. As similarly done for IC minority
heating regime, in order to assess the accuracy of
the method, the results were re-computed with fast
ions susceptibility calculated numerically as described
in Section 3 for a Maxwellian distribution prescribed
on a uniform numerical mesh of Nv‖ = 100 points,
Nv⊥ = 50 points, and NN2

⊥
= 35. The mesh range is

−c/20 6 v‖ 6 c/20, 0 6 v⊥ 6 c/20, and −3 × 104 6

Absorbed fraction Reference Numerical
D 0.22 0.22

D - NBI 73.88 73.58
Electrons 25.90 26.21

Table 2. NSTX: Power flow to each species. The
Reference simulation corresponds to the original Maxwellian
case while “Numerical” simulation uses a numerically computed
susceptibility χD−NBI (Eqs. 12-14) assuming a Maxwellian
functional form of the representation of the distribution function.

N2
⊥ 6 9.5 × 104. As shown in Table 2, the power flow

channels are well converged to the reference case with
differences less than 1%. Moreover, Figure 6 shows
the real part of the three components of the wave
electric field (E−, E+, and E‖) on the midplane both
in high (left column) and low (right column) field sides.
There one can see an excellent agreement between
the “Reference” (solid (black) curve) and “Numerical”
(dashed (red) curve) cases.

As done in IC minority heating regime, other
cases with different resolutions in v‖, v⊥ and N2

⊥ (not
shown here) have been performed always obtaining an
excellent agreement between reference and numerical
cases in terms of electric field propagation, power
density profiles, and total absorbed power. These
additional tests have also shown a smooth N2

⊥

dependence of the components of χ, which allow us to
decrease NN2

⊥
mesh points significantly reducing the

computational time in evaluating the full hot plasma
χ tensor.

4.3. Anisotropic Maxwellian distributions
(bi-Maxwellian)

4.3.1. IC minority heating regime The sensitivity of
the principal absorption channel at the fundamental
hydrogen resonance to changes in the shape of the
hydrogen distribution was investigated by performing
two series of computations, assuming an anisotropic
Maxwellian form for the H distribution

fH(v‖, v⊥) = (2π)−3/2(vth,‖v
2
th,⊥)

−1 ×
× exp[−(v‖/vth,‖)

2 − (v⊥/vth,⊥)
2] (21)

with vth,‖ =
√

(2C‖T (ψ)/mH),

vth,⊥ =
√

2C⊥T (ψ)/mH), with constants C‖ and
C⊥ parameterizing the scans. The fundamental H
absorption fraction, PH varied by less than two percent
when C⊥ was varied from 0.5 to 5, with C‖ held fixed
at unity. In contrast the second series, in which C⊥ was
fixed at unity and C‖ was varied showed a significant
variation. For C‖ = {0.5, 1., 3., 5.}, the corresponding
PH = {61.27, 70.50, 90.46, 94.18}. In addition, while
the absorption profile is localized to the resonant layer
for small C‖ it is significantly broadened radially at
for large C‖. This is clearly demonstrated in Figure 7
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Figure 4. Figures (a) and (b): Real part of the right-handed wave electric field, Re(E−), both in the high field side region (Fig.
(a)) and in the low field line region (Fig. (b)) on the midplane for an Alcator C-Mod plasma described in subsection 4.1. The
solid (black) curve represents the “Reference” case while the dashed (red) curve represents the results were re-computed with the
minority H susceptibility calculated numerically. Figures (c) and (d): Real part of the left-handed wave electric field, Re(E+), both
in the high field side region (Fig. (c)) and in the low field line region (Fig. (d)). Figures (e) and (f): Real part of the parallel wave
electric field, Re(E‖), both in the high field side region (Fig. (e)) and in the low field line region (Fig. (f)).
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V/m/MW

Figure 5. Real part of the right-handed wave electric field,
Re(E−), for a NSTX plasma described in subsection 4.1.

where the absorption vs. (R,Z) is shown for C‖ = 0.5
(Fig. 7(a)), C‖ = 1.0 (Fig. 7(b)), and C‖ = 5. (Fig.
7(c)).

4.3.2. HHFW heating regime As similarly done
above, two series of computations assuming an
anisotropic Maxwellian form for the fast ions (D-NBI)
population in NSTX plasma have been performed.
The fast ion absorption fraction, PD−NBI, shows a
significant variation when C⊥ was varied from 0.5 to
5, with C‖ held fixed at unity. In particular, for
C⊥ = {0.5, 1., 3., 5.}, the corresponding PD−NBI =
{70.06, 73.56, 62.84, 48.48}. In contrast, when C⊥ was
fixed at unity and C‖ was varied, PD−NBI, varied by
less than one percent. This behavior is the opposite
with respect to what has been found in the IC minority
heating regime. However, the absorption profile tends
to be localized to the resonant layer for small C‖ as
shown in Figure 8 in agreement with the results show
in the previous subsection. In this figure the absorption
vs. (R,Z) is shown for C‖ = 0.5 (Fig. 8(a)) C‖ = 1.0
(Fig. 8(b)), and C‖ = 5. (Fig. 8(c)).

For the fast ion distributions in NSTX plasma, an
additional application has been performed assuming a
slowing down distribution function as described in the
following section.

4.4. Slowing down distributions for beam ion species
in HHFW heating regime

Another functional form of the distribution function
for the beam ion species which has been implemented

in the generalization of TORIC v.5 is a slowing-down
distribution [30]

fD−NBI(v‖, v⊥) =

{ A
v3
c

1
1+(v/vc)3

for v < vm,

0 for v > vm
(22)

where vm ≡
√

2ED−NBI/mD is the maximum velocity
corresponding to the injected energy ED−NBI of the
beam ions. Also, A = 3/[4π ln(1 + δ−3)] with δ ≡ vc

vm
,

and
v3c = 3

√
π(me/mD)Zeffv

3
th where Zeff ≡ ∑

ions Z
2
i ni/ne.

The fast ion absorption fraction, PD−NBI, shows a
significant variation when ED−NBI was varied from
30 to 120 keV, with Zeff = 2. In particular, for
ED−NBI = {30, 60, 90, 120} keV, the corresponding
PD−NBI = {77.84, 75.85, 70.97, 64.71}. This result re-
calls the behavior found in bi-Maxwellian case when
the parameter C⊥ was varied indicating that the inter-
action between fast ions and fast waves occurs mainly
in the perpendicular direction with respect to the mag-
netic field [1] . However, the absorption profile tends
to be localized to the resonant layer for small ED−NBI

as shown in Figure 9 in agreement with the results
show in the bi-Maxwellian case for both IC minority
and HHFW heating regimes (see Figures 7 and 8). In
particular, figure 9 shows the power density vs. (R,Z)
for ED−NBI = 30 keV (Fig. 9(a)), ED−NBI = 60
keV (Fig. 9(b)), ED−NBI = 90 keV (Fig. 9(c)),and
ED−NBI = 120 keV (Fig. 9(d)).

4.5. Numerical distributions

The main goal of this extension of TORIC is to
enable the code to deal with (numerical) distribution
function provided by either Monte-Carlo particle or
Fokker-Planck codes. In this section we describe
our calculations by using (i) a distribution function
obtained from the Fokker-Planck code CQL3D [3, 4]
for an Alcator C-Mod plasma and (ii) a distribution
function obtained from the Monte-Carlo particle code
NUBEAM [28, 29] for a NSTX plasma.

4.5.1. IC minority heating regime The TORIC

extension can also utilize numerical distribution
functions obtained from the Fokker-Planck code CQL3D
for IC minority heating regime. This is a crucial step
in ultimately closing the loop between RF and Fokker-
Planck solvers and the evolution of the distribution of
the H minority. Indeed, this will be shown in a future
paper where a RF quasi-linear diffusion operator will
be implemented in the TORIC code [31].

Figure 10 shows an example of distribution
function of the H minority obtained from the iteration
between the full wave code AORSA and the Fokker-
Planck code CQL3D for Alcator C-Mod plasma [32, 33].
More specifically, Figure 10(a) and (b) correspond to
the distribution functions at 0th and 4th iteration,
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Figure 6. Figures (a) and (b): Real part of the right-handed wave electric field, Re(E−), both in the high field side region (Fig.
(a)) and in the low field line region (Fig. (b)) on the midplane for a NSTX plasma described in subsection 4.1. The solid (black)
curve represents the “Reference” case while the dashed (red) curve represents the results were re-computed with the susceptibility
calculated numerically. Figures (c) and (d): Real part of the left-handed wave electric field, Re(E+), both in the high field side
region (Fig. (c)) and in the low field line region (Fig. (d)). Figures (e) and (f): Real part of the parallel wave electric field, Re(E‖),
both in the high field side region (Fig. (e)) and in the low field line region (Fig. (f)).
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(a) (b) (c)

C⊥ = 1, C‖ = 0.5 C⊥ = 1, C‖ = 1 C⊥ = 1, C‖ = 5.0

W/cm3/MW

Figure 7. Contour plots of fundamental absorption by minority hydrogen (zoomed around the resonance), represented by a bi-
Maxwellian distribution function (see Eq. 21) in an Alcator C-Mod plasma for C⊥ = 1.0 and different C‖ values (shown in the

plots). The white curve represents the last closed flux surface. Units are Watts/cm3 at 1MW incident power.

(a) (b) (c)

C⊥ = 1, C‖ = 0.5 C⊥ = 1, C‖ = 1 C⊥ = 1, C‖ = 5.0

W/cm3/MW

Figure 8. Contour plots of the absorption by beam ions (zoomed around the cyclotron resonances) represented by a bi-Maxwellian
distribution function in a NSTX plasma for C⊥ = 1.0 and different C‖ values (shown in the plots). The white curve represents the
last closed flux surface. The white arrows in Figure (a) indicates the deuterium cyclotron resonance layers (n = 7, 8, 9, and 10).
Units are Watts/cm3 at 1MW incident power.

respectively. Both distribution functions are plotted
at ρpol = 0.2. It is important to note that at 0th
iteration the distribution function is a Maxwellian
distribution (we refer to as ”Maxwellian case”) while
at the 4th iteration the RF tail is formed (see, four
energy levels (10, 250, 500, and 1000 keV) for reference)
(we refer to as ”non-Maxwellian case”). In order to
evaluate the impact of the non-Maxwellian effects in
the power deposition of the H minority, we compute
numerically χ for both the numerical distributions
shown in Figure 10 on a uniform numerical mesh of
Nv‖ = 500 points and Nv⊥ = 200 points. The mesh
range −c/100 6 v‖ 6 c/100 and 0 6 v⊥ 6 c/100.
Figure 11 shows the contour plot of the power density

of the H minority for both the Maxwellian case (Fig.
(a)) and the non-Maxwellian case (Fig. (b)). One can
note that the non-Maxwellian effects tend to broaden
the power deposition profile as clearly seen in Fig.
b. This result reflects what has been shown for a bi-
Maxwellian by varying the parallel temperature (see
Figure 7). Furthermore, Table 3 shows that the power
flow to H minority increases when the RF tail at higher
energy is formed with respect to the Maxwellian case.

4.5.2. HHFW heating regime Besides the capability
to deal with numerical distribution functions obtained
from the Fokker-Planck code CQL3D for IC minority
heating regime, the extension of TORIC is also able
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ED−NBI = 30 KeV ED−NBI = 60 KeV ED−NBI = 90 KeV ED−NBI = 120 KeV

W/cm3/MW

Figure 9. Contour plots of the absorption by beam ions represented by a slowing down distribution function (see Eq. 22) in
a NSTX plasma for different NBI injected energy ED−NBI (shown in the plots). The white curve represents the last closed flux
surface. The white arrows in Figure (a) indicates the deuterium cyclotron resonance layers (n = 7, 8, 9, and 10).
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Figure 10. Minority H distribution function from the iteration
between AORSA and CQL3D for Alcator C-Mod at ρpol = 0.2.
Figures (a) and (b) show the distribution at 0th and 4th iteration
respectively.

Absorbed fraction Maxw. non-Maxw
2nd Harmonic D 18.38 11.85
Fundamental H 58.82 72.89
Electrons - FW 12.94 9.40
Electrons - IBW 9.85 5.86

Table 3. Power flow to each species. The Maxw. case
corresponds to the numerical Maxwellian distribution from
CQL3D at step 0 while the Non-Maxw case corresponds to the
numerical non-Maxwellian distribution obtained by CQL3D at
step 4 (see Figure 10 as an example).

now to use directly the particle lists generated by
the Monte-Carlo particle code NUBEAM. This feature is
particularly important for the study of the interaction
between fast waves and energetic particles, such as fast
ions generated by NBI as in NSTX.

Here the coupling of a particle based code
(NUBEAM) with a continuum code (TORIC) is handled
by P2F [34, 35]. The P2F‡ code converts a discrete
particle list to a 4-D continuum distribution function.
The 4 dimensions are 2 cylindrical in space (R, z) and 2
cylindrical in velocity space (v⊥, v‖) with parallel being
along the local B field direction of the corresponding
spatial grid point. Conceptually P2F generates a
histogram of the input particles in it’s 4-D grid.
However, since the full-wave code takes velocity space
derivatives of the beam distribution function, that
function must be smooth enough for the derivatives
to be robust. This means that a box-function style
histogram, even at 106 particles, produces a histogram
where noise dominates the derivatives, especially at the
larger velocities. To resolve this issue P2F implements
two smoothing techniques. The first is a velocity space
Gaussian particle shape with user defined width (c.f.,
[35] for details), and the second is to distribute each
computational particle along its unperturbed guiding
center bounce orbit weighted according to time spent

‡ Available at https://github.com/ORNL-Fusion/p2f.
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(a) (b)

W/cm3/MW

Figure 11. H minority absorption profile from the TORIC solver for: (a) CQL3D Maxwellian case (initial step); (b) CQL3D non-
Maxwellian case (final step)

in each of the 4-D histogram bins. While this approach
results in robust velocity space derivatives, it will
not reveal velocity space gradients sharper than those
defined by the Gaussian particle width, i.e., we must
choose the minimum Gaussian width necessary to
ensure robustness of the velocity space derivatives for
a particular number of computational particles, and
also choose a number of computational particles in
the NUBEAM calculation to ensure insensitivity of the
resulting full-wave calculation to that number.

As done in the previous sections, to test
our implementation we first check the Maxwellian
distribution case by making use of the P2F code.
First, we have artificially generated a particle list
representing a Maxwellian distribution in a NSTX
plasma geometry with analytical temperature and
density profiles given by analytical kinetic profiles for
electron and fast ion population. More specifically, the
parameters were:

ne(ρpol = 0) = 2.5× 1013cm−3 (23)

ne(ρpol = 1) = 2.5× 1012cm−3 (24)

Te(ρpol = 0) = 1keV; Te(ρpol = 1) = 0.1keV (25)

nFI(ρpol = 0) = 2.0× 1012cm−3 (26)

nFI(ρpol = 1) = 2.0× 1011cm−3; (27)

and for the fast ion temperatures employed are given
by

TFI(ρpol) = (TFI,0 − TFI,1)
(

1− ρ2pol
)5

+ TFI,1 (28)

with

TFI,0 ≡ TFI(ρpol = 1) = 20keV; (29)

TFI,1 ≡ TFI(ρpol = 1) = 5keV (30)

Second, we have run P2F by using the Maxwellian
particles list to obtain a continuum distribution

function. Third, we have numerically evaluated χ and
we have run TORIC. Finally, we have compared the
results with the reference case. Figure 12 shows indeed
the results of this comparison. In particular, in Figure
12 the black curve indicates the reference case. In
addition, there are other four cases which are obtained
assuming a particles list with 2 × 103 (red curve), 104

(green), 105 (magenta curve), and 106 (cyan curve)
particles. The numerical case converges to excellent
agreement with the reference case as the number of
particles is increased. It is also important to note two
points: (i) the total power to the fast ions among the
three cases with 104, 105, and 106 number of particles
differs by less than 1%; (ii) with 104 particles a good
converge is already achieved. This is an important
point for the future application in time dependent
modeling frameworks, such as TRANSP simulations.

Finally, Figure 13 shows the fast ion distribution
function at R = 1 m and z = 0 m obtained from the
P2F code starting from a NUBEAM particles list for a
NSTX shot 141711 at time = 0.47 s without HHFW.
The number of particles used for this case in NUBEAM

are 53115. For reference, the 90 keV beam injection
energy is represented by the white curve while the half
(45 keV) and third energy (30 keV) components are
represented by red and magenta curves, respectively.
As done for the minority heating regimes, Figure 14
shows the comparison of the equivalent Maxwellian
distribution and the realistic distribution starting from
NUBEAM, in terms of the 2D fast ion power density.
For equivalent Maxwellian distribution we mean that
we use an effective temperature of the beam ions
temperature (Tbi) given by Eq. 20. From figure 14,
one can only see a slight change (a slight broadening)
in the profile when the realistic distribution is adopted.
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Figure 12. RF power deposition on fast ions from TORIC using
P2F distributions as a function of ρpol. Black curve represents the
reference case whereas the color curves indicate different particle
number adopted in the calculations as shown in the legend.

However, there is a variation in power flow to the
different species, as shown in Table 4. As expected, a
larger power flow to fast ions is found when a realistic
distribution is considered with respect to the equivalent
Maxwellian case. It is worth noting that the relatively
small differences in the power flow to fast ions between
equivalent Maxwellian and the realistic case shown
in Table 4, are due to the fact that the distribution
function in the case considered here is not affected
by RF therefore the distribution function does not
have a large RF tail to higher energies. In fact, as
shown in the bi-Maxwellian case, for a large variation
of the perpendicular temperature/energy the power
flow has varied significantly. The consideration of a
realistic distribution obtained starting from NUBEAM

and affected by RF, will be part of a future work
which requires the study of a quasi-linear RF diffusion
operator (also called RF kick operator) in NUBEAM.
In this scenario, we might expect a larger amount of
power deposited to the fast ions population due to
a larger distribution function tail formed by the RF
application. This could have a strong impact in the
recent NSTX experimental observations where HHFW
was able to fully suppress Alfvén activities, such as
Toroial Alfvén Eigenmodes (TAEs) and Global Alfvén
Eigenmodes (GAEs) [36].

5. Conclusions

The ICRF wave simulation code TORIC has been
generalized to allow prescription of arbitrary particle
distribution functions of the form f(v‖, v⊥, θ, ψ) in
the computation of the plasma susceptibility in both
the minority and HHFW heating regimes. The
algorithm was validated by recovering results for RF
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Figure 13. Fast ion distribution function at R = 1 m and z = 0
m obtained from the P2F code starting from a NUBEAM particles
list for a NSTX plasma without HHFW (shot 141711 at time =
0.47 s).

Absorbed fraction Maxw. Non-Maxw
D 41.80 37.99

D-NBI 53.94 58.12
Electrons 4.26 3.89

Table 4. Power flow to each species. The Maxw. case
corresponds to an equivalent Maxwellian temperature for the
fast ions population (cf. Eq. 20) while the Non-Maxw
case corresponds to the numerical non-Maxwellian distribution
obtained by P2F starting from a NUBEAM particles list.

heating in Alcator C-MOD and NSTX obtained by
computing χ using analytic approximations to the
plasma dispersion function for the case when all species
are Maxwellian. The application of bi-Maxwellian
distribution function shows a different behavior in the
total absorbed power between the most common IC
minority and HHFW heating regimes. In particular,
for IC minority heating regime, the total absorbed
power at the H fundamental is insensitive to variations
in the perpendicular temperature (T⊥), but varies
with changes in parallel temperature (T‖), whereas
for HHFW regime, the behavior is reversed, namely,
the total absorbed power by fast ions is insensitive
to variations in T‖, thus reflecting the well-known
Doppler broadening effect of parallel temperature on
the absorption profile. However, for both heating
regimes, the power density profiles vary with changes
in T‖. Similar results have been found and shown
for HHFW heating regime assuming a slowing-down
distribution function. The impact of the non-
Maxwellian effects with respect to the Maxwellian
case has been evaluated in both IC minority heating
regime by using a distribution function obtained from a
Fokker-Planck code CQL3D and HHFW heating regime
by using a distribution function obtained from the
Monte-Carlo particle code NUBEAM. Both cases indicate
that the use of a realistic distribution functions tends
to increase the power flow to the H for the minority
heating and to the fast ions for the HHFW heating
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Figure 14. Fast ion absorption profile for:(a) equivalent Maxwellian case; (b) NUBEAM non-Maxwellian case

regime.
This work represents a first step towards closing

the loop between the extension of TORIC in a self-
consistent way and the CQL3D code for the IC minority
heating regime as used, for instance, in Alcator C-
MOD experiments and the NUBEAM code for HHFW
heating regime as used in NSTX-U experiment. This
work is done with the aim to be able to make time
dependent simulations in TRANSP in a self-consistent
way. Work on the quasilinear diffusion coefficients for
the finite Larmor radius (FLR) approximation (valid
for the IC minority regimes) and on the RF kick-
operator in NUBEAM are in progress and the results will
be presented in a future paper.
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