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Abstract

The effects of magnetic islands on electron bootstrap current in toroidal
plasmas are studied using gyrokinetic simulations. The magnetic islands
cause little changes of the bootstrap current level in the banana regime
because of trapped electron effects. In the plateau regime, the bootstrap
current is completely suppressed at the island centers due to the destruction
of trapped electron orbits by collisions and the flattening of pressure profiles
by the islands. In the collisional regime, small but finite bootstrap current
can exist inside the islands because of the pressure gradients created by large
collisional transport across the islands. Finally, simulation results show that
the bootstrap current level increases near the island separatrix due to steeper
local density gradients.



I. Introduction

Kinetic effects at microscopic scales play important roles in the evolution of
macroscopic magnetohydrodynamic (MHD) modes such as neoclassical
tearing modes (NTM) [1, 2], rendering global kinetic simulations of toroidal
plasmas a necessity. The dominant features of NTMs are magnetic islands
driven by helical perturbations of the bootstrap current [3] in the vicinity of
mode rational surfaces. Large magnetic islands can degrade confinement
properties and even lead to disruptions in fusion reactors [4]. Therefore,
predictive capability needs to be established for NTM in next-step fusion
devices such as ITER [5].

The NTM dynamics involve the coupling of neoclassical effects,
microturbulence, and island dynamics, which largely differ from one another
in their spatial and temporal scales [4, 6, 7]. Kinetic [8-11] and fluid [12-13]
simulations addressing the coupling of multiple physical processes have
been carried out in recent years for NTM studies. Resolving disparate
spatiotemporal scales is necessary for the understanding of NTM physics,
including the threshold of seed island size, island growth rate, and nonlinear
dynamics. Numerical difficulties associated with kinetic simulations of the
tearing modes make self-consistent NTM simulations even more arduous.
The motivation of this work is thus to develop the kinetic NTM simulation
capability including the interactions of magnetic islands, bootstrap current,
microturbulence, and energetic particles.

Bootstrap current is a self-generated parallel current resulting from pressure
gradients and collisional effects in the toroidal geometry [14], and can
greatly enhance the plasma confinement. It is roughly proportional to the
radial pressure gradients of trapped electrons in the toroidal plasmas [3]. The
conventional wisdom is that magnetic islands can reduce the electron
pressure gradients through rapid parallel transport, and consequentially
reduce the bootstrap current. The reduction in the bootstrap current in turn
causes a magnetic perturbation to amplify the islands. Therefore, an accurate
calculation of the bootstrap current in response to the islands is important for
understanding the NTM drive, especially the threshold of the seed islands.

W. A. Hornsby et al. [15] used a minimal drift-kinetic model to demonstrate
the effects of magnetic islands and turbulent transport on the electron
profiles and the bootstrap current, and showed that finite pressure gradients
(and associated bootstrap current) can exist within the islands when
turbulent transport is sufficiently strong. E. Poli et al. [16, 17] used Monte



Carlo simulations to study finite ion orbit width effects on the bootstrap
current, and showed that a finite bootstrap current could exist within the
islands when the island width is comparable to the ion orbit width. A.
Bergmann et al. [18] found that when the islands are rotating at the electron
diamagnetic frequency, bootstrap current could be completely preserved due
to small island effects. The rotation of the islands also affects the pressure
profile flattening [22].

In this work, we use Gyrokinetic Toroidal Code (GTC) [19] to study the
effects of magnetic islands on neoclassical transport. P, Jiang et al. [20, 21]
implemented magnetic islands in the GTC to study the effects of magnetic
islands on drift wave instabilities, where neoclassical effects were not
included. In the current simulations, the flattening of the pressure gradients
by the islands is verified first. The electron neoclassical transport level is
also verified in the simulations without the islands. The bootstrap current
level from simulations without the islands agrees very well with analytical
results.

In this paper, the effects of the static magnetic islands on the electron
bootstrap current are studied for various collisionality regimes in the absence
of microturbulence. Surprisingly, magnetic islands cause little changes of the
bootstrap current level in the banana regime because of trapped electron
effects. As the collision frequency increases to the plateau regime, the
bootstrap current is completely suppressed at the island centers due to the
destruction of trapped electron orbits by collisions and the flattening of
pressure profiles by the islands. In the collisional regime, a small but finite
bootstrap current can exist inside the islands because of the pressure
gradients created by large collisional transport across the islands. Finally,
simulation results show that the bootstrap current level increases near the
island separatrix due to steeper local density gradients.

The reason that magnetic islands does not suppress the bootstrap current in
the banana regime is that trapped electrons are mostly not affected by the
islands. The remaining trapped electron pressure gradients create an
anisotropy in the parallel velocity, which induces a parallel flow of the
passing electrons by the collisional friction force across the trapped-passing
boundary. Therefore, the bootstrap current can survive inside the islands
even though the pressure profiles of the passing electrons are flattened by
the islands. These simulation results could have significant implications to
the theory of NTM excitation based on the conventional picture of islands
suppressing the bootstrap current by flattening the pressure profiles. Our



simulations thus call for better understanding of the effects of magnetic
islands on the bootstrap current using fully self-consistent simulations.

The rest of this paper is arranged as follows: formulation and verification of
the simulation scheme is presented in Section II, followed by the simulation
results of the island effects on the bootstrap current in Section III. In Section
IV, we discuss the dependence of the bootstrap current on the collision
frequency in the presence of the islands. In Section V, we summarize the
main results and discuss future studies.

II. Formulation and verification of neoclassical simulations
1. Implementation of magnetic islands in GTC

First-principles gyrokinetic simulations of toroidal plasmas with magnetic
islands superimposed on the equilibrium field are carried out using GTC,
which has extensively been applied to study instabilities, turbulence, and
transport in fusion plasmas [23-27]. In this work, GTC is utilized to study
the effects of static magnetic islands on neoclassical bootstrap current.

In the simulations, we use magnetic coordinates ( ¢, 4, ¢) representing,
respectively, poloidal flux, poloidal, and toroidal angles. The equilibrium
field is: B, = B)b, =qVyx VO -Vyx VE =8V +IVO+gVE , where g 1s the safety
factor, g and I are the poloidal and toroidal currents (divided by 2x). The
radial component § arises from the non-orthogonality of the Boozer
coordinates and is usually small for large aspect-ratio tokamaks [28]. The
imposed static magnetic island perturbations are in the form of

0B =V x0A,=VxaB,, and a =54,/ B, = acos(md-ng) is independent of the
poloidal flux y for simplicity. Here m is the poloidal mode number and # is
the toroidal mode number. If we consider VxB, =0 and neglect the § -term,
6B would be in the radial direction only. We can define the helical flux as
Y, =¥ -1,/q,-a to represent the magnetic field geometry (solid line in
Figure 3),whereq, =m/n , v, is the toroidal flux function, so that B- Vy, =0
[20]. Island separatrix is defined by[w, - (v -, /)] =0, giving the island
half width (radial distance from O-point to the separatrix at 6 = 0)
w=R(aq,/q,)", whereq,'=dq/dr is the gradient of the g profile at the
resonant surface.



2. Gyrokinetic simulation of neoclassical transport with magnetic islands

In GTC simulation, the dynamics of guiding centers are governed by the
Hamiltonian in the phase space of (X,u,v,) [29],

H= %mmvn2 +uB+q,9

where X denotes spatial coordinates, u denotes magnetic moment and \4
denotes parallel velocity along the field line, m, /q, is the particle
mass/charge for each species, B is magnetic field amplitude, and ¢ is
gyrophase averaged electrostatic potential.

From canonical guiding center equations of motion [27], the gyrokinetic
Vlasov equation with only neoclassical drive and static magnetic island is in
the form of:

dr Y ixoviey X _¢ir)-
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where f(X,u,v,) is guiding center distribution function, B=B, +6B,
B* = B; + 6B,B; = B, + B(;:” VXb,, and 6B is the imposed island

perturbation described in the last subsection.

The magnetic drift velocity is the sum of magnetic curvature and gradient
drifts (neglecting island contributions to magnetic field magnitude):

, ViVxb, b, xVB,
4 Q. m,Q,

The Fokker-Planck collision operatiors C(f) include inter-species and like-

species collisions that conserve particle number, momentum, and energy as
described in Ref. [30].



A perturbative §f method is adopted for GTC neoclassical simulations [29,
31] to reduce particle noise with smaller number of particles and simpler
particle loading profile compared with the full-f method. Here, particle
distribution is separated into equilibrium and perturbed parts: f = f,+6f . The
equilibrium distribution function f; satisfies

aﬁ) Bn 1 Bﬂ af{; A
Lo 4 (1 =2 Vf, + (———2 - uVB) Lo _&f = 0.
Py v Bl]) o+ ( m B, U 0)6“ Jo

The local Maxwellian equilibrium distribution function is an exact solution
to the above equation in (X, w, v)) coordinates:

;
2uB, +mvy
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We define a particle weight w=0f/f and a gradient operator

K=Vn,/ny+(E/T,-3/2)VT, /T,. The weight equation can be derived from the
perturbed distribution function and is expressed as:

d oB
d—”t” =(1- W=y 2= +7,) ]

The first term in the R.H.S. bracket is the magnetic flutter drive due to the
guiding center parallel motion, and the second term is the neoclassical drive
due to the perpendicular guiding center drifts. This weight equation and the
guiding center orbit equations form a closed system of equations for
gyrokinetic simulations of neoclassical transport in toroidal plasmas in the
presence of magnetic islands.

3. Verification of GTC simulation of bootstrap current

In the simulations, uniform Maxwellian of electrons and ions are loaded
over an annulus section of torus. We use representative plasma parameters
with a major radius R, =1.86m, a minor radius a =0.246R, = 860, (p,is the ion

2
gyroradius), a parabolic q profileq=1475+1 .1—;’/i +1 .05—2 , a circular cross

section and a hyperbolic density profile



n, =n,[1.0+0.205(tanh(0.3-2.5 g—) -1.0)], with the poloidal flux function

Yr=a)=y,.Atr=0.5a, Z.;=1.5, B = 1.35T, T, =T, = 5.0keV, g = 2.0, Ry/L,
=2.2 (L, is the density gradient scale length). The effective collision
frequency is defined as the physical collision frequency normalized by the
bounce frequency v’ =¢**vgR, /v, , where £=r/R, is the local inverse aspect

ratio, v, =(T'/m)" is the particle thermal velocity. With these parameters,

> “th
v =0.028, corresponding to the core of present day tokamak plasmas. A total
of 1.25x10" particles are used in the simulations. The electron particle flux is
T'=[v,0f.dv, energy flux is Q = [v,mv*126f,dv, and bootstrap current

density is j, = f v 0f, /(1+ecosB)dv. Flux-surface averaging is applied to all

neoclassical fluxes [29].

Collision frequency is scanned and details of the neoclassical transport are
first investigated in the absence of the islands to verify the numerical scheme
in the neoclassical simulations. The calculated neoclassical flux values agree
well with the analytic expressions for the large aspect ratio tokamak in Ref.
[3]. The bootstrap current ji, in the absence of magnetic islands from the
simulations with different collision frequencies are presented as blue crosses
in Figure 1. For comparisons, results from the analytic expression [3] is also
plotted as the black line in Figure 1. The bootstrap current is normalized by

the value at small collision frequency limit j, =146+ Ec—d—P . GTC results

50 dr

agree quite well with the analytical results in the banana, plateau, and
collisional regimes, with an average error of 3.3%.
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FIGURE 1: Bootstrap current j, dependence on collision frequency v* without magnetic
islands. The solid line is the analytic expression in Ref [3].

4. Verification of density flattening by magnetic islands

The m=2, n=1 islands, which are most catastrophic for some tokamak
experiments, are now added to the equilibrium magnetic field. The islands
are static and non-rotating, and center at r = 0.5a with an island width of
w=12p;. Due to the fast parallel transport, the electron and ion density
profiles flatten inside the island area. At the low field side 6 =0, where the
toroidally trapped particles are present, the flattening of the density profile is
smaller than that at the high field side 6 = =, where there are no trapped
particles. To verify the validity of the island formulation, the electron and
ion density profile changes by the islands are investigated in detail. The
density flattening is illustrated in Figure 2, where collisionless plasmas are
considered so that the particle orbits are Hamiltonian (stochasticity may still
exist in small region near the island separatrices due to numerical
dissipations). The electron and ion density profiles are measured locally in
6=0 or 6=n (averaged over A0 =0.005x ), and £=0 (averaged over

AZ =0.037 ), and averaged over one bounce time after the density profiles

and the neoclassical fluxes reach the steady state. At the center of the
simulation domainr=43p,,e=0.12, g=20.
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FIGURE 2: Electron (upper panel) and ion (lower panel) density profiles in collisionless

plasmas. The black solid lines are density profiles at the high field side. The red-dashed

lines are density profiles at the low field side. The two vertical lines represent the island
separatrices. The blue-dashed lines are the density profiles without magnetic islands.

The initial radial density profiles are hyperbolic, as indicated by the blue
dashed lines, which change little in the absence of islands. However, in the
presence of the islands, the density profiles flatten inside the island and
reach the steady state in a few bounce times. When the collision frequency is
small, the toroidally trapped particles (mostly at the low field side) do not
follow the entire field lines around the islands. Therefore, the trapped
particles at the low field side retain their initial radial density profiles,

resulting in a less flattened density profile at the low field side in the banana
regime.

From Figure 2, the ion density profile at the low field side only has a small
deviation from the equilibrium profile. The electron density profile has ~ 40
% flattening, which is close to the passing fraction 1- f =1-1.46¢"> ~0.49.

This result is consistent with that of W. A. Hornsby et al in Ref. [8]. The
fact that the ion density profile at the low field side is less flattened might be



caused by the finite passing orbit width ~gp;. The passing ion orbit width is
not negligible compared with the island size, while the passing electron orbit
width is negligible. This picture is confirmed by the electron and ion
poloidal density perturbation contour plots shown in Figure 3, in which the
electron density perturbation shows a clearer island shape while the ion
density perturbation is blurrier.

Figure 2 shows that at the high field side, ion density profile is almost
completely flattened in the island center, while the electron density profile
maintains a finite gradient. This difference might be caused by island
trapping of the electrons. The island trapping term is included in the
simulations through the mirror force of the equilibrium magnetic field when
the electrons move along the field line. Therefore, the islands will have their
own “island-trapped electrons” with a trapped fraction proportional to the
square-root of the island effective inverse aspect ratio £, =w/R, . This effect

causes the electrons to be trapped on the island “low field side”, which is
closer to the magnetic axis at the high field side (6=x). Ions will not have
this effect since their island-trapped orbit width would be even larger than
the island size, making them stay untrapped. The difference between ion and
electron local density profiles might induce a parallel electric field inside the
islands, which can in turn modify their profiles in fully self-consistent
simulations. This self-consistent ambipolar field can be an important
physics in NTM dynamics that has not been addressed in conventional NTM
theory.

With collisions, the electron and ion density profiles still flatten inside the
islands, though the profile shape varies with the collision frequency. The
collision frequency dependence of the electron density profiles is illustrated
in Figure 6 and will be discussed in the later section.

10
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FIGURE 3: Poloidal contour plots of electron (upper panel) and ion (lower panel)
perturbed density in collisionless plasmas with islands. The solid black lines are island
separatrices. Red is positive density change and green is negative density change.

II1. Effects of Magnetic Islands on Bootstrap Current

We now study the effects of magnetic islands on electron bootstrap current
using island perturbations and plasma parameters described in Section II.
For simplicity, only electrons are loaded in the simulations. Self-consistent
electric field is not solved, and thus quasi-neutrality does not play any role in
the present simulations. Electron particle flux and bootstrap current are
measured in the simulations. As shown in Figure 4, the bootstrap current
reaches the steady state in a few collision times in the plateau regime. The
volume-integrated bootstrap current is not changed by the islands, although
the radial profile changed drastically in the vicinity of the islands as shown
in Figure 5.

The island induced radial particle transport, which slowly reaches the steady
state after about ten collision times, is much larger than the neoclassical
transport level calculated in the absence of the islands as shown in the lower
panel of Figure 4. The electron density profile also reaches the steady state
inside the islands on the same time scale. When the collision frequency is
smaller, the electron particle flux drops closer to the neoclassical level
calculated without the islands as shown in Figure 7. As the collision
frequency increases, the magnetic islands induce a larger particle transport
compared to the neoclassical level calculated without the islands. If ions are
also simulated, the difference in the particle fluxes between ions and

11



electrons can induce an ambipolar radial electric field, which will eventually
constrain the ion and electron particle fluxes to the same level,

With island
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Time(r,™)

0.01 P~ - - — — 3

-

0 2 4 6 8 10 12 14
Time{v,™)

FIGURE 4: Time history of volume-integrated bootstrap current Jb (upper panel) and
electron particle flux I" (lower panel) in the plateau regime with (black-solid) and without
(red-dashed) magnetic islands.

The bootstrap current and density profiles in the plateau regime (v*=1.4) is
illustrated in Figure 5. As the islands cause density flattening, the bootstrap
current decreases dramatically inside the islands. On the other hand, the
steepening of the density gradients outside the islands leads to a larger
bootstrap current in the vicinity of the separatrix. If the bootstrap current
accounts for a large fraction of the total plasma current, the variations in
radial bootstrap current profiles can affect the q profile and local magnetic
shear, and thus magnetohydrodynamic (MHD) stability properties. Outside
the separatrices, the bootstrap current level has small radial oscillations,
which correspond to the oscillations in the density gradient profiles. This can

12



be caused by the transport process: a steeper gradient causes a larger radial
transport, resulting in a smaller gradient in the adjacent region, which would
then steepen the gradient in the next adjacent region. This process seems to
be analogous to the phase space oscillations in the standard Landau damping
picture.

~—

. i i .
\\ Separatrix
]

~ .
-+ ~ N isiond

/

Istond—HFS

\x - — Islund=LFS ;

L
b
S ‘ |
i = T
&0
1.0F - ]
; [} ——— With isiand ]
|" [l‘,'| P ‘ No island 1
F’ll | }Il'l ‘ Seporatrix ]
0.6 ||' I / 'I| | i
N /o | | Al 1
Ju/ Jo L] A
I LA
il I'I M | ||J|' Ay
AT YN
0.2 ‘ /l"_ "\\_,:’ \ | \
r ].
y ‘.!) L
0.0 J'_i' . Ly -‘lllb‘ _M'a - L s 5
o 20 40 c0 g0
(o)

FIGURE 5: Radial profiles of bootstrap current (lower panel) and electron density (upper
panel) in the plateau regime. The current and density profiles are averaged over one
transit time. The two vertical lines represent the island separatrix.

IV. Collision Frequency Dependence of Bootstrap Current

The collision frequency is now scanned in the simulations with the islands to
study the collision frequency dependence of bootstrap current. In the banana
regime (v" <1), the trapped electron orbits are not fully destroyed by the
collisions. They contribute to the finite density gradients inside the islands at
the low field side, as illustrated by the red short-dashed lines in Figure 6. In
the plateau regime (v" ~1) where the collision time is comparable to the

13



trapped particle bounce time, the trapped particle orbits are mostly destroyed
by collisions. Consequently, the trapped electron density profiles are
gradually flattened inside the islands. The electron density profiles are now
fully flattened at both high field and low field sides. Slightly reversed
density profiles in the plateau regime are observed after a few collision
times. The cause for this long time scale behavior will be investigated in the
future work.
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FIGURE 6: Collision frequency dependence of electron density profiles in the presence
of islands. The black lines are the density profiles at the high field side. The red-dashed
lines are the density profiles at the low field side. The vertical lines represent the
separatrices. The blue-dashed lines are the electron density distributions without
magnetic islands.
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As the collision frequency increases further to the collisional regime (v* >1),
the perpendicular transport becomes stronger. The balance between the
perpendicular and parallel transport then leads to a finite density gradient in
the island center [32]. The electron density gradients now increase with the
collisionality at both the high field and low field sides, as shown in Figure 6.
This mechanism is further illustrated by the collision frequency dependence
of the electron particle fluxes in Figure 7. As the collision frequency
increases, the magnetic islands induce a steady radial transport much larger
than the neoclassical level in the absence of the islands.
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FIGURE 7: Time history of electron particle fluxes for various collision frequencies. The
red-dashed lines are electron particle fluxes without magnetic islands. The black-solid
lines are particle fluxes with magnetic islands.

In the banana regime, the bootstrap current level is almost unchanged by the
magnetic islands as shown in Figure 8. The radial profiles of the bootstrap
current are averaged over the unperturbed flux surface and over 40 times
slices with a duration of about 3 Ry/c, in simulation time. The trapped

15



particle orbits are mostly unperturbed by the collision, and therefore they do
not follow the whole field lines around the islands. This effect results in a
finite density gradient of the trapped particles, and therefore a finite
bootstrap current level inside the islands even though the passing electron
density profile is flattened. In the plateau and collisional regimes, the
trapped electron orbits are mostly destroyed by collisions. The trapped
electron density gradient reduction then leads to a sharp decrease of the
bootstrap current inside the magnetic island. At the same time, the
steepening of local pressure gradients outside the islands induces a larger
bootstrap current at the vicinity of the islands. At a very high collisionality,
the bootstrap current diminishes even though the large radial transport
maintains strong density gradients inside the islands.
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FIGURE 8: Radial profiles of bootstrap current for various collision frequencies. The
blue-dashed lines are the bootstrap current profiles without the islands. The black-solid
lines are the bootstrap current profiles with the islands. The vertical lines represent the
separatrices.
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The dependence of the island center bootstrap current j,;s on the collision
frequency is shown in Figure 9, where the bootstrap current in the island
center is averaged over 5p; in the radial direction, and normalized by the

16



bootstrap current j, at the same radial location in the simulations without
magnetic islands. We can see that the bootstrap current at the island center is
unaffected by the islands in the banana regime and fully suppressed by the
islands in the plateau regime. There are small but finite bootstrap current in
the collisional regime.

1"

Figure 9: Collision frequency dependence of island center bootstrap current Jbis-

V. Conclusions

In this work we demonstrate that the electron bootstrap current suppression
by the magnetic islands can be sensitive to the collision frequency in the
toroidal plasmas. Drift kinetic electron simulation results show that in the
banana regime, finite electron density gradients could exist in the islands at
the low field side due to toroidally trapped electrons, and the bootstrap
current level is only slightly perturbed by the magnetic islands. In the
plateau regime, electron density profiles are flattened at both the high field
side and the low field side, and the bootstrap current is completely
suppressed at the island center. In the collisional regime, a small but finite
bootstrap current can exist inside the islands because of the pressure
gradients created by the large collisional transport across the islands. Near
the separatrices, the island-induced transport results in steeper local density
gradients, which lead to a larger local bootstrap current.

Electron temperature gradients also contribute to the bootstrap current. The

temperature flattening by the islands [33] will thus affects the bootstrap
current profile through the same physics as the density flattening. Therefore,

17



similar bootstrap current response to the islands can be expected. The ion
contribution to the bootstrap current, which is not studied in the present
work, could be subjected to the same physics. These results highlight the
importance of including accurate trapped electron effects when studying the
neoclassical tearing mode (NTM) dynamics. The conventional NTM theory
using the reduced bootstrap current model probably predicts a larger effect
of the islands on the bootstrap current, and thus a lower threshold of the seed
island width. Our results also indicate that trapped electron modes can be
less affected by the islands because of the trapped electron effects.

In the future work, we will focus on the first-principle simulations with
magnetic islands, neoclassical transport, and self-consistent electric fields.
The island rotation can have significant effects on the pressure flattening and
the tearing mode dynamic when coupled with microturbulence. Therefore,
incorporating the island rotation together with self-consistent electric fields
is an important next step work. Microturbulence plays an important role as
the transport mechanism [34], and could affect the bootstrap current level
inside the islands. On the other hand, the islands could also suppress the
turbulence and modify the turbulence spectrum. We would then be able to
study the NTM physics with coupled dynamics of magnetic islands,
microturbulence, neoclassical transport, and energetic particle effects [35].
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