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Even diffraction aside, the well-known equations of geometrical optics (GO) are not entirely ac-
curate. Traditional GO treats wave rays as classical particles, which are completely described by
their coordinates and momenta, but rays have another degree of freedom, namely, polarization. The
polarization degree of freedom manifests itself as an effective (classical) spin that can be assigned to
rays and can affect the wave dynamics accordingly. A well-known example of associated effects is
wave-mode conversion, which can be interpreted as spin precession. However, there are also other,
less-known manifestations of the wave spin, such as polarization-driven bending of ray trajectories.
This work presents an extension and reformulation of GO as a first-principle Lagrangian theory,
whose effective-gauge Hamiltonian governs all the aforementioned polarization phenomena simul-
taneously. As an example, the theory is applied to describe the polarization-driven divergence of
right-hand and left-hand circularly polarized electromagnetic waves in weakly magnetized plasma.

I. INTRODUCTION
A. Motivation

Geometrical optics (GO) is a reduced model of wave
dynamics 1, 2] that is widely used in many contexts rang-
ing from quantum dynamics to electromagnetic (EM),
acoustic, and gravitational phenomena [3-5]. Mathemat-
ically, GO is an asymptotic theory with respect to a small
parameter e that is a ratio of the wave relevant charac-
teristic period (temporal or spatial) to the inhomogeneity
scale of the underlying medium. Practical applications of
GO are traditionally restricted to the lowest-order the-
ory, where each wave is basically approximated with a
local eigenmode of the underlying medium at each given
spacetime location. Then, the wave dynamics is entirely
determined by a single branch of the local dispersion re-
lation. However, this approximation is not entirely accu-
rate, even when diffraction is neglected. If a dispersion
relation has more than one branch, i.e., a vector wave
with more than one polarization at a given location, then
the interaction between these branches can give rise to
important polarization effects that are missed in the tra-
ditional lowest-order GO.

One of the particularly interesting manifestations of
polarization effects is the polarization-driven bending of
ray trajectories. At the present moment, it is known
primarily in two contexts. One is quantum mechanics,
where polarization effects manifest as the Berry phase
[6] and the associated Stern-Gerlach force experienced by
vector particles, i.e., quantum particles with spin. An-
other one is optics, where a related effect has been known
as the Hall effect of light [7-11]. (Namely, even in an
isotropic dielectric, rays propagate somewhat differently
depending on polarization if the dielectric is inhomoge-
neous [12].) But the same effect can also be anticipated
for waves in plasmas, e.g., radiofrequency (RF) waves
in tokamaks. In fact, since ¢ for RF waves in labora-
tory plasma is typically larger than that for quantum

and optical waves, the polarization-driven bending of ray
trajectories in this case can be more important and per-
haps should be taken into account in practical ray-tracing
simulations. But ad hoc theories of polarization effects
available from optics are inapplicable to plasma waves,
which have much more complicated dispersion and thus
require more fundamental approaches. Thus, a new gen-
eral theory is needed that would allow to calculate the
polarization-bending of ray trajectories for plasma waves.

Previously, relevant work was done in Refs. [13, 14],
where a systematic procedure was proposed to asymptot-
ically diagonalize the wave dispersion operator for general
vector waves. Here polarization effects emerge as O(e)
corrections to the GO dispersion relation. However, the
analysis in Refs. [13, 14] is limited to adiabatic dynamics,
i.e., mode conversion (linear exchange of quanta between
different branches of the local dispersion relation) is ex-
cluded. Mode conversion was extensively studied sepa-
rately, e.g., in Refs. [15-20]. However, these works con-
sidered wave modes that are resonant in small, localized
regions of the wave phase space. Hence, the nonadia-
batic dynamics was formulated as an asymptotic scatter-
ing problem between two wave modes, so no polarization-
driven bending of ray trajectories was included.

The first general theory that captures the polarization-
driven bending of ray trajectories and mode conversion
simultaneously was proposed in Ref. [21]. The theory was
successfully benchmarked against simpler ad hoc theories
of the Hall effect of light [22]. However, the theory in
Ref. [21] is still limited since it requires that the wave
equation be brought to a certain (multisymplectic) form
resembling the Dirac equation. Albeit any nondissipa-
tive vector wave allows for such representation [21, 23],
casting the wave dynamics into the specific framework
in Ref. [21] can be complicated. Thus, practical applica-
tions require a more flexible formulation that do not rely
on this specific framework.

Here we propose such a theory. In addition to gen-
eralizing the results of Ref. [21], we also introduce, in a
unified context and an instructive manner (hopefully),



B. Extended wave function

As shown in Refs. [21, 23], reduced models of wave
propagation are convenient to develop when the action is
of the symplectic form; namely,

Ssymplectic = <\I’|(ﬁ0HN - J:C)lll’) ’ (6)

where pg = i0; (in the z-representation) and “the wave
Hamiltonian” # = H(&, p) is some Hermitian operator
that is local in time, i.e., commutes with £. (For extended
discussions, see Refs. [23, 31].

In order to cast the general action (4) into the sym-
plectic form (6), let us perform the so-called Feynman
reparameterization [32, 33] that lifts the wave dynamics
governed by Eq. (4) from R* to R5. Specifically, we let
the wave field depend on spacetime and on some param-
eter 7 so that ¥(7,z) = (z|¥(r,z)). Then, we consider
the following “extended” action:

Sx = /dr L, (7)

where L = L, + Lp,
L. = —(i/2) ((¥]0,0) - c.c.), (82)
Lp = (U|D|w), (8b)

and 0, ¥(7,z) = (2|9, ¥). The ELE corresponding to the
action Sx is given by

0, |[T) = D|T). 9)

Note that D acts as a Hamiltonian operator in the ex-
tended variable space. Hence, the dynamics of the orig-
inal system (5) can be considered as a special case of
the dynamics governed by Eq. (9) that corresponds to
a steady state with respect to the parameter 7; i.e.,
0;¥ = 0. The advantage of the representation (7) is that
the system action has the manifestly symplectic form, so
we can proceed as follows.

IV. EIGENMODE REPRESENTATION
A. Variable transformation

. We introduce a unitary 7-independent transformation
J that maps |¥) to some N-dimensional abstract vector
|1) yet to be defined:

¥) = T(9). (10)

Inserting Eq. (10) into Eqs. (8) leads to
L= —(1‘/2) ( (1/_)|6T1|[_)) —-C C') ) (lla')
Lp = (| Desilih) , (11b)

where @eﬂ‘ = JtDT. In what follows, we seek to con-
struct T such that the operator Deg is simplified in a
manner specified below.

B. Weyl representation

Let us consider Eq. (11b) in the Weyl representation.
(Readers who are not familiar with the Weyl calculus
are encouraged to read Appendix A before continuing
further.) In this representation, Lp is written as [28]

Lp = Tr/d4a:d4pDeff($,p)W(T,$,P), (12)

where “Ir’ represents the matrix trace. The Wigner ten-
sor W(r,x,p) corresponding to [1) is defined as

d*s . 8 = = s
(23 e {w + gl*fr’m} {(Yn]e — 5) ;
(13)
and Deg(z, p) is the Weyl symbol [Eq. (Al)] correspond-
ing to the operator Deir. It can be written explicitly as

W™ (7,2,p) = /

Doz, p) = [Tf](;r,-p) * D(x,p)*T(x,p), (14)

where ‘#* is the Moyal product [Eq. (A6)] and D(x,p),
T(x,p), and [T1)(x,p) are the Weyl symbols correspond-
ing to D, T, and T, respectively. Also, the Weyl repre-
sentation of the unitary condition, 71T = Iy, is

[TH(z,p) * T(x,p) =g, (15)

which will be used below.

C. Eigenmode representation

Let us assume that the symbols Deg and T can be
expanded in powers of the GO parameter

1 1
= — T 1, 1
€ max{wt'|k|€}<< (16)

where w and |k| are understood as the wave frequency
and wave number, respectively. Also, t and ¢ are the
characteristic time and length scales of the background
medium, correspondingly. Hence, we write

Degt(z,p) = A(z,p) + eU(z,p) + O(€?),
T(:B’p) = TO(Q:’p) + €T1(1137P) + 0(62),

(17a)
(17b)
where (A, U, Ty, Ty) are N x N matrices of order unity.

To the lowest-order in ¢, the Moyal products in
Egs. (14) and (15) reduce to ordinary products, so

A(z,p) = [Td](z,p) D(z, p)To(, p), (18)

By properties of the Weyl transformation, the fact that D
is a Hermitian operator ensures that D(z,p) is a Hermi-
tian matrix. Hence, D(z, p) has N orthonormal eigenvec-
tors e4(x, p), which correspond to some real eigenvalues



will be dropped, and we adopt

—(i/2) / dz [$1(@,9) — (Bv)e]

Lp=T / dia dip [A + U]} [W]).

(29a)
(29Db)

Here 1 is a complex-valued function with N components,

and [[W]] is the N x N Wigner tensor with elements
1™ 2,0) = [ 02 e (o 1 Zjym) (o — 2
n\THhT,P) = {2??)4 € 2 n 9/

(30)

Since we consider the coupled dynamics of some N res-

onant modes, only N columns of T, actually contribute

to [[Deg]]. For clarity, let us denote the resonant eigen-

modes as e, with indices ¢ = 1,...,N. Then, in order

to calculate [[U]], one can use Eq. (25). After block-
diagonalizing U and introducing the N x N matrix

one obtains

N =+ {:3,:0}A+ A{:I),:o}+ A E)y

+ 5 {HO’A}HO - 5 HO"—'O}D’ (32)

which is a N x N Hermitian matrix.
Furthermore, it is convenient to split {[Deg]] as follows:

[[Degr]] = My + eld, (33)

where A = N™1Tr [[Deg]] is the average eigenvalue of the
block and U = [[Deg]] — ALy is the remaining traceless
part of [[Deg]].

In the special case when all A9 within the block
are identical and [[U]] is traceless, then A = Ay, and

U = [[U]]. We call such modes degenerate. Then, the
E(,p) = [e1(2, D), -, en (2, )], (31)  expression (32) for [[U]] simplifies, and one obtains
|
U(s,p) = HELEM + TMELE) + LS + L (2 M= - {255
el PR S PV RS - PR =7
- [E'AE) - hee] o [(6,,5 )(D — NIn)(3:E) — h.c]
B+ (BN - @3, (34)

where we used the bracket introduced in Eq. (24) and the subscript ‘A’ denotes “anti-Hermitian part;” i.e., for any

matrix M, then My = (M —

Uz = (-

Examples of degenerate systems where these simplified
formulas are applicable include spin-1/2 particles [21, 24]
and EM waves propagating in isotropic dielectrics [22].

B. Parameterization of the action

In order to derive the corresponding ELEs, let us adopt
the following parameterization:

"/"(Ta :E) =

Here 0(7,x) is a real variable that serves as the rapid
phase common for all N modes (remember that all modes
within the block of interest are approximately resonant
to each other). Also, Z(r,z) is a real function, and
z(r,z) is a N-dimensional complex unit vector (272 = 1),

I(r,z) 2(7, z) 907, (36)

Y (g OE) |, (On
Opu) \~ 0z+ /) , Oz

M) /(2i). The expression in Eq. (34) can also be written more explicitly as

=]
=t = '()'; o=
) ( (3]),,) + [0})“ (D - N)B n (35)

whose components describe the amount of quanta in
the corresponding modes. (Since we parameterize the
N-dimensional complex vector 1 by the N-dimensional
complex vector z plus two independent real functions 6
and Z, not all components of z are truly independent.
For an extended discussion, see Ref. [21].)

After substituting the ansatz (36) into Eq. (29a), the
Lagrangian L; is given by

L= / d*z T [0:60 — (ie/2)(z'0,z —c.c)] . (37)

(Here we formally introduce € to denote that z is a slowly-
varying quantity; however, this ordering parameter will
be removed later.) Now, we calculate the Wigner tensor
(30). Substituting Eq. (36) into Eq. (30), we obtain



dispersion relation. For an in-depth discussion of these
equations, see, e.g., Refs. [1, 4].

B. Point-particle model

The ray equations corresponding to the above field
equations can be obtained as the point-particle limit. In
this limit, Z can be approximated with a delta function

I(r,z) = Iod*(z — X(1)). (46)

Here Zy denotes the total action, which is conserved ac-
cording to Eq. (45a). The value of 7, is not essential
below so we adopt Zp = 1 for brevity.

In this representation, the wave packet is located at
the position X#(7) in space-time, and the independent
parameter is 7. [This means that at a given 7, the wave
packet, is located at the spatial point X(7) at time ¢(1).]
When inserting Eq. (46) into Eq. (43), the first term in
the action gives the following:

/ drd*z7 8.0
= / drd*z 6*(z — X (7)) 8,6(r, z)
=— / dr d*z 0(7, z)[0, 6 (& — X (7))]
= / dr d*z 0(r, z)[X*(1)8,0%(z — X (7))]
== f dr d*z 8,6(r, z) X* ()8 (z — X (1))
- / dr Py(r)X4(r), (47)
where PM(T).i —0,0(T, X (7)). Similarly,
/ dia 64 (@ — X(r))A(z, ~06) = (X (r), P(r). (48)
Th.us, the point-particle action is expressed as
Sao = / ar [P(r)- X +AX.P)]. (49)
This is a covariant action, where X*(r) and P,(r)
serve as canonical coordinates and canonical momenta,

respectively. Treating X and P as independent variables
leads to ELEs matching Hamilton’s covariant equations

dXH ()

6PH H dr = _B_Pu" (50&)
dP, OA

SXxH. K- .
dr ~ ox» (500)

These are the commonly known ray equations; for in-
stance, see Ref. [1]. They can also be written as

dx°  ax dX )
dr T Ry dr ~ 9P’
dP° 9 dP oA
dr ~ 9x0’ dr X’

7

Note that the first term in the integrand in Eq. (50)
represents the symplectic part of the canonical phase-
space Lagrangian, and the second term represents the
Hamiltonian part. Since the Hamiltonian part A\(X, P)
does not depend explicitly on 7, then dA(X, P)/dT = 0
along the ray trajectories. Thus, the ray dynamics lies
on the dispersion manifold defined by

AX,P) =0, (51)

VII. EXTENDED GEOMETRICAL OPTICS

In this section, we explore the polarization effects de-
termined by the O(¢)-accurate Lagrangian (42). For the
sake of conciseness, we only discuss the point-particle
ray dynamics. For an overview of the continuous-wave
model, see Ref. [21].

A. Point-particle model

The ray equations with polarization effects included
can be obtained as a point-particle limit of the La-
grangian (42). As in Sec. VI B, we approximate the wave
packet to a single point in spacetime [Eq. (46)]. As in
Refs. [21, 25], the Lagrangian (42) can be replaced by a
point-particle Lagrangian so the action is

Sxqo :/dT [P X —(i/2)(21Z - 21 2)
+XMX,P)+ ZIU(X,P)Z |, (52)

where Z(7) = z(7, X (7)) and we dropped the GO order-
ing parameter e. In the complex representation, Z and
Z1 are canonical conjugate, and

ZNT)Z(T) =1. (53)

Even though the components of Z are not independent by
definition (Sec. VB), it can be shown [21] that treating
them as independent in this point-particle model leads to
correct results provided that the initial conditions satisfy
Eq. (53). Hence, the independent variables in Sxgo are
(X,P,Z,2Z%), and the corresponding ELEs are

6P, : dji“ = —% — ZT%Z, (54a)
SXH % = 3% + ZT%Z, (54b)
VAR % = —ilZ, (54c)

67 : ‘{TZ: =iZlu. (54d)

‘Together with Egs. (31)-(33), Eqs. (54) form a complete
set of equations. The first terms on the right-hand side



Let us write Eqgs. (62) using the abstract Hilbert space
notation. Let |v) be a state vector representing the veloc-
ity field such that v(z) = (z|v). Likewise, we introduce
|E) and |B) as the state vectors of E(z) and B(z), re-

spectively. Then, Egs. (62) can be written as follows:
po|V) = iy [B) — (- ) |9), (63a)

Po |E) = —id, |9) +w( ‘p)|B), (63b)

o |B) = —ic(a - p) |E), (63c)

where @, = wy(X) and @ = Q(X). (As a reminder,
po =10, and p = —iV are the components of the four-

momentum operator in the z-representation.) Also, o =
(o', a%,a3) are 3 x 3 Hermitian matrices [39]

000

a' =100 —i), (64a)
0i 0
0 0 4

a’=(0 00], (64b)
—i 00
0 — 0

=i 00 (64c)
000

These matrices serve as generators for the vector product.
Namely, for any two column vectors A and B, one has

(a- A)B = iA x B,
ATo’B = —i(A x BY,

(652)
(65b)

where the superscript ‘I denotes the matrix transpose.

The next step is to construct a dispersion operator for
the electric field state |E). Starting from Eq. (63a), we
solve for the velocity field in terms of the electric field.
Hence, we formally obtain the following:

[9) =iy (ols + & - )" [E)

! -Q - Q)2

L L

Do py— Po(pg — $2%)
where Q@ = |Q(%)]. Similarly, we obtain
B) = —ic(a- p)pg ' |E) from Eq. (63c). Substitut-

ing these results into Eq. (63b), we obtain
DIE) =0, (67)

where
. &2pola- Q) @0 (ax- Q)2

D = —pa+ R e P (68
pO ( ) P s Q2 [}('i - Q"' ( )
serves as the dispersion operator for |E). (For conve-

nience, we let ¢ = 1.) Since wp(x) and §2(x) are indepen-
dent of time, then po commutes with @, and €, so D is
manifestly Hermitian.

Thus, the corresponding action (4) is for the electric
field is S = (E|D|E), and the extended action (7) is

sxﬁfdf [—-( E|6,E) —c.c) + (E[DIE)| . (69)

Note that E is a three-dimensional vector field, so N = 3.

B. EM waves in weakly magnetized plasma

We now follow the procedure given in Secs. IV and V
to block—diggonalize the dispersion operator. The Weyl
symbol of D is

wipo(a- ) wi(a-Q)?

— 02 pZ— Q2

For the sake of simplicity, we consider the case of a wave
propagating in a weakly magnetized plasma. (The gen-
eral case will be described in a separate paper.) Thus,
supposing that the typical wave frequency is much larger
than the gyrofrequency (w ~ py > ), we expand the
dispersion symbol (70) in powers of Q/pq:

D = —pj+(cp)*+wy— .+ (70)

D ~ Dy + D) + O(Q2/p?), (71)

where
Do(x,p) = —ph + (@-p)* +wj(x),  (72a)
Di(x,po) = —wi(x)(a - 2)/po. (72b)

To simplify the following calculation, we assume that
Dy ~ O(Q/py) is comparable in magnitude to the GO
parameter ¢, but this is not essential. Hence, we will
consider D1 as a perturbation only.

Following Sec. IV C, the next step is to identify the
eigenvalues and eigenmodes of the dispersion symbol
Dy(x,p). The corresponding eigenvalues are

AN (x,p) = —p-p+wi(x), (73a)
A®(x,p) = —p-p+wi(x), (73b)
2@ (x,p0) = —p3 + wg(x), (73c)

where p - p = p2 — p2. These eigenvalues correspond to
the dispersion relations of two transverse EM waves and
of longitudinal Langmuir oscillations, respectively. The
matrix Tp defined in Eq. (20) is given by

To(p) = [e1(p), e2(P), ep(P)], (74)
where €;(p) and es(p) are any two orthonormal vectors
in the plane normal to ep(p) = p/|p|. A right-hand
convention is adopted such that e; x e; =e,. One can
easily verify that these vectors are indeed eigenvectors of
Dy(x, p). For example,

Dyey = [-p§ + (a - p)(a - p) +w§] e
= (-ph+w))er—px (pxe)
= (—p + P’ +wi) e
=\De, (75)
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FIG. 1: Comparison between ray trajectories calculated using the equations of traditional GO [Egs. (101), dashed line] and
extended GO [Eqgs. (96)]. The blue and red lines represent the ray trajectories for the right-hand and left-hand polarized rays,
respectively. For simplicity, nonmanetized plasma is considered, so the Faraday effect is absent. The plasma frequency is given

by wﬁ(x) = y* + z%. The initial location of the ray trajectories is Xy = (0, 1,0), and the initial momentum is Py

(5,0,1).

(The units are arbitrary, since the figure is a peneral illustration only.) Tor this simulation, the GO parameter is roughly
€ ~ 1/ |Pg| ~ 0.2. Due to the radial gradient in the plasma frequency, the wave rays follow helical trajectories along the z axis.

where ¢, is another Pauli matrix,

(10
oz =19 _1)"

Here Iy (7) represent the wave quanta belonging to the
right-hand and left-hand circularly polarized modes, re-
spectively (as defined from the point of view of the
source). Also, I' is normalized such that Tt (7)I'(7) = 1.

Treating X (), P(7), I'(7), and I''(7) as independent
variables, we obtain the following ELEs:

(90)

dx* oL
0P, : =2PH . —
Wi = 2Pt - Pﬂfazf, (91a)
dP, dw?!  ax
SXH . B - Lo
dr — oxr Toxutosl  (O1b)
r
Tt j—T = —i%0,T, (91c)
drt

Together with Eq. (85), Eqs. (91) form a complete set
of equations. The first terms on the right-hand side of
Egs. (91a) and (91b) describe the ray dynamics in the
GO limit. The second terms describe the coupling of the
mode polarization and the ray curvature.

D. Restating the Faraday effect

To better understand the polarization equations, let us
rewrite Eq. (91c) as an equation in the basis of linearly
polarized modes:

Z = QI = —i%Qo,T = —i%(Qo,Q™1)Z = —iX0,Z.

(92)

[This equation could also be obtained if the ray equations
were derived directly from the action (84).] Since T is a
scalar and oy is constant, this can be readily integrated,
yielding [40]

Z(7) = exp(=iO©0y) Zy = (I cos © — io, sin ©)Zy, (93)

where O(7) = [ dr’ 2(X ('), P(")) is the polarization
precession angle and Zy = Z(7 = 0). This result can be
also be expressed explicitly as follows:

)7

It is seen that the polarization of the EM field rotates at
the rate ¥X(t) in the reference frame defined by the basis
vectors (ej,ez). The first term in Eq. (85) is identified
as the rate of change of the wave Berry phase [6, 7).
(In optics, the rotation of the polarization plane caused
by the Berry phase is also known as the Rytov rotation
[41, 42].) The second term in Eq. (85) is identified as the
rate of change due to Faraday rotation.

cos©® —sin®
sin® cos©

20 = ( (94)

E. Dynamics of pure states

If a ray corresponds to a strictly circular polarization
such that o,I" = +T", the action (89) can be simplified to
Sxgo = [ d7 L4, where the Lagrangian is given by

Li=P-X—P.P+wiX)+ (X, P). (95)

Here the Lagrangian L governs the propagation of right-
hand and left-hand polarization modes, respectively. The



Hence, with the use of the noncanonical coordinates
(z,p), the equations of motion no longer depend on the
specific choice of F(p); i.e., they are invariant with re-
spect to the choice (80) of vectors e; and e;. Note
that the same equations could be obtained directly from
the point-particle limit of Eq. (76), if one substitutes
—VA = p. For an extended discussion of pure states
governed by noncanonical Lagrangians, see Ref. [13].

IX. CONCLUSIONS

Even diffraction aside, the well-known equations of ge-
ometrical optics (GO) are not entirely accurate. Tradi-
tional GO treats wave rays as classical particles, which
are completely described by their coordinates and mo-
menta, but rays have another degree of freedom, namely,
polarization. The polarization degree of freedom man-
ifests itself as an effective (classical) spin that can be
assigned to rays and affects the wave dynamics accord-
ingly. The goal of this paper is to propose a general first-
principle variational formulation that would capture all
such effects simultaneously.

We consider general linear nondissipative waves deter-
mined by some dispersion operator D. Using the Feyn-
man reparameterization and Weyl calculus, we obtain a
reduced Lagrangian for such waves. In contrast with the
traditional GO Lagrangian, which has accuracy O(e®) in
the GO parameter €, our Lagrangian is O(e)-accurate,
so it captures polarization effects, including both mode
conversion and polarization-driven bending of ray tra-
jectories. This effect has been known as the spin-orbital
coupling in quantum physics and as the Hall effect of
light in optics. Our theory extends its applicability to
media with more complicated dispersion, such as plas-
mas. As an example, we apply the formulation to study
the polarization-driven divergence of RF waves propagat-
ing in weakly magnetized plasma. The case of strongly
magnetized plasma will be discussed in a separate paper.

Importantly, RF waves in laboratory plasmas can have
¢ much larger than quantum matter waves or optical
waves. Thus, it stands to reason that polarization ef-
fects may be particularly significant in plasma physics.
Assessing them quantitatively for plasmas of practical
interest will be done in separate publications. Likewise,
the method of including dissipation [26] in the above the-
ory will also be described separately.
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Contract No. DE-AC02-09CH11466, by the NNSA
SSAA Program through DOE Research Grant No. DE-
NA0002948, and by the U.S. DOD NDSEG Fellowship
through Contract No. 32-CFR-168a.

Appendix A: The Weyl transform

This appendix summarizes our conventions for the
Weyl transform. (For more information, see the excellent
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reviews in Refs. [1, 43-45].) The Weyl symbol A(z,p) of
any given operator A is defined as

Az, p) = / dlse® (x4 s/2Ale—s/2), (A1)

where -8 = posg—p-s and the integrals span over B, We
shall refer to this description of the operators as a phase-
space representation since the symbaols (A1) are functions
of the eight-dimensional phase space. Conversely, the
inverse Weyl transformation is given by

4
A= f e pd 2 e A, p) v — 8/2) (& + s/2| .

(A2)
Hence, A(x,2') = (x|A|z') can be expressed as
‘ fl4?? ip(x'—x) z+a'
Az, z’) = @n) e A 5P ) (A3)

In the following, we outline a number of useful prop-
erties of the Weyl transform.

e For any operator A, the trace Tr[A] = = [d*z (z]Alz)
can be expressed as
a dtzdlp
= [ ——FA . Ad
Toid) = [ ot Ao (A9)

o If A(x,p) is the Weyl symbol of fl, then Af(z,p) is the

Weyl symbol of At. Asa corollary, the Weyl symbol
of a Hermitian operator is real.

e For any €= fl@, the corresponding Weyl symbols sat-
isfy [46, 47]

C(z,p) = A(z, p) » B(z,p). (A5)

Here ‘+’ refers to the Moyal product, which is given by

A(z,p) * B(z,p) = A(z,p)e’“/*B(z,p),  (A6)
and £ is the Janus operator
(8,853 =1{} (A7)

The arrows indicate the direction in which the deriva-
tives act, and ALB = {4, B} is the canonical Poisson
bracket in the eight-dimensional phase space, namely,

— < —
;.09 93 9 9 5 3
T opY9z® 9zl opo )

Provided that ACB is small, one can use the following
asymptotic expansion of the Moyal product:

AxB~AB+ {4 B} (A9)
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