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Abstract. An often-neglected portion of the radial E × B drift is shown to
drive an outward flux of co-current momentum when free energy is transferred
from the electrostatic potential to ion parallel flows. This symmetry breaking
is fully nonlinear, not quasilinear, necessitated simply by free-energy balance in
parameter regimes for which significant energy is dissipated via ion parallel flows.
The resulting rotation peaking has a scaling and order of magnitude that are
comparable with experimental observations. The residual stress becomes inactive
when frequencies are much higher than the ion transit frequency, which may
explain the observed relation of density and counter-current rotation peaking in
the core.
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1. Introduction

Axisymmetric laboratory plasmas routinely exhibit
nonzero, sheared toroidal rotation in the absence of
applied torque [1], beneficial for fusion since toroidal
rotation suppresses resistive wall modes [2]. This so-
called intrinsic rotation may play an important role
in determining the performance of ITER and of any
future burning plasma device, since these devices will
be able to apply only comparatively weak external
torque [3].

The toroidal rotation profiles of tokamak dis-
charges without applied torque typically display three
distinct radial regions [4, 5, 6, 7, 8, 9, 10]. The steep-
gradient edge region, from the pedestal top and out-
wards in H-mode, usually rotates in the co-current di-
rection due to the interaction of ion orbit shifts and
spatial variation of the turbulent fluctuation amplitude
[10, 11, 12, 13]. Rotation in the mid-radius “gradient”
region, extending from the sawtooth inversion radius
out to the pedestal top, is often more counter-current
at its inner radial edge than its outer edge (“counter-
current peaking”), but may also exhibit a flat rotation
profile (“rotation reversal”), and can switch rapidly be-
tween these two states as plasma parameters (such as
plasma current Ip or density) cross threshold values
[6, 8, 14, 15]. The innermost (“sawtoothing”) region,
inside the q = 1 surface, has a rotation profile that is
strongly affected by sawtooth crashes, typically flat or
weakly co-current peaked. The present work focuses
on the enigmatic behavior in the mid-radius gradient
region.

Intrinsic rotation in the mid-radius region has
already been extensively studied, both experimentally
and theoretically [1, 16]. Nonaxisymmetric equilibrium
magnetic geometry can strongly affect rotation [17].
For an axisymmetric geometry, as we assume for the
entirety of this article, toroidal angular momentum
conservation [18, 19] implies that peaking without
applied torque must follow from a nondiffusive
momentum flux. Since neoclassical (collisional)
momentum fluxes are much too small to explain
experimental observations [1, 20], we will focus on
turbulent momentum flux. Although theoretical
mechanisms for momentum pinches (momentum flux
terms proportional to the rotation itself rather than
its radial gradient) have been identified [21, 22], they
cannot explain the common observation of peaked
rotation profiles passing through zero rotation [4, 5,

6, 7, 8, 9, 10]. Accordingly, most present models focus
on residual stress (momentum flux terms independent
of both the rotation and the rotation gradient), which
however are restricted for delta-f calculations in an up-
down symmetric magnetic geometry [16]. The present
work offers a new symmetry-breaking residual stress
mechanism, due to E×B advection of parallel toroidal
angular momentum by a portion of the E×B drift that
is neglected in most delta-f models.

For a simple physical picture, consider a low-
frequency axisymmetric density perturbation, as
sketched in Fig. 1. At low frequencies and large scales,
the nonzonal electrostatic potential φ̃ is proportional to
the nonzonal electron density ñe, which approximately
equals ion charge state Z times nonzonal ion gyrocenter
density ñi. The parallel components of the ion pressure
gradient and electric field jointly cause ion flow out
of the dense region along the magnetic field. The
poloidal electric field also causes an E×B drift vE that
advects counter- (co-)current ion momentum radially
inward (outward), regardless of the plasma’s toroidal
rotation, its radial gradient, and the signs of the plasma
current Ip and toroidal magnetic field BT . Although
very simple, this basic spin-up mechanism can occur in
many contexts, and is in fact a necessary consequence
of damping via parallel ion flow in toroidal geometry.

The symmetry breaking underlying this spin-up
mechanism is due to a dual role for the electric field
caused by the weak poloidal variation of φ̃ on the
length scale of the minor radius r. FIRST ROLE:
The nonvanishing parallel projection of this electric
field locally causes ion parallel acceleration. This
acceleration mediates a free energy transfer from the
potential to the ion parallel flows. Since the free
energy source terms for the turbulence supply energy
predominantly to the even moments of the distribution
function (like density and pressure) while much of the
dissipation acts on odd moments of the distribution
function, steady-state energy balance demands a net
free-energy transfer from even to odd moments. For
fluctuations at frequency scales comparable to the
ion transit frequency, this transfer mostly occurs
via the ion parallel acceleration, implying a positive
correlation between the parallel electric field and
parallel ion flow. SECOND ROLE: Now consider
the contribution of the electric field to the toroidal
angular momentum equation. Conservation of toroidal
angular momentum implies that this self-generated
electric field may not cause a net toroidal acceleration
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Figure 1. Poloidal cross-section of low-frequency axisymmetric
fluctuations, indicating direction of increasing major radius
R and vertical position z. Darker shading shows larger ñi,
proportional to φ̃ by the low-k⊥ electron adiabatic response.
With time, ions flow along the magnetic field out of the dense
region, corresponding to counter-current toroidal flow (red, uctr

‖ )
toward decreasing θ and co-current (blue, uco

‖ ) toward increasing
θ. The poloidal variation of φ̃ also causes an E×B flow vE that
is radially inward for the counter-current ion flux and outward
for the co-current flux. Reversing the toroidal magnetic field
switches the poloidal direction of counter- and co-current flow as
well as the sign of vE , leaving the momentum flux unchanged.
The poloidal orientation of the density perturbation has no effect
on the sign or magnitude of this momentum flux.

of the plasma. However, the slow poloidal variation of
φ̃ may cause a weak radial E ×B drift, transporting
angular momentum inwards or outwards. The positive
correlation of parallel electric field and ion parallel
flows, due to steady-state free energy balance, implies
a positive correlation of co-current toroidal flow and
outward E × B drift, as sketched in Fig. 1. This
is the fundamental symmetry-breaking mechanism
underlying the spin-up discussed in this article.

As one example, such a momentum flux is caused
by ion Landau damping of GAMs, as derived in
Ref. [23]: First, turbulent Reynolds stress excites
a poloidal E × B flow. Due to poloidal variation
of B, this flow has a divergence that leads to an
up/down density asymmetry, as sketched in Fig. 1.
The resulting parallel electric field (due to electron
adiabatic response) and ion pressure gradient drive
parallel ion flows. When the GAM is ion Landau
damped, there is net energy transfer from the
fluctuating potential to the parallel ion flows, which
implies a positive correlation of the poloidal electric
field with the poloidal ion flow. This same poloidal
electric field causes a weak radial E×B drift, which is
also correlated with ion parallel flow. Due to the pitch
of the magnetic field, the parallel ion flow corresponds
to co- (counter-)current toroidal flow where the E×B

drift points radially outward (inward), which causes
counter-current rotation peaking. Interestingly, it is
the poloidal flows driven by the Reynolds stress that
lead to the density fluctuations and the ion Landau
damping, which then as a byproduct result in the
nondiffusive transport of toroidal momentum. For
strongly ion-Landau-damped GAMs, this mechanism
should drive intrinsic toroidal ion thermal Mach
numbers of order (ρi/r). Even stronger spin-up may
occur due to ion Landau damping of nonaxisymmetric
turbulent fluctuations. In this article, we investigate
both the axisymmetric and nonaxisymmetric flow
drive, using a conservative gyrokinetic formulation.

The rest of the article is organized as follows: In
Sec. 2, we will present the gyrokinetic models under-
lying our analysis, both a momentum- and energy-
conserving full-F formulation (Sec. 2.1, with detailed
derivations deferred to Appendix A and Appendix
B) and a free-energy-conserving delta-f formulation
(Secs. 2.2 and 2.3). In Sec. 3 we discuss restric-
tions on the lowest-order residual stress in our delta-f
model, assuming up-down symmetric magnetic geome-
try. Sec. 4 derives the momentum flux contribution due
to a geometrically subdominant portion of the E ×B
drift, then demonstrates that it is not only allowed
to cause residual stress, but in fact required to do so
by free-energy balance whenever φ̃ excites ion parallel
flows. Sec. 5 discusses the results, and Sec. 6 summa-
rizes our conclusions.

2. Gyrokinetic Models and Conservation
Properties

Analysis will rest on a self-consistent, conservative
electromagnetic gyrokinetic formulation derived using
Lagrangian field theory, following Refs. [24] and [25].
To allow multiple viewpoints on the physics, we will
employ both a radially global full-F formulation and
a radially local delta-f formulation. These models
and their basic conservation properties are respectively
presented in Secs. 2.1 and 2.2, with an even/odd delta-
f decomposition given in Sec. 2.3. For a simpler but
roughly equivalent isothermal gyrofluid formulation,
see Ref. [23].

2.1. Full-F , radially global

In the full-F model, derived in Appendix A, we evolve
the full gyrokinetic distribution function Fs for each
species s in a radially global geometry. For pedagogical
reasons, we use a symplectic representation, with
magnetic fluctuations captured by the contribution
of the fluctuating parallel component of the vector
potential A‖ to the generalized A∗

.= A +
(J0A‖ + c

Zemsv‖)b̂, with ∇ ×A = B the equilibrium
magnetic field, J0 the gyroaveraging operator [assumed
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to be independent of v‖, t, and simple toroidal angle
ϕ, and to be self-adjoint under volume integration],
b̂
.= B/B the equilibrium magnetic direction, e the

(positive) fundamental charge, and Z and ms the
species charge state (-1 for electrons) and mass.

The gyrocenter position R and parallel velocity v‖
evolve according to

B∗‖Ṙ = c

Ze
b̂×∇H + v‖B

∗, (1)

B∗‖msv̇‖ = −B∗ · ∇H −B∗‖
Ze

c
∂tJ0A‖, (2)

with B∗
.= ∇ × A∗ and B∗‖

.= b̂ · B∗. The
Hamiltonian H is decomposed by powers of the
electrostatic potential φ: H = H0 + H1 + Hp with
H0 = 1

2msv
2
‖ + µB, H1 = ZeJ0φ, and polarization

contribution Hp = −Z
2e2

2B ∂µ[J0(φ2) − (J0φ)2]. The
magnetic moment is conserved: µ̇ = 0.

The distribution function Fs(R, v‖, µ, t) evolves as

∂t(B∗‖Fs) +∇ · (B∗‖FsṘ) + ∂v‖(B∗‖Fsv̇‖) = 0. (3)

The time-dependent Liouville theorem,1

∂tB
∗
‖ +∇ · (B∗‖Ṙ) + ∂v‖(B∗‖ v̇‖) = 0, (4)

allows us to use an equivalent advection form:
dtFs

.= ∂tFs + Ṙ · ∇Fs + v̇‖∂v‖Fs = 0. (5)
The field equations, self-consistently determined from
the same Lagrangian, are the quasineutrality relation
for φ,∑
s

∫ dW
B∗‖

[
ZeJ0(B∗‖Fs)+J0(B∗‖MJ0φ)−φJ0(B∗‖M)

]
=0,(6)

with polarizability

M .= −Z
2e2

BB∗‖
∂µ(B∗‖Fs), (7)

and a gyrokinetic Ampère’s Law,

∇2
⊥A‖ = −4π

c

∑
s

∫ dW
B∗‖

ZeJ0(B∗‖v‖Fs), (8)

with
∑
s the sum over species, ∇2

⊥ the divergence
of the perpendicular gradient ∇⊥, and

∫
dW .=

(2π/ms)
∫∞

0 dµ
∫∞
−∞ dv‖B∗‖ indicating integration over

velocity space. With this definition,
∫

dW/B∗‖
commutes with spatial differentiation and integration
and annihilates velocity-space derivatives. We
indicate real-space volume integration with

∫
dV and

integration over all of phase space with
∫

dΛ .=∫
dV
∫

dW. Using the enclosed volume V as a
flux surface label and denoting an integral over the
volume inside the corresponding flux surface with∫
V

dV, we may define the flux surface average 〈· · ·〉 .=
∂V
∫
V

dV
∑
s

∫
dW for kinetic functions like Fs and

1 Note that v‖ is an independent variable in this formulation,
so for example ∇v‖ = 0 and ∂v‖∇H = 0.

〈· · ·〉 .= ∂V
∫
V

dV for purely spatial functions like φ
[18, 26].

The gyrokinetic system of equations [Eqs. (1)–(3)
and (6)–(8)] conserve a total energy (

∑
s Us) +UE +UM

with thermal energies Us
.=
∫

dΛH0Fs, E ×B energy
UE

.=
∑
s

∫
dΛ 1

2M[J0(φ2) − (J0φ)2], and magnetic
fluctuation energy UM

.= 1
8π
∫

dV |∇⊥A‖|2. Assuming
boundary terms to vanish, the separate components
evolve as2

∂tUs = −
∫

dΛFs
[
Ṙ·∇(H1 +Hp) + Ze

c
v‖∂tJ0A‖

]
, (9)

∂tUE =
∑
s

∫
dΛFsṘ · ∇(H1 +Hp), (10)

∂tUM =
∑
s

∫
dΛFs

Ze

c
v‖∂tJ0A‖, (11)

showing particle-field energy exchange due to flow up
and down the electrostatic potential energy (H1 +Hp)
and the inductive parallel electric field − 1

c∂tJ0A‖.
Due to the symplectic formulation used here, toroidal
angular momentum conservation takes a slightly
different form than in Ref. [18] (see Appendix B):
∂t
〈
Fs(msv‖ + ZeJ0A‖/c)bϕ

〉
− ∂t 〈P · ∇Aϕ〉 /c

= −∂V
〈
Fs(msv‖ + ZeJ0A‖/c)bϕṘ · ∇V

〉
−
〈
Fs∂ϕ

(
H − Zev‖J0A‖/c

)〉
, (12)

in which bϕ
.= b̂ · R2∇ϕ, Aϕ

.= A · R2∇ϕ, and
∂ϕ

.= [(R2∇ϕ) · ∇], for simple toroidal angle ϕ and
major radius R. The terms on the LHS respectively
show the forms for the parallel and E×B contributions
to the toroidal angular momentum, the latter expressed
in terms of the polarization vector P , defined by
Eq. (B.5). The terms on the RHS give the divergence
of the radial fluxes of the parallel and E×B portions3

of the toroidal angular momentum. Appendix B
also demonstrates that the final term is indeed the
divergence of a radial flux.

As derived in Appendix A, one may simplify
the above formulation by linearizing the polarization
contribution. To do this, one need only simplify
the Hamiltonian to H0 + H1 (i.e. neglect Hp) and
make the substitution M → MM in Eq. (6),
where MM is defined in Eq. (A.11). The simplified
system still conserves energy as in Eqs. (9)–(11) with
the substitutions (H1 + Hp) → H1 in Eqs. (9)
and (10) and M → MM in the definition of UE.
The simplified system also still conserves toroidal
2 Act on Eq. (3) with

∫
(dΛ/B∗‖)H0, on Eq. (6) with

∫
dV φ∂t,

and on Eq. (8) with −(4π)−1
∫

dV (∂tA‖). Use the facts that J0

is independent of t and v‖, that J0 is self-adjoint under
∫

dV,
and that J0 becomes the identity at µ = 0. For UE , separate
the terms ∂tUE and

∑
s

∫
(dΛ/B∗‖)(H1 + Hp)∂t(B∗‖Fs), then

substitute for ∂t(B∗‖Fs) using Eq. (3).
3 The two portions of the final term correspond to Reynolds and
Maxwell stresses, respectively.



Momentum flux parasitic to free-energy transfer 5

angular momentum as in Eq. (12), interpreted with
the simplified Hamiltonian. We will use linearized
polarization for the derivation of the delta-f model in
Sec. 2.2.

2.2. Delta-f , radially local

Since the literature contains multiple distinct defini-
tions for the delta-f model, we begin this section by
clarifying the approximations going into our delta-f
formulation for this article. Our approach closely fol-
lows Ref. [25], but is not identical.4 We will decompose
the total distribution function as Fs = FsM + fs, with
static, spatially slowly varying background portion FsM

and time-dependent, small-amplitude portion fs. We
consider small-scale, anisotropic turbulence, with par-
allel wavelengths on the macroscopic scale (k‖ ∼ 1/qR)
but characteristic perpendicular wavenumbers k⊥ sat-
isfying ρi . k−1

⊥ � L⊥ . r,R for ρs
.= vts/|Ωcs| the

species (thermal) gyroradius, vts
.= (Ts0/ms)1/2 the

species thermal speed, Ωcs the (signed) species gyrofre-
quency, and L⊥ the length scale of profile gradients.
The fluctuating distribution function is mixing-length-
ordered (k⊥fs ∼ FsM/L⊥) and the magnetic fluctua-
tions are taken small (k⊥A‖/B � 1). We will cast
the equation in a radially local geometry, neglecting
radial variation of background parameters outside of
explicit gradient terms (∼the ’constant-FsM , constant-
grad-FsM ’ approximation). Due to careful construc-
tion of the local geometry, we will be able to straight-
forwardly demonstrate the conservation of a ’free en-
ergy,’ quadratic in the fluctuations and related to en-
tropy, that measures the amplitude of the turbulence
and exposes transfer mechanisms between fs, φ, and
A‖. Higher-order corrections to fs are not necessary
here, since the leading-order fluctuations will uniquely
determine the contribution of our residual-stress mech-
anism.

We begin with the linearized-polarization version
of Eq. (5), multiplied by B∗‖ . Expanding Fs → FsM +fs
and discarding several unambiguously small terms, we
obtain

B∂tfs+( c
Ze

b̂×∇H+v‖B∗)·∇(FsM +fs)−
B·∇H0

ms
∂v‖fs

= m−1
s

(
B∗·∇H+B(Ze/c)∂tJ0A‖

)
∂v‖FsM , (13)

in which H = H0 + H1. We assume
a nonrotating Maxwellian background FsM =
ns0(2πTs0/ms)−3/2 exp(−H0/Ts0), in which the back-
ground density ns0 and (isotropic) temperature Ts0 are
flux functions. Since spatial derivatives are taken at
constant µ, the gradient of FsM decomposes as∇FsM =
(∂V |BFsM )∇V +(∂B |V FsM )∇B, where (∂V FsM ) brings
4 In particular, Ref. [25] incorporated the profile gradients via
boundary conditions on fs, but in this work we will capture them
in explicit volumetric terms.

in the profile gradients and (∂BFsM ) yields the zeroth-
order relation msv‖(∂BFsM )∇B = (∂v‖FsM )∇H0,
which we use repeatedly in this section.

Under our assumptions and taking the background
to be charge neutral (

∑
s Zens0 = 0), the linearized-

polarization Poisson equation and the Ampere’s Law
simplify to5,6

0 =
∑
s

∫
dW

[
ZeJ0fs+(Z2e2/Ts0)FsM (J2

0−1)φ
]
, (14)

∇2
⊥A‖ = −4π

c

∑
s

∫
dW Zev‖J0fs, (15)

in which the velocity-space integral is simplified to its
delta-f form

∫
dW .= (2πB/ms)

∫∞
0 dµ

∫∞
−∞ dv‖.

Now we must construct the simplified geometry,
starting with local coordinates that expose the
symmetry properties of this delta-f system. We begin
with unit-Jacobian Hamada coordinates: enclosed
volume (flux label) V and unit-periodic poloidal
(θ) and toroidal (ζ) angles, defined such that the
contravariant components of B are flux functions,
Bθ

.= B · ∇θ = Bθ(V ) and Bζ = B · ∇ζ = Bζ(V ) [26,
27, 28]. Both V and θ are axisymmetric, while ζ equals
an axisymmetric function plus ϕ/2π. The safety factor
q = Bζ/Bθ is a flux function and the spatial Jacobian is
unity, (∇V ×∇θ ·∇ζ)−1 = 1. Next, we define the field-
aligned coordinates ϑ .= θ and ξ .= ζ− qθ, which retain
the unit Jacobian (∇V × ∇ϑ · ∇ξ)−1 = 1 and satisfy
B = Bθ∇ξ × ∇V , so that B · ∇ = Bθ∂ϑ|V,ξ. Since
V and ϑ are both axisymmetric, differentiating with
respect to ξ brings in only toroidal variation, ∂ξ|V,ϑ =
2πR2∇ϕ ·∇, so the ξ partial vanishes for axisymmetric
quantities. Finally, we scale with reference values
to obtain local, length-dimensioned coordinates: x .=
(V − V0)/V ′, y .= −ξV ′/L‖, and s

.= ϑL‖, which
satisfy (∇x×∇y · ∇s)−1 = 1. The reference constants
[connection length L‖

.= B0/B
θ ∼ 2πqR, field strength

B0, enclosed volume V0, and surface area V ′] are all
evaluated at a reference surface. Since ∂s ∝ B · ∇,
variation in s is weak even for turbulent quantities,
∂s = (∂sϑ)∂ϑ ∼ (L−1

‖ )(Bk‖/Bθ) ∼ k‖ ∼ 1/qR. The
other derivatives capture perpendicular variation, with
∂x, ∂y ∼ k⊥ for turbulent/nonaxisymmetric quantities.
[The combination V ′/L‖ ∼ (2πr2πR)/2πqR ∼
2πR(Bp/BT ), for Bp and BT the poloidal and toroidal
magnetic field strength, compensates for the fact
5 Note that the electromagnetic correction to B∗‖ is two orders
smaller than B, since b̂·∇(J0A‖)×b̂ = 0. Also, (1−J0) ∼ ρ2

s/L
2
⊥

is a second-order correction when it acts on slowly varying
quantities, due to the low-k⊥ expansion J0 ≈ 1 + 1

4ρ
2
s∇2
⊥. Note

also that (B∗‖MM ) is axisymmetric and slowly varying in space.
6 For the Ampère’s Law, we have removed the time-
independent, axisymmetric current due to (B∗‖M

−B)FsM . The
corresponding magnetic field is incorporated into the external
magnetic field, shifting it with finite-β adjustments relative to
the external field used in the full-F formulation.
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that ∂y ∝ ∇ϕ · ∇ is nearly aligned with B · ∇,
leading to the simple ordering ∂y = (−L‖/V ′)∂ξ|V,ϑ =
(−L‖/V ′)2πR2∇ϕ · ∇ ∼ (B/2πRBp)2πR(k⊥Bp/B) =
k⊥.] Although B0, V0, and V ′ are all positive, the
constant L‖ has the sign of Bθ, implying that the
poloidal coordinate s is oriented such that B · ∇s > 0.

Next, we evaluate our operators in the radially
local geometry, assuming a radial domain width ∆
much smaller than the profile gradient length L⊥.
The (linear) parallel gradient exactly satisfies B∇‖

.=
B ·∇ = B0∂s, with B the local magnetic field strength.
Neglecting corrections of order 1/k⊥r and using the
Clebsch form B = B0∇x × ∇y, nonlinear E × B
advection simplifies to

cb̂

B
×∇(J0φ)·∇fs= cB

B2 ·∇(J0φ)×∇fs≈
c

B0
{J0φ,fs},(16)

with the Poisson bracket defined e.g. as
{J0φ, fs}

.= (∂xJ0φ)(∂yfs)− (∂yJ0φ)(∂xfs). (17)
The magnetic flutter takes an analogous Poisson
bracket form, for example B−1v‖∇× (J0A‖b̂) · ∇fs ≈
−B−1v‖b̂×∇(J0A‖)·∇fs ≈ −B−1

0 v‖{J0A‖, fs}. Again
neglecting O(1/k⊥r) corrections, the perpendicular
Laplacian simplifies to ∇2

⊥ ≈ gxx∂2
xx + 2gxy∂2

xy +
gyy∂2

yy, for gxx
.= |∇x|2, gxy .= ∇x · ∇y, and gyy

.=
|∇y|2. We make the low-β approximation (∇× b̂)⊥ ≈
b̂×∇ lnB,7 after which the contributions of magnetic
inhomogeneity [neglecting O(1/k⊥r) corrections] may
be expressed in terms of a curvature operator K(·) .=
Kx∂x+Ky∂y, with Kx

.= − 2c
B b̂×∇ lnB ·∇x and Ky .=

− 2c
B b̂ × ∇ lnB · ∇y. Our geometry is then captured

by six spatial functions: B, Kx, Ky, gxx, gxy, and
gyy. By axisymmetry of the geometry, these functions
are (exactly) independent of y. Since we assume a
narrow radial box width (∆� L⊥, R), we may neglect
their radial (x) variation as well, so each of the six
functions are taken to depend on s alone. Further,
after expanding ∇FsM = F ′sM∇x + (−µFsM/Ts0)∇B
for F ′sM

.= ∂x|BFsM , we neglect radial (x) variation of
FsM and F ′sM , corrections of order ∆/L⊥.
7 Note first that (∇ × b̂)⊥ agrees with the standard form
appearing in the curvature drift. Since b̂ · b̂ = 1 is a constant,
one may infer (b̂ · ∇)b̂ = −b̂× (∇× b̂), thus

b̂× [(b̂ · ∇)b̂] = −b̂× [b̂× (∇× b̂)] = (∇× b̂)⊥.

Now, expand (∇× b̂) using Ampere’s Law:

∇× b̂ = ∇× (B/B) = b̂×∇ lnB +B−1(4π/c)j.

To compare the magnitudes of the perpendicular portions, take
the ratio of −b̂× the two terms and use leading-order force
balance 1

c
j ×B ≈ ∇p:

−b̂× (4π/cB)j
−b̂×

(
b̂×∇ lnB

) ≈ (4π/B2)∇p
∇⊥ lnB

∼
4πp
B2

R

L⊥
=

1
2
β
R

L⊥
.

With these approximations, Eq. (13) simplifies to
the explicit form8

∂tfs + Ze

c

v‖

Ts0
FsM∂tJ0A‖ + c

B0
{J0ψe, hs}+ v‖∇‖hs

− 1
ms

(µ∇‖B)∂v‖hs −
1

2Ze (msv
2
‖ + µB)K (hs)

=
[ c
B0

∂y(J0ψe)+ 1
2Ze (µB+msv

2
‖)Kx

]
F ′sM , (18)

in which the nonadiabatic distribution function hs and
gyrokinetic potential ψe are defined as
hs

.= fs + (FsM/Ts0)ZeJ0φ, (19)
ψe

.= φ− v‖A‖/c. (20)
The Poisson equation and Ampère’s Law are formally
unchanged from Eqs. (14) and (15), but are evaluated
in the simplified geometry, that is, with the simplified
form for∇2

⊥ and taking FsM and J0 to depend spatially
only on s. We may integrate J2

0 over the Maxwellian
in Eq. (14) to get the equivalent∑
s

∫
dW ZeJ0fs =

∑
s

ns0Z
2e2 1− Γ0s

Ts0
φ, (21)

in which the modified Bessel operator Γ0s takes the
Fourier-space form Γ0s(k2

⊥ρ
2
s) = exp(−k2

⊥ρ
2
s)I0(k2

⊥ρ
2
s).9

Eqs. (14) [or (21)], (15), and (18) constitute our delta-f
gyrokinetic model.

The boundary conditions in y and s follow directly
from toroidal and poloidal periodicity [28]. In the
original Hamada coordinates, toroidal and poloidal
periodicity are fs(V, θ, ζ = 1/2) = fs(V, θ, ζ = −1/2)
and fs(V, θ = 1/2, ζ) = fs(V, θ = −1/2, ζ), where
we centered the domain on θ = 0 and ζ = 0
for definiteness. In the field-aligned coordinates,
advancing ξ by one (at fixed V and ϑ) is equivalent
to advancing ζ by one (at fixed V and θ), so we
maintain simple periodicity in ξ: fs(V, ϑ, ξ = 1/2)
= fs(V, ϑ, ξ = −1/2). However, advancing θ by one
8 In Eq. (18), we have also simplified with the zeroth-order
relation msv‖(∂BFsM )∇B = (∂v‖FsM )∇H0 (first dotted with
B∗, then later again, dotted with H1B), the antisymmetry of
the Poisson bracket, and the fact that FsM is independent of x
and y.
9 For example, one may integrate the operator’s series
expansion, term by term. The Bessel operator J0 takes the
Fourier-space form J0(k⊥ρ), where ρ2 = 2µB/msΩ2

cs. Mapping
k2
⊥ → −∇

2
⊥, we may use the Taylor expansion of J2

0 to define
the operator as a series, J2

0 =
∑∞

`=0[(2`)!/(`!)4](ρ2/4)`∇2`
⊥ . We

may then use the fact that
∫

dW µ`FsM = ns0(`!)(Ts0/B)` to
integrate term by term:∫

dWFsMJ2
0φ =

∞∑
`=0

(2`)!
(`!)4 (

B

2msΩ2
cs

)`
(∫

dWFsMµ`
)
∇2`
⊥φ

= ns0

∞∑
`=0

(2`)!
(`!)3 (

ρ2
s

2
)`∇2`
⊥φ = ns0Γ0sφ,

in which we recognized the series expansion of Γ0s(k2
⊥ρ

2
s) =∑∞

`=0[(2`)!/(`!)3](ρ2
s/2)`∇2`

⊥ .
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at fixed ζ corresponds to advancing ϑ by one while
decrementing ξ by q, so fs(V, ϑ = 1/2, ξ − q/2) =
fs(V, ϑ = −1/2, ξ + q/2). Due to periodicity in ξ, only
the nonintegral portion of the shift (q) is significant.
For a radially thin layer, we may linearize the radial
variation of q but, since q is generally nonintegral, we
must allow a nontrivial shift in ξ when one applies
the poloidal periodicity constraint, even at the radial
center of the domain.

Our parallel boundary conditions may be simpli-
fied in the fluxtube limit, for the following reason: To
thin the number of modes retained on a given sur-
face, we enforce periodicity in ξ at 1/n for some in-
teger n > 1. When we do this, the poloidal periodicity
becomes simple (unshifted) whenever nq is an integer.
The fluxtube limit refers to the case n � 1, which al-
lows us to assume (without further loss of generality)
that we center our domain on a surface where nq is
rational. In this case, we obtain the standard fluxtube
parallel boundary conditions, with the shift in paral-
lel boundary conditions following only from magnetic
shear, linear (thus odd) in x about the center of the
domain.

Our delta-f system of equations [Eqs. (15),
(18), and (21)] nonlinearly conserve a free energy
(
∑
s Uδs) + UδE + UδM , with thermal free energies

Uδs
.=
∫

dΛTs0f
2
s /2FsM , E × B free energy UδE

.=
1
2
∫

dV
∑
s ns0Z

2e2[φ(1 − Γ0s)φ]/Ts0,10 and magnetic
energy UδM

.=
∫

dV |∇⊥A‖|2/8π. Assuming boundary
terms to vanish, which requires an appropriate
choice of radial boundary conditions, the separate
10Note that 1− Γ0s is a positive operator.

components evolve as11,12

∂tUδs=
∫

dΛfs
[
−Zev‖

(∂tJ0A‖

c
+∇‖J0φ−

{
J0A‖, J0φ

}
B0

)
+1

2(msv
2
‖+µB)K (J0φ)+Ts0

c

B0
∂y(J0ψe)

F ′sM

FsM

]
,(22)

∂tUδE=
∑
s

∫
dΛ fs

[
Zev‖

(
∇‖J0φ−B−1

0
{
J0A‖, J0φ

})
− 0.5(msv

2
‖ + µB)K (J0φ)

]
, (23)

∂tUδM = c−1
∑
s

∫
dΛZev‖fs∂tJ0A‖. (24)

Similarly to the full-F energy equations (9) and (10),
the delta-f energies Uδs and UδE may be seen to
exchange energy based on the flow of plasma up or
down ∇H1, while Uδs and UδM exchange energy due to
flow with or against the inductive parallel electric field.
11Act on Eq. (18) with

∫
dΛ (Ts0fs/FsM ), on Eq. (21) with∫

dV φ∂t [using Eq. (18) to substitute for ∂tfs], and on
Eq. (15) with −(4π)−1

∫
dV(∂tA‖). Use the facts that [for

arbitrary spatial functions f1 and f2, and assuming compatible
radial boundary conditions]: geometric factors depend only
on s; FsM and F ′sM depend only on s (via B), v‖, and
µ, and are even in v‖; {·, ·} and K do not differentiate
with respect to s;

∫
dx
∫

dy {f1, f2} =
∫

dx
∫

dyK(f1) =
0;
∫

dW∇‖ =
∫

(dW/B)B0∂s, where
∫

dW/B is spatially
constant, annihilates velocity-space derivatives, and commutes
with spatial derivatives and integration; ∇2

⊥ is self-adjoint under∫
dx
∫

dy, thus so are J0 and Γ0s (whose spatial coefficients
depend only on s); J0 and Γ0s are independent of time and v‖;
msv‖∇‖FsM = (µ∇‖B)∂v‖FsM .
12The KxF ′sM term in the last row of Eq. (18) does not
contribute to Eqs. (22) or (23) for the following reason: Only the
x- and y-averaged portions of fs or φ (respectively) can make a
nonvanishing contribution. These evolve according to the x- and
y-averaged Eqs. (18) and (21), written here with an overline to
indicate the xy-average:

∂tfs + (Ze/c)(v‖/Ts0)FsM∂tA‖ + v‖∇‖fs −m−1
s (µ∇‖B)∂v‖fs

+ (v‖FsM/Ts0)Ze∇‖φ = (2Ze)−1(µB +msv
2
‖)K

xF ′sM ,∑
s

∫
dW Zefs = 0.

This is a linear system, with no direct coupling to other modes.
We therefore assume that finite-frequency modes have damped
away, and solve for the steady-state solution. Considering first
the odd-in-v‖ portion of the steady-state equation (to which
the even-in-v‖ KxF ′sM does not contribute), we find an even-
in-v‖ fs with a nonvanishing gyrocenter density perturbation
that is signed with −Zeφ, implying by the quasineutrality
condition that φ and the even-in-v‖ fs must vanish. The
even-in-v‖ portion of the equation contains the response to the
(inhomogeneous) KxF ′sM term, for which the steady-state fs is
odd in v‖, automatically satisfying the Poisson equation. Since
φ = 0 and fs is odd in v‖, the contributions of the KxF ′sM term
to Eqs. (22) and (23) vanish. [Collisional dissipation would allow
a nonvanishing but small contribution of this term, proportional
to the weak neoclassical heat flux, which we neglect relative to
the turbulent one.]
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2.3. Even/odd decomposition

In the delta-f free energy equations [Eqs. (22)–(24)],
the dominant sources are even in v‖, while many of
the dissipation channels are odd in v‖. For this reason,
the flow of energy in phase space may be clarified with
the decomposition fs = f ev

s + fod
s , splitting apart the

even f ev
s (v‖)

.= [fs(v‖)+fs(−v‖)]/2 and odd fod
s (v‖)

.=
[fs(v‖) − fs(−v‖)]/2 portions.13 Taking the even and
odd portions of Eq. (18) yields the evolution equations:
∂tf

ev
s + (c/B0){J0φ, f

ev
s } − (msv

2
‖+µB)K(hev

s )/2Ze

+v‖∇‖fod
s −B−1

0 v‖
{
J0A‖, f

od
s

}
−m−1

s (µ∇‖B)∂v‖f
od
s

= [(c/B0)∂y(J0φ) + (µB+msv
2
‖)Kx/2Ze]F ′sM , (25)

∂tf
od
s + (Zev‖/cTs0)FsM∂tJ0A‖ + (c/B0)

{
J0φ, f

od
s

}
+v‖∇‖hev

s −B−1
0 v‖

{
J0A‖, h

ev
s

}
−m−1

s (µ∇‖B)∂v‖h
ev
s

−(msv
2
‖+µB)K(fod

s )/2Ze=−B−1
0 v‖F

′
sM∂y(J0A‖),(26)

in which hev
s

.= f ev
s + (FsM/Ts0)ZeJ0φ. The field

equations are nearly unchanged:∑
s

ns0Z
2e2 1− Γ0s

Ts0
φ =

∑
s

∫
dW ZeJ0f

ev
s , (27)

∇2
⊥A‖ = −4π

c

∑
s

∫
dW Zev‖J0f

od
s . (28)

Using Eqs. (25)–(28), we can again derive free
energy conservation laws, decomposing Uδs = U ev

δs +
Uod
δs for U ev

δs
.=
∫

dΛTs0(f ev
s )2/2FsM and Uod

δs
.=∫

dΛTs0(fod
s )2/2FsM :

∂tU
ev
δs =

∫
dΛ
[
f ev
s

1
2(msv

2
‖ + µB)K(J0φ)

+ Ts0

FsM

fod
s

[
v‖(∇‖f ev

s −
1
B0
{J0A‖, f

ev
s })−

µ∇‖B
ms

∂v‖f
ev
s

]
+f ev

s Ts0
c

B0
∂y(J0φ)F

′
sM

FsM

]
, (29)

∂tU
od
δs =

∫
dΛ
[
−Zev‖fod

s

[∂tJ0A‖

c
+∇‖(J0φ)−

{J0A‖,J0φ}
B0

]
− Ts0

FsM

fod
s

[
v‖(∇‖f ev

s −
1
B0
{J0A‖, f

ev
s })−

µ∇‖B
ms

∂v‖f
ev
s

]
−fod

s v‖Ts0
1
B0

∂y(J0A‖)
F ′sM

FsM

]
, (30)

∂tUδE=
∑
s

∫
dΛ
[
−1

2(msv
2
‖ + µB)f ev

s K(J0φ)

+Zev‖fod
s [∇‖(J0φ)−B−1

0
{
J0A‖, J0φ

}
]
]
, (31)

∂tUδM = 1
c

∑
s

∫
dΛZev‖fod

s ∂tJ0A‖. (32)

The free energy sources and transfer pathways of
Eqs. (29)–(32) are sketched in Fig. 2. Although
13Here and throughout the section, we will often suppress the
dependencies other than v‖, since they are left unchanged when
we take the even and odd (in v‖) portions of fs.

U ev
δi

U od
δi

U ev
δe

U od
δe

UδE

UδM

∝fev
i vxEF

′
iM ∝fev

e vxEF
′

eM

∝fod
i v‖b̃xF ′

iM ∝fod
e v‖b̃xF ′

eM

∝fod
i v‖∇‖fev

i ∝fod
e v‖∇‖fev

e

∝fev
i K(J0φ) ∝fev

e K(J0φ)

∝fod
i v‖∇‖(J0φ) ∝fod

e v‖∇‖(J0φ)

∝fod
i v‖∂tJ0A‖ ∝fod

e v‖∂tJ0A‖

Figure 2. Free-energy flow in Eqs. (29)–(32), arrow heads
indicating typical direction of energy transfer. Thick green
arrows indicate the terms that dominate the energy flows in the
low-frequency, low-k⊥ scenario of Sec. 4.2. The transfer terms ∝
fod
s v‖∇‖fev

s refer to the entire second rows of Eqs. (29) and (30).
Contravariant component notation is used for vxE

.= vE · ∇x
and the fluctuating magnetic direction b̃x = B−1

0 ∂y(J0A‖). The
parallel gradient terms here also intend the nonlinear parallel
gradients.

Eqs. (29) and (30) sum to Eq. (22), the split Uδs →
U ev
δs + Uod

δs will help elucidate the free energy transfer
that drives a symmetry-breaking momentum flux.

3. Symmetry

If one assumes an up-down symmetric magnetic
geometry, no background toroidal rotation or ro-
tation shear, and no background E × B shear,
then the lowest-order fluxtube delta-f equations sat-
isfy a symmetry that annihilates the statistically
averaged leading-order radial flux of toroidal an-
gular momentum [16]. In specific, if the func-
tions fs(x, y, s, v‖, µ, t), φ(x, y, s, t), and A‖(x, y, s, t)
jointly solve the nonlinear gyrokinetic system, then
so do the functions −fs(−x,+y,−s,−v‖,+µ,+t),
−φ(−x,+y,−s,+t), and A‖(−x,+y,−s,+t). How-
ever, the leading-order radial flux of toroidal angular
momentum changes sign under this transform. Since
the two solutions should occur with equal probabil-
ity, one concludes that the radial flux of toroidal an-
gular momentum must vanish in the statistical aver-
age. In this section, we will verify that our Eqs. (18),
(21), and (15) satisfy the above symmetry, show that
our leading-order momentum flux is odd under the
transform, briefly discuss the role of neoclassical flows
in symmetry breaking, and identify a “skew-ness” in
the symmetry transform that will lead to our residual
stress in Sec. 4.
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For an up-down symmetric magnetic geome-
try, our geometric coefficients are straightforwardly
found14 to satisfy B(−s) = B(s), Kx(−s) = −Kx(s),
Ky(−s) = Ky(s), gxx(−s) = gxx(s), gxy(−s) =
−gxy(s), and gyy(−s) = gyy(s). Since ∇2

⊥ vanishes
for all equilibrium quantities (which depend only on s
in the radially local geometry), it is easily verified that
∇2
⊥ is invariant under the transformation, which in-

verts the sign of ∂x but not of ∂y. The equilibrium dis-
tribution FsM and its gradient F ′sM are also both invari-
ant under the transform, since both are independent of
x and are even in v‖ and s. Invariance of ∇2

⊥, FsM , and
B under the transform jointly imply that the Bessel op-
erators J0 and Γ0s are also invariant. Substitution of
the transformed functions into Eqs. (18), (21), and (15)
then reproduces the original equations,15 which im-
plies (assuming compatible boundary conditions)
that for every solution [fs(x, y, s, v‖, µ, t), φ(x, y, s, t),
A‖(x, y, s, t)], the corresponding transformed functions
[−fs(−x,+y,−s,−v‖,+µ,+t), −φ(−x,+y,−s,+t),
A‖(−x,+y,−s,+t)] also constitute a solution.

Compatibility of boundary conditions is not a triv-
ial requirement, and is generally satisfied only if one
makes the (fluxtube) approximation of toroidal peri-
odicity at ξ = 1/n for integer n � 1: Recall that
the true (full flux-surface) poloidal (s) boundary con-
ditions are shifted-periodic fs(x, ϑ = 1/2, ξ−q(x)/2) =
fs(x, ϑ = −1/2, ξ + q(x)/2), where only the nonin-
tegral part of q is significant (due to perodicity in
ξ). If we truncate our toroidal domain at ξ = 1/n
for integer n > 1, these boundary conditions remain
formally unchanged, but now only the nonintegral
part of (nq) is significant. If we apply the symme-
try transform (x → −x, ϑ → −ϑ, ξ → +ξ) to some
function, the transformed function would satisfy the
boundary conditions fs(−x, ϑ = −1/2, ξ − q(x)/2)
= fs(−x, ϑ = 1/2, ξ + q(x)/2), equivalently
written as fs(x, ϑ = 1/2, ξ + q(−x)/2) =
fs(x, ϑ = −1/2, ξ − q(−x)/2). These transformed
boundary conditions are equivalent to the actual ones
only if the shift q(x) is odd in x, an assumption that
we can only make if we take the n � 1 limit, as we
discussed towards the end of Sec. 2.2. For this reason,
only the fluxtube limit (not simply radial locality) is
enough to imply the validity of this symmetry argu-
ment.

Assuming compatible boundary conditions, it
remains to be shown that our leading-order mo-
mentum flux changes sign under the symmetry
14The Hamada angle ζ is equal to ϕ/2π plus an axisymmetric
function. For an up-down symmetric magnetic geometry, this
axisymmetric function may be chosen odd in θ.
15As one approach, evaluate the equations for the transformed
functions at the point (−x,+y,−s,−v‖,+µ,+t), then express
everything in terms of the original functions and the geometric
coefficients all evaluated at the point (x, y, s, v‖, µ, t).

transform. Decomposing Fs → fs + FsM in
Eq. (12) and using the leading-order fluxtube ap-
proximations to the characteristics (Ṙ · ∇x) →
[−(c/B0)∂y(J0ψe)−(msv

2
‖+µB)Kx/2Ze] [c.f. Eq. (16)

and following], we obtain the leading-order flux-
surface-averaged contravariant x-component of the
flux of parallel toroidal angular momentum as
−〈fsmsv‖bϕ[(c/B0)∂y(J0ψe) + (msv

2
‖ + µB)Kx/2Ze]〉

− 〈FsMZe(J0A‖)bϕB−1
0 ∂y(J0φ)〉.16 Evaluating this

momentum flux with the transformed solution changes
its sign, implying that it should vanish in the aver-
age for solutions determined with our delta-f system
of equations.17 Interestingly, the (local) divergence of
this radial momentum flux is invariant under the trans-
form, since ∂x → −∂x. The invariance of this (phys-
ically insignificant) local divergence does not contra-
dict the general argument, since the averaged radial
flux divergence is zero, due to the statistical radial ho-
mogeneity that follows from radial locality.18 In fact,
one may conclude that the radial momentum trans-
port due to the leading-order Reynolds and Maxwell
stress must vanish in the average because its diver-
gence [〈Zefs∂ϕ(J0ψe)〉] is invariant under the trans-
form,19 which takes x → −x, so the undifferentiated
radial fluxes must flip sign.20

16Note that the nonlinear contribution of the fluctuating elec-
tromagnetic parallel toroidal angular momentum is subdominant
to the mechanical one, by
fs(Ze/c)J0A‖

fsmsv‖
∼

ZeA‖

cmsvts

k⊥B

k⊥B
∼

1
k⊥ρs

k⊥A‖

B
� 1.

The FsMA‖ term that we retain is formally of the same order
as the mechanical parallel momentum term, but note that only
FLR-correction portions of the FsMA‖ term survive, due to
leading-order charge neutrality.
17 If we consider a “local flux-surface average” [taking 〈· · ·〉 →
(V ′)−1

∮
ds
∮

dy in the local variables] then, strictly speaking,
this argument only shows that the statistical average of the flux-
surface-averaged momentum flux terms must be odd in x, thus
that its x integral must vanish. [Specific boundary conditions
in x may allow stronger conclusions. For example, periodic
boundary conditions in x should make the system translation-
invariant in x, allowing us to conclude that the momentum flux
terms vanish separately at each flux surface (in the statistical
average).] However, recalling that our delta-f model is radially
local, it is actually the full domain integral of the delta-f result
that corresponds to the flux-surface average in the global model.
18Statistical radial homogeneity within the flux tube only
strictly holds if suitable boundary conditions in x are chosen
(e.g. periodic). However, radial variation within the flux tube
(including a nonvanishing momentum flux divergence within
the local domain) is not physically meaningful, resulting purely
from the (artificial) local radial boundary conditions. The
divergence of the radial momentum flux in Eq. (12) should be
interpreted using the difference between the domain-integrated
local momentum flux in two radially nearby local domains.
19Simple toroidal derivatives ∂ϕ are proportional to ∂y , thus are
invariant under the transform.
20The logic in the main text is not quite complete, since
a momentum flux divergence that is statistically even in x
may arise from a momentum flux that includes a (nonzero)
term that is statistically constant in x. However, this
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As an interesting aside: Eq. (18) retains the curva-
ture drift acting on the background Maxwellian, thus
includes the first-order neoclassical flows. These are
solved for together with the turbulent fluctuations, so
the resulting turbulent flux includes corresponding ef-
fects of the neoclassical disturbance to the background
Maxwellian. Despite this fact, the leading-order mo-
mentum flux is constrained by the symmetry argu-
ment to vanish. This suggests that the neoclassical
flows alone are not able to give rise to nonvanishing
turbulent residual stress, in an otherwise leading-order
delta-f system. Although Eq. (18) does not explicitly
include collisions, any sensible linear collision opera-
tor will be invariant under the symmetry transform,
leaving this result intact. The introduction of an inho-
mogeneous (but radially constant) neoclassical radial
electrical field will also not disturb the result, since
it would be invariant to the transform, just like the
radial electric field we have retained, −∂xφ. How-
ever, profile curvature, background radial electric field
shear, and higher-order terms like nonlinear parallel
acceleration would violate the leading-order symmetry
and are therefore not prohibited from causing residual
stress, although a self-consistent radially global treat-
ment may expose constraints on their contributions.

Before moving on, we highlight a necessary skew-
ness of the coordinate transformation, which will
lead to the symmetry breaking discussed in the next
section. As sketched in Fig. 3(a), the covariant
poloidal direction ∂ϑ|V,ξR ∝ ∂sR is aligned with the
(equilibrium) magnetic field, which must happen since
both ∇x and ∇y are orthogonal to b̂. This is the

possibility may be ruled out by examining a procedure to
actually derive the undifferentiated momentum flux. By adding
0 = 〈Zefs∂ϕ(ψe − ψe)〉 + 〈Ze(J0fs − J0fs)∂ϕψe〉, rearranging,
integrating by parts as needed in ϕ, and using Eqs. (21) and (15),
we obtain

−〈Zefs∂ϕ(J0ψe)〉 = 〈Zefs∂ϕ(1−J0)ψe〉+ 〈ψe∂ϕ(1−J0)Zefs〉

+
∑
s

(ns0/Ts0)Z2e2 〈φ∂ϕ(1−Γ0s)φ〉+ (4π)−1〈A‖∂ϕ∇2
⊥A‖〉

Each of the Bessel operators (1 − J0) and (1 − Γ0s) may
be cast as an ascending power series in ∇2

⊥, beginning
with (∇2

⊥)1. Neglecting perpendicular variation of the
(axisymmetric) coefficients of these expansions (by the radially
local orderings), the problem is thus reduced to manipulation
of terms of the analogous forms [fs∂ϕ∇2`

⊥ψe + ψe∂ϕ∇2`
⊥ fs],

[φ∂ϕ∇2`
⊥φ], and [A‖∂ϕ∇2

⊥A‖], for ` ≥ 1. Repeated integrations
by parts on the Laplacians allow us to recast each of these terms
as a linear combination of total divergences and total toroidal
partials, the latter of which vanish under the flux surface average.
The total divergences may be recast using the radially local flux-
surface property 〈∇ ·w〉 = ∂x〈w · ∇x〉 (for arbitrary vector w).
The general form of the undifferentiated flux terms (the various
instances of w · ∇x) shows that all of them flip sign under the
transformation, allowing one to unambiguously conclude that
the leading-order undifferentiated momentum flux corresponding
to 〈Zefs∂ϕ(J0ψe)〉 is statistically odd in x, thus vanishes under
the domain integral.

∂ϑR ∝ b̂

(a)

∂ξR
∂ξR

∂ξR
∂ξR

∂ξR
∂ξR

∂ξR

−(∂ϑR)

(b)
∂ξR

∂ξR
∂ξR

∂ξR
∂ξR

∂ξR
∂ξR

Figure 3. (a) Sketch of the covariant poloidal (∂ϑR) and
binormal (∂ξR) directions. The horizontal direction is toroidal.
Alignment of ∂ξR with the toroidal direction is the reason that
∂ξ|V,ϑ = (∂ξR) · ∇ captures only toroidal variation. (b) Sketch
of the effective transformations of the covariant vectors, showing
that while the parallel gradient b̂·∇ ∝ (∂ϑR)·∇ = ∂ϑ|V,ξ clearly
changes sign under the transform, the perpendicular gradient
within the flux surface is composed of a linear combination
of (∂ϑR) · ∇ (which changes sign) and (∂ξR) · ∇ (which has
unchanged sign). This implies that E⊥ has no definite parity
under the transform, which causes the symmetry breaking that
we derive in Sec. 4.

reason that ∂ϑ = (∂ϑR) · ∇ is proportional to ∇‖,
thus captures only slow spatial variation, allowing us
to order ∂s � k⊥. The covariant binormal direction
∂ξ|V,ϑR ∝ ∂yR is aligned with the toroidal direction.
This choice means that ∂ξ = (∂ξR) · ∇ captures
only toroidal variation and vanishes for axisymmetric
quantities. Simple periodicity in y also follows
directly from the purely toroidal orientation of ∂ξR,
combined with physical toroidal periodicity. All of
these properties were necessary for the construction
of the radially local delta-f system and the resulting
symmetry argument. However, they imply that while
the parallel gradient simply changes sign under the
symmetry transform, the perpendicular gradient (and
therefore the perpendicular electric field) does not
have a definite parity [Fig. 3(b)], a result that follows
directly from the fact that b̂ is not orthogonal to ∇ϕ.
This skewness causes the symmetry breaking that we
will now derive.

4. Symmetry Breaking

In this section, we will discuss the geometry of
the radial E × B drift and the resulting symmetry
breaking in a simple, pictorial way. We will identify
a portion of the E × B drift, small in the delta-f
orderings, that contributes a momentum flux that is
invariant to the symmetry transformation presented
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in Sec. 3. The symmetry argument therefore does
not prevent the solution of our delta-f model from
driving a residual stress via this term. Further,
we will find that the resulting momentum flux term
is proportional to a free-energy transfer term that
appears in the leading-order delta-f formulation of
Secs. 2.2 and 2.3. That free-energy term plays a
definite role in the free-energy balance for low-k⊥,
low-frequency turbulence, which causes it to have
a preferred sign and a nonzero average, even in
fully nonlinear, saturated turbulence. Due to the
correspondence of forms between the momentum flux
and free-energy transfer terms, this symmetry breaking
causes a definitely-signed momentum flux in real space,
in particular transferring co-current momentum in the
radially outward direction, leading to counter-current
toroidal rotation peaking in the core.

4.1. Geometry of the E ×B Drift

The symmetry breaking results from a skewness in
the symmetry transform, as we discussed in the
previous section. We will concretely evaluate this
symmetry breaking and the resulting momentum flux
using a simple, geometric formulation. Although
we will write things in terms of our local flux-tube
coordinates x, y, and s, our analysis rests on only
the few properties that we list now, all of which are
necessary for the construction of the delta-f geometry
and its symmetry properties: Since the geometry is
axisymmetric with good nested flux surfaces, we may
specify radial position with a flux-surface label x,
which is axisymmetric and satisfies b̂·∇x = 0. Poloidal
position is specified by a distended but axisymmetric
poloidal angle label s. The binormal coordinate y
is chosen so that b̂ · ∇y = 0, allowing it to label
perpendicular position within the flux surface. These
choices are necessary for our symmetry arguments:
The definition of y allows us to conclude that b̂ · ∇ =
(b̂ ·∇s)∂s so ∂s|x,y = (b̂ ·∇s)−1b̂ ·∇ captures only slow
variation, a fact that is used in the delta-f orderings.
The choice of an axisymmetric poloidal coordinate s,
combined with the necessarily axisymmetric definition
of x, implies that the partial ∂y|x,s is proportional to a
simple toroidal derivative (ϕ̂ · ∇ for ϕ̂

.= R∇ϕ), since
holding x and s fixed is equivalent to holding R and
vertical position z fixed. This property implies that
that ∂y|x,s vanishes (exactly) for any axisymmetric
quantity and that toroidal periodicity implies simple
periodicity in y, both facts that we used in deriving the
structure of the radially local geometry (Sec. 2.2) and
the symmetry transform’s constraints on momentum
flux (Sec. 3).

Consider next the contribution of the neglected
portion of the E × B drift in a simple, geometric
way. Defining the radial and poloidal directions x̂

.=

(∇x)/|∇x| and p̂
.= ϕ̂× x̂, decompose b̂ = bT ϕ̂ + bpp̂.

Since x̂ × b̂ = (ϕ̂ − bT b̂)/bp, the radial component of
the E ×B drift is
vE · x̂ = c

B
b̂×∇(J0φ) · x̂ = c

bpB
(ϕ̂− bT b̂) ·∇(J0φ),(33)

c.f. the upper left of Fig. 4. For the momentum flux
[Eq. (12)], we actually need the contravariant radial
component of the E × B drift, which we may write
as21

vxE
.= vE · ∇x = vxE1 + vxE2, (34)

for
vxE1

.= − c

B0
∂y(J0φ), vxE2

.= c

B
by∂s(J0φ), (35)

in which by
.= b̂ ·∂y|x,sR = −2πRbTL‖/V ′ ∼ −bT /bp is

the covariant y component of the magnetic direction.
In either Eq. (33) or (34), the first term is the leading-
order contribution. The symmetry arguments in Sec. 3
demonstrated that the statistically averaged radial flux
of parallel toroidal angular momentum due to this term
must vanish, when calculated with the solution of the
delta-f equations given in Sec. 2.2. The second term
[vxE2 in Eq. (34)] is smaller than the first term by
k‖/(k⊥bp), thus is neglected in Eq. (18). This term
represents neither true parallel physics nor particle
acceleration, rather it simply cancels the parallel
gradient contribution that was incorrectly included in
the first term, leaving the true ∇⊥(J0φ), as is needed
for a geometrically exact evaluation of the radial E×B
drift. The domain-averaged contribution of vxE2 to
the radial flux of mechanical parallel toroidal angular
momentum is given by Π(2)

ϕ =
∑
s Π(2)

ϕs for22

Π(2)
ϕs

.= V −1
pl

∫
dΛ fsmsv‖bϕv

x
E2

= 1
Vpl

−2πc
BθV ′

∫
dΛ fsmsv‖b

2
ϕ∇‖J0φ, (36)

with Vpl the domain volume. Noting that bϕ(+s) =
bϕ(−s) for an up-down symmetric magnetic geometry,
it is readily verified that Π(2)

ϕs is invariant under
the symmetry transform, thus is not restricted from
driving a residual stress. Further, as we will now show,
the connection of this term with the free energy flux
will actually force it to break symmetry and drive
residual stress in parameter regimes where there is
significant energy transfer to ion parallel flows.
21From Sec. 2.2, recall the Clebsch form B = B0∇x × ∇y and
the unit Jacobian (∇x×∇y · ∇s)−1 = 1, which lead to

vE · ∇x = (c/B2)B · [(∂yJ0φ)∇y + (∂sJ0φ)∇s]×∇x

= −(c/B0)∂y(J0φ) + (c/B)(∂sJ0φ)b̂ · ∂yR.

22Note that the global flux-surface averages used in the full-F
Eq. (12) correspond to a full domain average in the radially local
Eq. (36).
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x̂×
b̂ ∝ b̂

∝ ϕ̂

ϕ̂

p̂
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Figure 4. Side view of a toroidally asymmetric low-frequency
fluctuation, with darker shading again showing larger ñi,
proportional to φ̃ by the low-k⊥ electron adiabatic response.
At frequencies . k‖vti, ions flow along b̂ out of the density
hump. The radial E ×B drift, proportional to x̂× b̂ · ∇(J0φ) is
decomposed into a part vxE1 due to toroidal potential variation
(ϕ̂·∇φ) and a part vxE2 due to parallel potential variation (b̂·∇φ).
Although vxE1 (not shown) is now nonzero, its leading-order
contribution to the momentum flux vanishes by symmetry. The
correction term vxE2 breaks the symmetry and brings counter-
(co-)current parallel momentum inwards (outwards).

4.2. Free energy and momentum fluxes

As we have stressed, the symmetry-breaking momen-
tum flux Π(2)

ϕ results simply from the E×B advection
of parallel toroidal angular momentum, with ∇‖(J0φ)
appearing due to a symmetry-breaking correction vxE2

to the leading-order fluxtube approximation for the
E×B drift. Nevertheless, Π(2)

ϕs has a very similar form
to the domain-averaged term

T
‖
φs

.=−
∫ dΛ
Vpl

Zev‖fs∇‖J0φ=−
∫ dΛ
Vpl

Zev‖f
od
s ∇‖J0φ,(37)

which appears in Eqs. (22) and (30) and captures free
energy transfer from the potential (UδE) to parallel
flows (Uod

δs ) via electrostatic parallel acceleration. [This
energy transfer is sometimes referred to as “Landau
damping” in kinetic wave calculations. This must
be distinguished from “Landau closure,” which refers
to dissipative terms added to gyrofluid models to
model the kinetic damping of higher moments by phase
mixing.] The integrand in T

‖
φs is almost directly

proportional to that of Π(2)
ϕs , which differs only by

a species-dependent constant factor times the b2
ϕ =

b2
TR

2 ≈ R2 weighting, approaching a constant factor
for large aspect ratio. Noting that Π(2)

ϕ is dominated
by the ion contribution Π(2)

ϕi , and assuming either large
aspect ratio or a not-too-strong poloidal variation of
the energy transfer terms, a net free energy transfer
from the potential UδE into ion parallel flows Uod

δi ,
equivalent to T ‖φi > 0, implies that Π(2)

ϕ will be nonzero
with the sign of Bθ, equivalent to the sign of the
toroidal plasma current Ip, corresponding to a radially
outward flux of co-current momentum.

Why should we expect net energy transfer to
ion parallel flows? The answer follows quite simply
from the structure of the energy equations for the
decomposition of fs into its even-in-v‖ (“state”)
portion f ev

s and odd-in-v‖ (“flux”) portion fod
s , as

derived in Sec. 2.3. The background Maxwellian FsM

and its radial gradient F ′sM are even in v‖. For this
reason, the even portion of the free energy (U ev

δs )
contains by far the dominant energy source, resulting
from the E × B heat flux down the profile gradients∫

dΛ f ev
s Ts0(c/B0)∂y(J0φ)(F ′sM/FsM ). In contrast, the

odd portion of the free energy (Uod
δs ) has only the

typically weak source due to magnetic flutter transport
−
∫

dΛfod
s v‖Ts0B

−1
0 ∂y(J0A‖)(F ′sM/FsM ). Since much

of the free energy dissipation acts on
∑
s U

od
δs while the

dominant source is in
∑
s U

ev
δs , a steady-state energy

balance will require nonvanishing free energy transfer
from

∑
s U

ev
δs to

∑
s U

od
δs . Consulting Eqs. (29)–(31)

and Fig. 2, there are only two basic transfer channels
to accomplish this. First, there is a direct transfer
mechanism, related to parallel flow generation by the
parallel pressure gradient, that is given in the equal-
and-opposite second rows of Eqs. (29) and (30). These
terms have no counterpart in the fluxes on the RHS
of Eq. (12), thus do not result in a symmetry-breaking
momentum flux. However, there is also an indirect
transfer mechanism, passing energy from U ev

δs through
UδE, then completing the energy transfer to parallel
flows by electrostatic parallel acceleration T

‖
φs, which

due to the close relation to Π(2)
ϕs is indeed capable of

causing momentum flux.
Let’s consider a typical scenario for this second

energy-transfer pathway: Recall first that due to the
electrons’ small mass, their contribution to Π(2)

ϕ (and
to the toroidal momentum flux in general) is quite
small.23 So, in order for Π(2)

ϕ to take significant
values, the free energy transfer terms must act to excite
ion parallel flows (T ‖φi 6= 0). It is very difficult for
this to occur unless there are potential fluctuations at
frequency scales ω . k‖vti ∼ vti/qR, since at higher
frequencies there are very few ions in resonance with
the parallel phase velocity ω/k‖. We may estimate
turbulent frequencies roughly with the drift frequency
ω ∼ k⊥ρivti/L⊥, for L⊥ the plasma gradient scale
length, of order the device minor radius a for typical
core turbulence. In that case, we see that our low-
frequency requirement will typically be satisfied only
for low k⊥ fluctuations, k⊥ρi . L⊥/qR, about k⊥ρi .

23Note also that unlike T ‖
φs
, there is no factor of species charge

Z in Π(2)
ϕs , so we expect ion and electron contributions to add in∑

s
Π(2)
ϕs for the common case that they approximately cancel

in
∑

s
T
‖
φs
. However, the electron contribution is smaller by at

least ∼ (me/mi)1/2, so we neglect it.
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|bp| in the core. For the typical tokamak case bp =
Bp/B � 1, these k⊥ are low enough that J0 ≈ 1
and Γ0s ≈ 1. Further, these frequencies are so low
compared to electron parallel transit that electrons
approximate adiabatic response, f̃ ev

e ≈ FeMeφ̃/Te0. In
this case, energy transfer from U ev

δe into Uod
δe via the

second row of Eq. (30) for electrons is approximately
cancelled by transfer from Uod

δe to UδE via T
‖
φe < 0

[in the first row of Eq. (30)].24 The energy is then
transferred from UδE to ion parallel flows Uod

δi via
T
‖
φi > 0. This final transfer will result in a radially

outward flux of co-current momentum via Π(2)
ϕ . The

dominant energy pathways for this regime are sketched
with thick green arrows in Fig. 2.

As an alternate viewpoint, note that for approx-
imately adiabatic electrons and k⊥ρi � 1, the Pois-
son equation constrains the ion gyrocenter density to
be ñi/ni0 ≈ eφ̃/Te0 (although it does not restrict the
fluctuating ion temperature or detailed shape of the
ion distribution function). In this case, density fluc-
tuations may cause a correlation between ion pressure
fluctuations and φ̃, so that the ∼parallel ion pressure
acceleration captured by the second row of Eq. (30) will
typically be accompanied by an electrostatic ion paral-
lel acceleration due to T ‖φi [in the first row of Eq. (30)],
so that the net nonvanishing energy transfer into Uod

δi

comes partially from T
‖
φi > 0, resulting in nonzero Π(2)

ϕ

with the sign of Ip.25

The energy transfer term T
‖
φi contains contribu-

tions from axisymmetric as well as nonaxisymmetric
portions of fi and φ. The axisymmetric portion cap-
tures an energy transfer involved in geodesic acoustic
mode (GAM) damping, as sketched in Fig. 1 and dis-
cussed in detail in Ref. [23]. In the present notation,
the GAM energy pathway appears as follows: Turbu-
lent Reynolds stress excites a zonal E × B flow, the
kinetic energy of which is contained in the axisymmet-
ric part of UδE. The E × B compressibility (due to
∇B) results in an energy transfer to density fluctua-
tions, acting here via the K(J0φ) term in ∂tU ev

δs .26 Due
to the low-k⊥ adiabatic electron response, the resulting
parallel density gradient is matched by a parallel elec-
24The nonzonal curvature-mediated energy transfer term ∝
f̃ev
e K(J0φ̃) also becomes small for adiabatic electrons, although
this is not central to our argument.
25The electrostatic energy transfer T

‖
φi

in this case will be
(ZTe0/Ti0) times the energy transfer to ion parallel flows due to
the parallel density gradient. However, the nonvanishing parallel
ion temperature gradient may behave quite differently from the
density gradient.
26 In principle, other physics (such as a spatially varying
turbulent density flux) could also excite an axisymmetric but
poloidally asymmetric density, leading to an axisymmetric spin-
up term in the same way as the GAM damping. However, this
seems unlikely to occur, as there is no apparent statistical or
energy-flux drive for this mechanism.

tric field, which transfers energy to ion parallel flows,
corresponding to T ‖φi > 0 and causing a radial outflux
of co-current momentum via Π(2)

ϕ .
To close this section, we may use the above analy-

sis to derive a scaling for the spin-up resulting from
Π(2)
ϕ . We assume that a fraction 0 ≤ fL ≤ 1 of

the free energy is transferred to ion parallel flows by
T
‖
φi.27 Although fL must generally be determined

by numerical simulation, it will tend to be order-
unity for low-frequency turbulence ω . k‖vti and
very small for higher-frequency turbulence ω � k‖vti.
The domain-averaged free energy source may be es-
timated as V −1

pl
∑
s

∫
dΛ fs c

B0
∂y(J0ψe)Ts0F

′
sM/FsM ∼∑

sQs/LTs, for Qs and LTs respectively the species’
heat flux and temperature gradient scale length. If
a fraction fL of this passes through T

‖
φi, then T

‖
φi ∼

fL
∑
sQs/LTs ∼ fLQ/L⊥, so we get a domain-

averaged residual stress around

Π(2)
ϕ ∼

2πmic

ZeBθV ′
R2T

‖
φi∼fL

R

Ωciθ

∑
s

Qs
LTs
∼fL

ρiθ
L⊥

QR

vti
,(38)

for ρiθ
.= vti/|Ωciθ|, vti

.= (Ti0/mi)1/2, and (signed)
Ωciθ

.= ZeBp/mic. To estimate the magnitude of
the core rotation peaking, we need to balance this
residual stress against viscous saturation: Let Uϕ be
the core rotation peaking Mach number, with Uϕvti
roughly defined as toroidal rotation at the q = 1 surface
minus toroidal rotation at the pedestal top. Taking
Qi → χini0Ti0/LTi, Qe → χene0Te0/LTe, and viscous
momentum flux to χϕni0miRUϕvti/Lϕ for transport
coefficients χi, χe, and χϕ, we may balance the angular
momentum fluxes:

χϕ
ni0miRUϕvti

Lϕ
=−Π(2)

ϕ ∼−fL
R

Ωciθ

∑
s

χs
ns0Ts0

L2
Ts

. (39)

If we then assume χϕ ∼ χi and (for simplicity) χi ∼ χe,
LTi ∼ LTe ∼ Lϕ → L⊥, ni0 ∼ ne0, Te0 ∼ Ti0, we get
the simple estimate

Uϕ ∼ −fL
vti

ΩciθL⊥
, (40)

or, using Ampere’s Law 2πrBp∼4πIp/c and assuming
Z=1,

Uϕvti ∼ −5fL
T0(keV)
Ip (MA)

r

L⊥
km/s, (41)

resembling the scaling of rotation peaking observed
in discharges with counter-current peaking, and
comparable in magnitude for order-unity fL.[4, 5, 7,
8, 9, 10]
27Note that this definition of fL is slightly different than that
in Ref. [23], where fL also includes energy transfer due to the
parallel gradient of ion pressure.
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5. Discussion

In this section, we will highlight some features of
our symmetry-breaking momentum flux, including
requirements for a minimal model, possible effects of
electromagnetic fluctuations, the role of full-F energy
balance, and preliminary comparison with experiment.

Our momentum flux term Π(2)
ϕ is independent

of toroidal rotation and its radial gradient, thus
represents a residual stress. The symmetry-breaking
occurs due to the similarity in form between the
residual stress term Π(2)

ϕ and the free-energy transfer
term T

‖
φi. Fundamentally, T

‖
φi has a preferred

sign because of steady-state free-energy balance in
parameter regimes where strong dissipation acts via
the ion parallel flow energy Uod

δi , as demonstrated
in Sec. 4.2.28 In particular, this symmetry breaking
follows from free-energy balance for fully saturated
turbulence, thus it is a truly nonlinear mechanism.
Unlike quasilinear calculations, our model does not
rely on any assumed linear phase relationships. Since
our momentum flux is driven by a free-energy transfer
term, rather than a source term, damped modes
(like GAMs) may be as important (or more) as the
unstable modes in driving this term. However, our
spin-up mechanism may only act in regimes with
low-frequency turbulent fluctuations ω . k‖vti, since
higher-frequency fluctuations do not strongly excite
ion parallel flows. One important consequence is that
this mechanism is likely weak in the edge region since
the steepness of the edge profiles Ledge

⊥ � (k⊥ρi/k‖)
implies that edge turbulence drift frequencies ∼
k⊥ρivti/L

edge
⊥ are much higher than k‖vti, while typical

edge q is large enough to prevent effective ion Landau
damping of GAMs.

The minimum requirements for a set of equations
to model this residual stress mechanism are less
stringent than one might expect. Our model is radially
local, and does not rely on any profile effects, so a
radially local delta-f model is enough. Either linear
or nonlinear polarization may be used in general, as
long as the conservative structure is not violated, since
the relevant linear-polarization simplification is the
one made to the energy transfer term, e.g. to discard
(Ṙ · ∇Hp) relative to (Ṙ · ∇H1) in Eq. (10), almost
always a good approximation.29 Further, even though
28 In principle, our mechanism could drive co-current rotation
peaking for T ‖

φi
< 0, an “inverse Landau damping” regime,

as occurs quasilinearly for the slab ITG mode. However, this
situation is unlikely to occur in saturated turbulence, due to
the absence of any strong free-energy source for Uod

δi and to the
tendency of the electron adiabatic response to drive ion parallel
flows.
29 In either case, one may evaluate the Hamiltonian drifts in
this term’s Ṙ as (c/ZeB∗‖)b̂ × ∇H0, since b̂ × ∇(H1 + Hp)
· ∇(H1 +Hp) = b̂×∇H1 · ∇H1 = 0.

the momentum flux term results from a higher-order
drift that does not affect the leading-order delta-f
fluctuations, the statistics of that momentum flux Π(2)

ϕ

are slaved to the free-energy transfer term T
‖
φi, which is

already well-determined at leading order. In this sense,
the momentum flux is ’parasitic’: it is determined
by leading-order fluctuations, but does not directly
feed back on them, although the eventual resulting
rotation profile may have an effect. Even so, self-
consistent simulations retaining vxE2 remain desirable,
in order to verify that the predicted momentum
flux is not significantly modified by other effects of
the geometrically higher-order portion of the E × B
drift. Critically, the model must respect the relevant
conservation laws, specifically free energy conservation
for the delta-f equations, since it is the steady-state
free-energy balance that drives the symmetry breaking.

How do electromagnetic effects modify our
picture? Note first that for a typical low-β plasma,
the Alfvén speed is much faster than the ion thermal
speed, so electromagnetic fluctuations are generally too
high-frequency to excite our residual stress mechanism.
They are also fast enough that electron response is
not even approximately adiabatic. Further, note that
the symmetry-breaking portion of the E × B drift
(vxE2) follows only from ∇‖φ, the linear, electrostatic
portion of the parallel electric field E‖. Although the
fluctuating vector potential may contribute to the E×
B drift via fluctuating magnetic direction, magnetic
field strength, and inductive electric field, all of these
are much smaller than our symmetry-breaking portion,
given in Eqs. (33) and (34),30 thus may be neglected in
evaluating vE. However, the inductive parallel electric
field −c−1∂tA‖ may contribute significantly to E‖,
30Let’s estimate contributions of the fluctuating vector potential
to vxE , compared with our symmetry-breaking portion vxE2 =
(c/B0)by∇‖(J0φ) ∼ cφ̃/B0r. First, fluctuations in the magnetic
direction b̃ = B−1∇ × (A‖b̂) = B−1(∇A‖) × b̂ + B−1A‖∇ × b̂
are seen to be small:

(c/B)b̃×∇(J0φ)·∇x=(c/B2)[(∇A‖×b̂)+A‖(∇×b̂)]·∇(J0φ)×∇x

with
c
B2 (∇A‖×b̂)·∇(J0φ)×∇x

(c/B0)by∇‖J0φ
=
−(∇A‖·∇x)∇‖J0φ

(B2/B0)by∇‖J0φ
∼bp

k⊥A‖

B
�1

and
c
B2A‖(∇× b̂) · ∇(J0φ)×∇x

(c/B0)by∇‖(J0φ)
∼
A‖R

−1(k⊥φ)
Bφ̃/r

∼
k⊥A‖

B

r

R
� 1.

For the inductive electric field, note that only the perpendicular
portion of the perturbed vector potential A⊥ contributes to the
E ×B drift. Pressure balance allows us to order the fluctuating
field strength B̃‖ by taking 8πp̃ ∼ (B0 + B̃‖)2 − B2

0 ≈ 2B0B̃‖
for fluctuating plasma pressure p̃, thus k⊥A⊥/B ∼ B̃‖/B ∼
8πp̃/2B2. Taking ∂tp̃ ∼ vE · ∇p0 ∼ (c/B0)k⊥φ̃p0/L⊥ we may
then estimate the relative contribution
c
B

b̂× c−1∂tA⊥

(c/B0)by∇‖(J0φ)
∼
∂t4πp̃/k⊥B

cφ̃/r
∼

4πp0

B2
r

L⊥
� 1,
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actually cancelling the −∇‖φ term in the ideal MHD
regime.31 Since the energy transfer from fields to Uod

δi

is due to ion parallel current times the total E‖, as one
may infer e.g. from Eq. (30), the effect of ∂tA‖ will be
to decorrelate the net energy transfer to flows from the
∝ fod

i v‖∇‖φ transfer term, which is all that appears
in the momentum flux Π(2)

ϕi . So, rotation peaking due
to our mechanism may be expected to be very weak
or absent in strongly electromagnetic regimes such as
ideal MHD.

Interestingly, a term analogous to T ‖φs appears in
the full-F energy balance [Eqs. (9) and (10)], coming
from the parallel flow (v‖B/B∗‖) part of Ṙ. This
shows that the net free-energy transfer from electrons
to ions in the ∼adiabatic electron case (Sec. 4.2) is
accompanied by a transfer of actual thermal energy
from Fe to Fi. In certain regimes with Te0 > Ti0, it
is therefore not impossible that full-F thermal energy
transfer from electrons to ions could also drive rotation
peaking. However, the size of this transfer channel
is small: it may be estimated as

∫
dΛFsv‖(B/B∗‖) ·

∇ZeJ0φ ∼ (ρ2
∗k‖vti)ne0Te0Vpl ∼ ne0Te0Vpl/τE for

ρ∗
.= (ρi/L⊥) � 1 and gyro-Bohm τE ∼ (L⊥/ρ2

∗vti),
taking profile scale length L⊥ of the same order as
k−1
‖ . In contrast, collisional energy transfer should

occur at a rate ∼ νiene0(Te0 − Ti0)Vpl for electron-ion
energy-transfer collision rate νie. Assuming νieτE �
1, as is both typical for present-day experiments
and required for any eventual fusion reactor, simple
electron-ion collisions will dominate the FeH0 ↔
FiH0 transfer pathway and keep the two species’
temperatures similar, at least in the core where the
parasitic momentum flux may be active.

Are there other related forms between energy
transfer channels and momentum flux terms? While
this is not impossible, a careful comparison of the mo-
mentum flux terms in Eq. (12) with the energy transfer
terms in Eqs. (29)–(32) has not exposed another pair
comparable to Π(2)

ϕ and T ‖φi.32 For Eqs. (9)–(11), which

assuming a low-β plasma. Modification of the B−1 factor is
similarly small in β, since

c[(B+B̃‖)−1−B−1]b̂×∇(J0φ)
(c/B0)by∇‖(J0φ)

∼(k⊥r)
B̃‖

B0
∼(k⊥r

p̃

p0
)
4πp0

B2 � 1,

where k⊥rp̃/p0 is broadly order-unity.
31 In fact, in a near-ideal-MHD regime, one may estimate that
the small surviving E‖ will be anticorrelated with (−∇‖φ), which
could potentially lead to co-current peaking. However, this effect
(if any) would be very weak due to high frequencies and the near-
cancellation between −c−1∂tA‖ and −∇‖φ in E‖.
32This is easily verified by grouping terms by powers of
v‖, φ, and A‖. If you use the flux-divergence form
−〈Fs∂ϕ(H − Ze

c
v‖J0A‖)〉 from Eq. (12), recall the implicit sum

over species, then note that the combinations ZeFs, Zev‖Fs,
Zefs, Zev‖fs are constrained by the Poisson equation and
Ampère’s Law, thus behave quite differently from terms with
even powers of Z or with factors of ms. Alternatively, this term

use nonlinear polarization, the full-F energy transfer
term [−

∫
dΛFsv‖(B/B∗‖) ·∇Hp] has a partner term in

the momentum flux equation [the geometric correction
to 〈Fsmsv‖bϕ(c/ZeB∗‖)b̂ × ∇Hp · ∇V 〉]. This pair is
analogous to T ‖φi and Π(2)

ϕ , but is much smaller since
Hp � H1.

A detailed, quantitative comparison with experi-
ment is well beyond the scope of a simple analytical
model as presented here, but we offer a few brief com-
ments. First, the basic scaling [Eqs. (39)–(41), roughly
predicting the toroidal velocity at the q = 1 surface mi-
nus that at pedestal top] exhibits Rice-like scaling ∝
T0/Ip and is of the same order of magnitude as exper-
imental observations of counter-current core rotation
peaking [4, 5, 7, 8, 9, 10]. Since our model is a residual
stress, it is consistent with peaked intrinsic rotation
profiles that pass through zero [4, 5, 6, 7, 8, 9, 10].
The dependence of this model solely on turbulence
properties, rather than depending on equilibrium ef-
fects like neoclassical flows, allows it to be consistent
with the threshhold-like dependence exhibited by core
rotation reversals [7, 14, 29]. As one other interesting
point of comparison, an extensive database of intrinsic
rotation discharges (in L- and H-modes, with various
heating methods) showed a robust linear relationship
between density peaking and counter-current core ro-
tation peaking [8]. Particle peaking in the core is re-
lated to electron drift resonance, which becomes active
for ω . k⊥vteρe/R [30, 31], a frequency criterion that
is quite similar to that for our counter-current peak-
ing mechanism ω . vti/qR, with typically order-unity
ratio (k⊥vteρe/R)/(vti/qR) ∼ qk⊥ρi(ZTe0/Ti0). This
suggests that turbulence regimes that have a lot of low-
frequency fluctuations will independently excite both
density and counter-current rotation peaking, while
those with predominantly higher-frequency turbulent
fluctuations will not excite either. More quantitative
comparisons will require numerical simulation, while
qualitative tests could look for correlations between ro-
tation peaking and turbulent fluctuation regimes, ex-
pecting counter-current peaking to occur together with
low-frequency electrostatic turbulence.

6. Summary

We identify a portion of the radial E×B drift, usually
neglected in local delta-f formulations, that drives an
outward flux of co-current momentum, resulting in
counter-current rotation peaking in the tokamak core.
This part of the E × B drift, vxE2, is smaller than
the typically retained portion (vxE1) by k‖/(k⊥bp) but,
unlike vxE1, it is not prohibited from driving residual
stress in an up-down symmetric magnetic geometry

can be recast in explicit flux-divergence form, following Ref. [18],
removing the near cancellation.
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(Secs. 3 and 4.1). Further, Π(2)
ϕi , the advection of ion

parallel toroidal momentum by vxE2, has an extremely
similar form to T ‖φi, the term for free-energy transfer
from the electrostatic potential energy UδE to ion
parallel flow energy Uod

δi [Eqs. (36) and (37)]. Since
the dominant free energy source supplies energy to
f ev
s (the even-in-v‖ portion of delta-fs), while much
of the dissipation acts on fod

s (the odd-in-v‖ portion
of delta-fs), steady-state free-energy balance implies
a net energy transfer from

∑
s U

ev
δs to

∑
s U

od
δs . At low

frequencies, electron adiabatic response causes much of
this transfer to go to Uod

δi via UδE, resulting in T ‖φi > 0
thus Π(2)

ϕ 6= 0 with the sign of Bθ, corresponding to
an outflux of co-current toroidal angular momentum
(Sec. 4.2). This momentum flux is a residual stress that
results from robustly nonlinear symmetry breaking,
with no use made of any quasilinear approximations.
The use of a free-energy-conserving delta-f model is
key to recover this result, but higher-order corrections
to the delta-f gyrokinetic equation are not needed.
The momentum flux exhibits a scaling and order
of magnitude that are consistent with experimental
observations [Eqs. (39)–(41)]. The flux becomes small
at high frequencies ω � k‖vti, which may explain
the experimentally observed correlation between core
density and counter-current rotation peaking.
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Appendix A. Derivation using Lagrangian
Field Theory

The Lagrangian field theory underlying the gyrokinetic
equations used here was first derived in Ref. [24]. In
this Appendix, included for completeness, we apply
the formalism to a specific Lagrangian to derive the
full-F equations given in Sec. 2.1, closely following
Ref. [25]. Most symbols are defined in Sec. 2.1. Recall
that we use a symplectic formalism here, in which
electromagnetic fluctuations (A‖) are included in A∗

and potential (φ) fluctuations in H.
We begin with a single-particle Lagrangian for

species s,

Lps (z, ż, t) .= Ze

c
A∗ (z, t)·Ṙ+µmsc

Ze
ϑ̇−H (z, t) ,(A.1)

where ϑ is the gyroangle. In the definition of Lps,
the phase-space coordinates are z

.= (R, v‖, µ, ϑ),

with time derivatives ż = (Ṙ, v̇‖, µ̇, ϑ̇) treated as
independent variables. Neither A∗ nor H depend
on ż. The field variables A‖ and φ, implicit in A∗

and H respectively, are evaluated at the gyrocenter
position R. (The effects of gyroaveraging are explicitly
included in the form of Lps.) Consider then phase-
space trajectories zs(zs0, t) and żs(zs0, t) defined over
a time interval t ∈ [t0, t1], constrained by zs(zs0, t0) =
zs0. Use Ds to denote the phase-space Jacobian for
species s, so that

∫
d6zDs indicates integration over

phase space. The system Lagrangian is then defined
as

L
.=
∑
s

∫
d6zs0Ds0(zs0)Fs0(zs0)Lps(zs(zs0,t),żs(zs0,t),t)

− 1
8π

∫
dV |∇⊥A‖|2. (A.2)

We will seek extrema of the corresponding action
integral

I
.=
∫ t1

t0

dt L (A.3)

under variation of the trajectories zs(zs0, t) and fields
φ(R, t) (in H) and A‖(R, t) (in A∗). The endpoints
in time and space are held fixed, for both trajectories
and fields.

Variation of the trajectories zs → zs + δzs (one s
at a time) leads to Euler-Lagrange equations that give
the characteristics,33 which may be written in standard
form in terms of Lps:
dt (∂żsLps) = ∂zsLps, (A.4)
where dt is the time derivative along the trajectories, as
usual.34 In Eq. (A.4), the ϑ component yields µ̇ = 0,35

the v‖ component yields b̂ · Ṙ = v‖,36 and the R
component yields
Ze

c
dtA

∗(zs (t) , t) = Ze

c
∂R|Ṙ

(
A∗ · Ṙ

)
− ∂RH. (A.5)

Expanding dt → ∂t + Ṙ · ∂R + v̇‖∂v‖ and using the
vector identity ∇(A∗ · Ṙ) = Ṙ× (∇×A∗)+(Ṙ ·∇)A∗
with ∇ .= ∂R|v‖,µ,ϑ,ż here, this may be rewritten as

msb̂v̇‖ −
Ze

c
Ṙ×B∗ = −∇H − Ze

c
b̂∂tJ0A‖. (A.6)

Taking the perpendicular (b̂×) and ∼parallel (B∗·)
components of Eq. (A.6) yields Eqs. (1) and (2).
We may also take the µ component to determine ϑ̇,
33Note that Ds0(zs0), Fs0(zs0), and the field term
−
∫

dV |∇⊥A‖|2/8π are all independent of the trajectories
zs.
34As one does the variation of L considering Lps to depend on
zs0 and t, one may identify dt = ∂t|zs0 .
35This follows since H and A∗ are both independent of ϑ.
36Here we used the fact that (H − msv2

‖/2) and J0 are both
independent of v‖, in this symplectic formulation.
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but this is unnecessary since all other equations are
independent of ϑ and ϑ̇.37

The distribution function Fs is mapped to
Eulerian coordinates by the conservation of phase-
space trajectories:

Ds(z,t)Fs(z,t)=
∫

d6zs0Ds0(zs0)Fs0(zs0)δ6(z−zs(zs0,t)),(A.7)

with time partial38

∂t(DsFs)=
∫

d6zs0Ds0(zs0)Fs0(zs0)(−żs·∂z)δ6(z−zs(zs0,t))

=−∂z·
[∫

d6zs0Ds0(zs0)Fs0(zs0)żs(zs,t)δ6(z−zs(zs0,t))
]

=−∂z · [Ds (z, t)Fs (z, t) ż (z, t)] . (A.8)
Noting that the velocity-space Jacobian is 2πB∗‖/ms,
Eq. (A.8) is equivalent to Eq. (3).39

Finally, we must solve for the fields. Varying the
function φ→ φ+ δφ in I yields the Poisson equation40

0=
∑
s

∫ dW
B∗‖

[
ZeJ†0(B∗‖Fs)+J

†
0(B∗‖MJ0φ)−φJ†0(B∗‖M)

]
,(A.9)

whereM is defined in Eq. (7) and J†0 is the adjoint to
J0 under spatial integration

∫
dV. Similarly, varying

A‖ → A‖ + δA‖ in I yields the gyrokinetic Ampère’s
Law

∇2
⊥A‖ = −4π

c

∑
s

∫ dW
B∗‖

ZeJ†0

(
B∗‖v‖Fs

)
. (A.10)

If we assume J0 to be self-adjoint under
∫

dV, then
Eqs. (A.9) and (A.10) reduce to Eqs. (6) and (8). Note
that the energy and toroidal angular momentum are
also conserved in a more general system with J†0 6= J0,
as long as Eqs. (A.9) and (A.10) are used instead of
Eqs. (6) and (8).

A conservative system with linearized polarization
may also be derived via the above procedure, if one
simplifies the Hamiltonian to H0 +H1 and adds a field
term −

∑
s

∫
d6zDsM (z)FsM (z)Hp(z, t) to the system

Lagrangian L. [In the field term, FsM is a static
background distribution function, typically taken to be
Maxwellian, and DsM is a static background Jacobian
37Since ϑ̇ and Ds are independent of ϑ, if we assume Fs0 is also
independent of ϑ, then so is Fs at all t. Alternatively we may
consider the “ring average” 1

2π

∫
dϑFs, which is independent of

ϑ for any Fs0 and which supplies all the needed information for
the other equations [Eqs. (1), (2), and ring-averaged Eqs. (A.8),
(A.9), and (A.10)].
38Note that zs and żs are functions of zs0 and t alone. In
particular, both zs and żs are independent of z.
39The real-space Jacobian is independent of t and v‖, and is
implicit in the divergence operator ∇·.
40The extremization is conceptually clearest if one takes φ →
φ+αη for real number α and function η(R, t), then sets ∂αI = 0
at α = 0, for arbitrary η. It is convenient to multiply the
integrand in I by 1 =

∫
d6z δ6(z − zs(zs0, t)). The boundary

term at µ = 0 vanishes because J0(µ = 0) is the identity
operator.

(neglecting A‖), thus with velocity-space portion
simplified to a multiple of B∗‖M

.= b̂·∇×(A+ c
Zemsv‖b̂).

Although the field term does not involve the phase-
space trajectories zs(zs0, t), thus knows nothing about
the time-dependent Fs, it retains information about
φ(R, t) via the time- (but not trajectory-) dependent
Hp(z, t).] Varying the simplified system, one finds
that the characteristics [Eqs. (1) and (2)], gyrokinetic
equation [Eq. (3) or (5)], and Ampère’s Law [Eq. (8)
or (A.10)] are unchanged, except for the simplified H.
Varying the modified I with respect to φ produces a
Poisson equation identical to Eq. (A.9), except for the
substitutionM→MM with

MM

.= −Z
2e2

BB∗‖
∂µ

(
B∗‖M

FsM

)
. (A.11)

Commonly used simplifications of MM are given in
Ref. [25], but are not needed for the present work.

Appendix B. Toroidal Angular Momentum
Conservation

In this Appendix, we demonstrate that the gyrokinetic
system given by Eqs. (1)–(3) and (6)–(8) conserves
toroidal angular momentum, working directly from the
referenced equations themselves. The derivation pro-
ceeds in two steps, roughly following Ref. [18]. First,
we calculate the evolution of the canonical toroidal an-
gular momentum Pϕ

.= Ze
c Aϕ + (Zec J0A‖+msv‖)bϕ =

Ze
c A
∗
ϕ along the trajectories given by Eqs. (1) and (2).

Second, we use quasineutrality to eliminate the con-
tribution of the equilibrium vector potential A from
the conserved toroidal angular momentum. We use a
standard axisymmetric field formulation B = Bϕ∇ϕ+
∇Aϕ × ∇ϕ, with simple toroidal angle ϕ,41 Bϕ =
B · R2∇ϕ, and Aϕ = A · R2∇ϕ. We may decom-
pose any arbitrary vector as w = wϕ∇ϕ + wp with
wϕ = w · R2∇ϕ and wp · ∇ϕ = 0, in terms of which
∇ × w = ∇wϕ × ∇ϕ + ∇ × wp and (∇ × wp)p =
∇ϕ × ∂ϕwp, where ∂ϕ

.= [(R2∇ϕ) · ∇]. We also use
the relation 〈∇ ·w〉 = ∂V 〈w · ∇V 〉 for the flux-surface
average of a divergence.[26]

As our first step, we evaluate dtPϕ
.= ∂tPϕ +

Ṙ · ∇Pϕ + v̇‖∂v‖Pϕ along the characteristics given by
Eqs. (1) and (2):

B∗‖dtPϕ=(∇A∗ϕ×b̂−bϕB∗)·∇H+Ze

c
v‖B

∗ ·∇A∗ϕ.(B.1)

Decomposing A∗ = A∗ϕ∇ϕ+A∗p and b̂ = bϕ∇ϕ+b̂p, for
which (∂ϕA∗p)p = b̂p∂ϕ(J0A‖), shows that ∇A∗ϕ × b̂ −
bϕB∗ = ∇A∗ϕ×b̂p−bϕ∇×A∗p, (∇A∗ϕ×b̂−bϕB∗)·∇ϕ =
−B∗‖ , (∇A∗ϕ × b̂p − bϕ∇ × A∗p)p = 0, B∗ · ∇A∗ϕ =

41 I use the right-handed (R, z, ϕ) sign convention, so ∇ϕ is
directed oppositely to the gradient of the azimuthal angle for
simple cylindrical coordinates.
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(∇ × A∗p) · ∇A∗ϕ, and (∇ × A∗p)p · ∇A∗ϕ =
(b̂p ·B∗)∂ϕ(J0A‖). Using these results, we may rewrite
Eq. (B.1) in the simpler form
dtPϕ = −∂ϕ

[
H − (Ze/c)v‖J0A‖

]
. (B.2)

As our second step, we take appropriate moments
of the distribution function, so that we may use
quasineutrality [Eq. (6)] to replace the nearly-canceling
species-summed (Ze/c)Aϕ contribution with the E×B
portion of the toroidal angular momentum. First we
evaluate the evolution of parallel physical momentum
of species s, multiplying Eq. (3) by bϕmsv‖/B

∗
‖

and flux-surface averaging, recalling that
∫

dW/B∗‖
commutes with ∂t and spatial differentiation and
annihilates ∂v‖ , obtaining

∂t〈Fsmsv‖bϕ〉+∂V 〈Fsmsv‖bϕṘ·∇V〉=〈Fsdt(msv‖bϕ)〉.(B.3)
We may similarly evolve the contribution due to
electromagnetic fluctuations (times c/e), multiplying
Eq. (3) by Zbϕ(J0A‖)/B∗‖ and flux-surface averaging
to get
∂t〈FsbϕZJ0A‖〉+ ∂V

〈
FsbϕZ(J0A‖)Ṙ·∇V

〉
=
〈
Fsdt(ZbϕJ0A‖)

〉
. (B.4)

The E×B contribution is a little more involved. First,
we define the polarization P as a solution to42

∇ · P .=
∑
s

Ze

∫
dW Fs. (B.5)

We time-differentiate Eq. (B.5), substitute using
Eq. (3) for each species s, and flux-surface average,
obtaining
∂V ∂t 〈P · ∇V 〉 = −∂V

〈
ZeFsṘ · ∇V

〉
. (B.6)

For well-behaved (finite) P and ZeFsṘ, the quantities
(P ·∇V ) and ZeFsṘ ·∇V must vanish at the magnetic
axis (V = 0), because ∇V goes to zero there. We may
therefore integrate Eq. (B.6) in V to obtain
∂t 〈P · ∇V 〉 = −

〈
ZeFsṘ · ∇V

〉
. (B.7)

Since Eq. (6) may be used to relate ∇ · P with
the polarization charge, Eq. (B.7) simply states that
the net radial current out of any flux-surface-enclosed
volume must vanish. Now multiply Eq. (B.7) by the
flux function − 1

c∂VAϕ to obtain

−∂t
1
c
〈P ·∇Aϕ〉=

1
c
〈ZeFsṘ·∇Aϕ〉=〈Fsdt(ZeAϕ/c)〉.(B.8)

The quantity − 1
c 〈P · ∇Aϕ〉 is a generalized expression

for the toroidal angular momentum in the E ×
B motion, as has been demonstrated using the
42Eq. (B.5) only defines P up to an arbitrary curl. However,
the arbitrary divergence-free portion makes no contribution to
Eq. (B.6), (B.8), (B.9), or (12). [If we let dS be the outward area
differential for flux surface V , then for arbitrary vector w we have∫
V

dV ∇×w · ∇V =
∫
V

dV ∇ · (w×∇V ) =
∫

dS ·w×∇V = 0,
since dS ‖ ∇V .]

quasineutrality relation [18]. Finally, summing
Eqs. (B.3), (B.4) times (e/c), and (B.8), then
simplifying with Eq. (B.2), we obtain the desired
evolution equation for the toroidal angular momentum:
∂t〈Fs[msv‖ + (Ze/c)J0A‖]bϕ〉 − ∂t 〈P · ∇Aϕ〉 /c

+ ∂V
〈
Fs[msv‖ + (Ze/c)J0A‖]bϕṘ · ∇V

〉
= 〈FsdtPϕ〉 = −

〈
Fs∂ϕ[H − (Ze/c)v‖J0A‖]

〉
. (B.9)

This equation is the toroidal momentum transport
equation for our gyrokinetic model, the symplectic-
form analog of Ref. [18]’s Eq. (80).

The terms on the LHS of Eq. (B.9) respectively
capture the time variation of parallel toroidal angular
momentum and of E×B toroidal angular momentum
as well as the divergence of the radial flux of parallel
toroidal angular momentum. Although it may not be
immediately obvious, the RHS captures the divergence
of the radial flux of E×B toroidal angular momentum.
This is shown for various functional forms of H in
Ref. [18], albeit in a canonical formulation (with A‖
in the Hamiltonian H, rather than in A∗ as here). For
our purposes, it is adequate to demonstrate that the
RHS of Eq. (B.9) is the divergence of some radial flux
term, without evaluating an explicit form for that flux.

Consider first the Hamiltonian contribution.
Since the zeroth-order Hamiltonian is axisymmetric
(∂ϕH0 = 0), we only need to treat H1 and Hp. Us-
ing the facts that J0 is both axisymmetric (so ∂ϕJ0 =
J0∂ϕ) and self-adjoint under

∫
dV,43 that the magnetic

geometry is axisymmetric, and that
∫

dW/B∗‖ com-
mutes with real-space differentiation and integration
and annihilates velocity-space derivatives,44 we may
integrate the term radially (over all V ) to find∫

dV 〈Fs∂ϕH〉 =
∑
s

∫
dΛFs∂ϕH =

∫
dV(∂ϕφ)

×
∑
s

∫ dW
B∗‖

[
ZeJ0(B∗‖Fs)+J0(B∗‖MJ0φ)−φJ0(B∗‖M)

]
=0, (B.10)

where the last form vanished due to quasineutrality
[Eq. (6)]. Since

∫
dV 〈Fs∂ϕH〉 = 0, we may express

the contribution of 〈Fs∂ϕH〉 as the divergence of some
radial flux that vanishes at the boundary. Ref. [18]
gives explicit forms of this flux for various forms of H.

Consider now the electromagnetic term. Using
Eq. (8) and the facts that J0 is Hermitian under

∫
dV

43 In fact, as discussed in Appendix A, we do not need to
make the typical assumption that J0 is self-adjoint. However,
if we allow non-self-adjoint J0, then we must use the general
quasineutrality relation [Eq. (A.9)] rather than the simplified
one [Eq. (6)].
44 In the integration by parts on µ, the boundary term at µ = 0
vanishes because J0(µ = 0) is the identity operator.
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and commutes with ∂ϕ, we obtain45∫
dV 〈Fs∂ϕ(Zev‖J0A‖/c)〉=

1
c

∑
s

∫
dΛZeFsv‖J0∂ϕA‖

= 1
4π

∫
dV (∂ϕA‖)

4π
c

∑
s

∫ dW
B∗‖

ZeJ0(B∗‖Fsv‖)

=−
∫ dV

4π(∂ϕA‖)∇2
⊥A‖=−

∫ dV
4π∇·[(∂ϕA‖)∇⊥A‖].(B.11)

We may therefore express 〈Fs∂ϕ(Zec v‖J0A‖)〉 as the
divergence of the flux in the last term of Eq. (B.11) (an
expression for the Maxwell stress), plus the divergence
of some other radial flux that vanishes at the boundary.

At the end of Appendix A, we described how one
may derive a full-F gyrokinetic system with linearized
polarization, equivalent to Eqs. (1)–(3), (6), and (8)
with the simplifications H → (H0 + H1) and M →
MM . As is easily verified, the derivations of Eqs. (B.2)
and (B.9) are unchanged by these simplifications, so
that Eqs. (B.2) and (B.9) also hold for the system with
linearized polarization, as long as they are interpreted
using the simplified Hamiltonian (H0 + H1) and the
linearized polarizabilityMM . The demonstration that
the RHS of Eq. (B.9) is conservative is slightly modified
by the simplifications H → (H0 +H1) andM→MM .
In particular, although Eq. (B.11) is not changed by
linearized polarization, Eq. (B.10) is modified to∫

dV 〈Fs∂ϕH〉 =
∑
s

∫
dΛFs∂ϕ(ZeJ0φ)

=
∫

dV(∂ϕφ)
∑
s

∫ dW
B∗‖

ZeJ0(B∗‖Fs)

=−
∫

dV(∂ϕφ)
∑
s

∫ dW
B∗‖

[J0(B∗‖MMJ0φ)−φJ0(B∗‖MM)]

=−1
2
∑
s

∫ dW
B∗‖

∫
dV B∗‖MM∂ϕ[(J0φ)2−J0(φ2)]=0,(B.12)

where the last equality follows because (B∗‖MM ) is
axisymmetric.
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