Authors:  C. Swanson, I.D. Kaganovich 
    
Abstract:  Complex  structures on a material
      surface can significantly reduce total  secondary electron
      emission from that surface.  A velvet is a surface that
      consists of an array  of vertically  standing
      whiskers.   The  reduction occurs  due to the
      capture of low-energy, true  secondary electrons
      emitted  at  the  bottom of the  structure
      and  on the  sides of the velvet whiskers.  
      We performed  numerical  simulations  and 
      developed  an  approximate analytical model that
      calculates  the net secondary  electron  emission
      yield from a velvet surface as a function  of the 
      velvet whisker length  and packing density,  and the
      angle of incidence of primary  electrons.  We found that
      to suppress  secondary electrons,  the  following
      condition  on  dimensionless parameters must be met:
      (π/2)DA tan θ>>1, where  θ is the  angle of
      incidence  of the  primary  electron  from the
      normal,  D is the fraction  of surface area taken 
      up by the velvet whisker bases, and A is the aspect 
      ratio,  A ≡ h/r, the  ratio  of height  to
      radius  of the  velvet  whiskers.  We find
      that velvets available today can reduce the secondary
      electron  yield  by 90% from  the  value 
      of a flat  surface. The values of optimal velvet whisker
      packing density that maximally  suppresses 
      secondary  electron  emission  yield are 
      determined as a function  of velvet  aspect 
      ratio  and electron  angle of incidence.
      
    
Submitted to: Journal of Applied Physics
      _________________________________________________________________________________________________
      
    
 Download PPPL-5333 820
      KB (pdf  12 pp) 
      _________________________________________________________________________________________________