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Nonlinear asymmetric tearing mode evolution in cylindrical geometry

Q. Teng,1 N. Ferraro,1 D.A. Gates,1 S.C. Jardin,1 and R.B. White1

Plasma Physics Laboratory, Princeton University, P.O. Box 451, Princeton,

New Jersey 08543

(Dated: 23 October 2016)

The growth of a tearing mode is described by reduced MHD equations. For a cylindri-

cal equilibrium, tearing mode growth is governed by the modified Rutherford equation

i.e. the nonlinear ∆′(w). For low beta plasma without external heating, ∆′(w) can be

approximately described by two terms, ∆′ql(w), ∆′A(w).1,2 In this work, we present a

simple method to calculate the quasilinear stability index ∆′ql rigoriously, for poloidal

mode number m ≥ 2. ∆′ql is derived by solving the outer equation through the Frobe-

nious method. ∆′ql is composed of four terms proportional to: constant ∆′0, w, w lnw

and w2. ∆′A is proportional to the asymmetry of island which is roughly proportional

to w. The sum of ∆′ql and ∆′A is consistent with the more accurate expression cal-

culated perturbatively.3. The reduced MHD equations are also solved numerically

through a 3D MHD code M3D-C1.4 The analytical expression of the perturbed he-

lical flux and the saturated island width agree with the simulation results. It’s also

confirmed by the simulation that the ∆′A has to be considered in calculating island

saturation.
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I. INTRODUCTION

The tearing mode is a very important MHD instability in tokamaks. It may cause confine-

ment deterioration and even disruptions as it connects the core and the edge directly. It has

also long been a candidate to explain major disruptions5 and the tokamak density limit.6–9

Furth et al. first calculated the linear growth rate of a tearing mode in slab and cylindrical

geometry.10,11 Rutherford then calculated the nonlinear tearing mode growth when island

width exceeds the size of the tearing layer but is still small compared with the system size.12

White first proposed the quasilinear stability index ∆′ql in Ref. 1 and added the asymmetry

stability index ∆′A in Ref. 2 to describe the island growth,

dw

dt
= 1.22

η

µ0

∆′(w) ≈ 1.22
η

µ0

(∆′ql(w) + ∆′A(w)), (1)

where ∆′ql = ψ′1|
rr
rl
/ψ1(rs), ψ1 is the first harmonic of the perturbed helical flux, rs, rl, rr

are the minor radius of rational surface, left(inner) and right(outer) edges of the island

respectively. The helical flux ψ is defined through ψ = 2π
∫ r
0
~B ·∇τrdr, where τ = θ−nφ/m.

A more accurate constant 1.22 is used according to Ref. 13. In this work, we present a

rigorous method to calculate ∆′ql as an extension of the quasilinear calculation in Ref. 1.

We also show that the solution of ψ1(r) in the outer region captures the island structure

accurately.

II. ANALYTICAL CALCULATION OF ∆′ql AND ∆′A

This work is performed in cylindrical geometry. The variables (r, θ, z) form a right-

handed coordinate system, and φ = z/R (2πR is the periodic length in the z direction).

The current density in the φ direction is expressed through Ampere’s law,

j =
1

µ02πR
∇2
⊥ψh +

2n

µ0m

Bφ

R
, (2)

where ∇⊥ = ∇r∂r + ∇θ∂θ, Bφ is the φ̂ component of the equilibrium magnetic field.

Consider a single harmonic perturbation of the helical flux,

ψh(r, τ) = ψ0(r) + ψ1(r)cos(mτ). (3)
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Outside the island, the plasma inertia is negligible. Taking the first harmonic of Eq.(2), ψ1

is the solution of (
d2

dr2
+

1

r

d

dr
− m2

r2

)
ψ1 = 2πµ0R

dj0
dψ0

ψ1, (4)

with a conducting wall boundary condition ψ1(a) = 0. Expand Eq.(4) near the rational

surface r = rs. Let x = r − rs and keep the terms up to O(x),

ψ′′1 + (r−1s − r−2s x)ψ′1 − (Kx−1 + L+Mx)ψ1 = 0, (5)

K =
2πµ0Rj

(1)

ψ
(2)
0

∣∣∣∣∣
r=rs

, (6)

L =
m2

r2s
+

2πµ0Rj
(2)

ψ
(2)
0

− πµ0Rj
(1)ψ

(3)
0

(ψ
(2)
0 )2

∣∣∣∣∣
r=rs

, (7)

M = −2m2

r3s
+ πµ0Rj

(1)

[
(ψ

(3)
0 )2

2(ψ
(2)
0 )3

− ψ
(4)
0

3(ψ
(2)
0 )2

]
− πµ0Rj

(2) ψ
(3)
0

(ψ
(2)
0 )2

+ πµ0Rj
(3) 1

ψ
(2)
0

∣∣∣∣∣
r=rs

, (8)

where the superscript in parentheses denotes derivative with respect to r. x = 0 is a regular

singular point of this equation. Assume ψ1(x) = xr
∑∞

n=0 anx
n, then the indicial equation is

r(r − 1)a0 = 0. Choosing the larger solution r1 = 1, gives y1(x) =
∑∞

n=0 anx
n+1, with a0 a

free parameter, and

a1 =
1

2

(
K − 1

rs

)
a0, (9)

a2 =

(
1

3r2s
− K

4rs
+

1

12
K2 +

1

6
L

)
a0, (10)

an = − 1

(n+ 1)n

[(
n

rs
−K

)
an−1 −

(
n− 1

r2s
+ L

)
an−2 −Man−3

]
, n ≥ 3. (11)

Assume the second solution to be y2(x) = y1(x) · ln|x| +
∑∞

n=0 bnx
n. We find a recurrence

relation with b0 and b1 two free parameters, and

a0 = Kb0, (12)

b2 = −3

2
a1 +

1

2

(
K − 1

rs

)
b1 −

1

2rs
a0 +

1

2
Lb0, (13)

bn = − 1

n(n− 1)

[
(2n− 1)an−1 +

(
n− 1

rs
−K

)
bn−1

+
1

rs
an−2 −

(
n− 2

r2s
+ L

)
bn−2 −

1

r2s
an−3 −Mbn−3

]
, n ≥ 3.

(14)
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There appear to be two free parameters in the second solution, but a change in b1 only

changes y2(x) by adding some multiple of y1(x). Thus, choose b1 = 0, rewrite the free

parameters as C1 and C2, and keep terms up to O(x3), then the general solution is

ψ1(x) =C1 ·
[
x+

1

2

(
K − 1

rs

)
x2 +

(
1

3r2s
− K

4rs
+

1

12
K2 +

1

6
L

)
x3
]

+ C2

{[
x+

1

2

(
K − 1

rs

)
x2 +

(
1

3r2s
− K

4rs
+

1

12
K2 +

1

6
L

)
x3
]
ln|x|

+
1

K
+

(
−3

4
K +

1

4rs
+

L

2K

)
x2 +

(
− 1

9r2s
+

5

12

K

rs
− 7

36
K2 − 1

18
L− 1

6

L

rsK
+

1

6

M

K

)
x3
}

(15)

Substituting x = 0, find C2 = Kψ1(0). Rewrite C1 as,

C1 =

−Aψ1(0) if x < 0,

−Bψ1(0) if x > 0,
(16)

then, the first order derivative of ψ1(x) for x < 0 is,

ψ′1(x)

ψ1(0)
=− A ·

[
1 +

(
K − 1

rs

)
x+

(
1

r2s
− 3K

4rs
+

1

4
K2 +

1

2
L

)
x2
]

+

[
1 +

(
K − 1

rs

)
x+

(
1

r2s
− 3K

4rs
+

1

4
K2 +

1

2
L

)
x2
]
·Kln|x|

+K + (−K2 + L)x+ (
k2

rs
− 1

2
K3 − 1

2

L

rs
+

1

2
M)x2.

(17)

and ψ′1(x) for x > 0 only differs by replacing A with B. For small island width w, the

island is roughly symmetric. Thus we have xl = rl − rs ≈ −w/2, xr = rr − rs ≈ w/2 and

w = 4
√
ψ1(rs)/(−ψ′′0(rs)). Then ∆′ql as a function of w is,

∆′ql =A−B +

[
−(0.5A+ 0.5B + 0.69K)(K − 1

rs
)−K2 + L

]
w

+K(K − 1

rs
)wlnw +

1

4
(A−B)

(
1

r2s
− 3

4

K

rs
+

1

4
K2 +

1

2
L

)
w2,

(18)

where the w2 term is usually much smaller than the first three terms. The asymmetry

stability index ∆′A is due to an imbalance of the mth harmonic of the current, given by,

∆′A = −2πRµ0

ψ1(rs)

m

π

∫ π/m

−π/m
dθ

∫ r̃r(θ)

r̃l(θ)

drδj(r)cos(mθ) (19)

≈ −2πRµ0

ψ1(rs)
fF
m

π

∫ π/m

−π/m
dθ

∫ r̃r(θ)

r̃l(θ)

dr(j0(rx)− j0(r))cos(mθ) (20)
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where fF is a positive flattening factor less than 1, accounting for the degree of current

profile flattening inside the island. If the left edge rl and right edge rr of the island are

known at θ = 0, the location of the island separatrix can be approximated by,

r̃l(θ) =
1

2
(rl − rx)cos(mθ) +

1

2
(rl + rx) (21)

r̃r(θ) =
1

2
(rr − rx)cos(mθ) +

1

2
(rr + rx). (22)

Then for small island width,

∆′A ≈ −
2πRµ0

ψ1(rs)
fF
m

π

∫ π/m

−π/m
dθ

∫ r̃r(θ)

r̃l(θ)

dr(−j′0(rx))(r − rx)cos(mθ) (23)

= −2πRµ0

ψ1(rs)
fF
m

π

∫ π/m

−π/m
dθ(−1

8
j′0(rx))w(rl + rr − 2rx)cos(mθ)(cos(mθ) + 1)2 (24)

=
πRµ0

2ψ1(rs)
fF j

′
0(rx)w(rl + rr − 2rx) (25)

≈ πRµ0

4ψ1(rs)
fF (−j′0(rx))w2As (26)

=
µ04πRj

′(rx)

ψ′′0(rs)
fFAs, (27)

where As = (rx − rl)/(rr − rx) − 1 is a positive number representing the degree of the

island asymmetry, which is roughly proportional to the island width.2 This expression has

been obtained in Ref. 2 though with a different numerical coefficient. In Ref. 3, Arcis et al.

derived the nonlinear ∆′(w) using a perturbative method, giving

∆′ = A−B +
[
−0.20(A+B)K̃ − 1.81K̃2 + 0.33K̃/rs + 0.41L̃

]
w + 0.41K̃2wlnw, (28)

where K̃ = j′(r)/j(r) · (1− 2/s)|rs , L̃ = j′′(r)/j(r) · (1− 2/s)|rs , s = rq(r)′/q(r)|rs . In

fact, simple algebra shows that K̃ = µ0j
(1)/ψ

(2)
0

∣∣∣
r=rs

= K and L̃ = µ0j
(2)/ψ

(2)
0

∣∣∣
r=rs

. This

expression has included the asymmetry effect implicitly. Eq.(28) has similar terms to the

combination of Eq.(18) and Eq.(27), except for the numerical coefficients and some higher

order terms.

III. COMPARISON OF THE FROBENIUS METHOD AND NUMERICAL

CALCULATION

We now compare the results of the Frobenius method with a fully nonlinear numerical

calculation obtained with the code M3D-C1.4 The code uses a finite element representation
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of the radial functions and solves the reduced MHD equations in cylindrical geometry. We

use the FRS equilibrium for comparison,11

j(r) =
j0[

1 + (r/r0)
2ν]1+1/ν

, q(r) = q0
[
1 + (r/r0)

2ν]1/ν , (29)

where j0 is the current density on the axis, r0 is the width of the current channel, ν is a

parameter controlling the peakedness of the current profile, q0 = 2Bφ/(µ0Rj0) is the safety

factor on the axis. First, Eq.(4) is solved numerically and the two constants A and B in the

analytical expression Eq.(15) are determined by fitting the semi-analytical solution of ψ1(x)

with the local expansion expression near the rational surface. Then the perturbed helical

flux and its derivative are fully determined as in Eq.(15) and Eq.(17). The case under

consideration is an equilibrium with q0 = 1.15, ν = 1.0, r0 = 0.81, unstable to the 2/1

tearing mode. In Fig. 1 are shown ψ1(r) and ψ′1(r) given by the semi-analytical calculation,

Frobenius method and simulation. The semi-analytical results agree with the fully nonlinear

simulation within 1% except for some deviation of ψ′1(r) near rs, as the simulation includes

modification in the island interior. The Frobenius method results show good agreement with

the semi-analytical result for r > 0.5. More important are the island parameters entering

into any nonlinear evaluation of saturation properties. They include the island width, the

positions of the outside and inside island edges, the locations of the island O-points and

X-points, the island asymmetry, and the island saturation width. It is clearly seen that the

shift of the O-point from the rational surface is larger than the shift of the X-point, this

result is due to the difference in the mean slope of the radial eigenfunction inside and outside

the rational surface, and directly related to the linear growth rate of the mode. Shown in

Table I are the values given by the simulation and the local expansion. The results are seen

to be accurate within 1% except for As, which is 8%. The simulation gives a saturated width

of 0.1214. The semi-analytical calculation gives the same width if we use fF = 0.17. The

degree of flattening fF can also be calculated from the simulation result,

fF =

m
π

∫ π/m
−π/m dθ

∫ r̃r
r̃l
dr(j(r, θ)− j0(r))cos(mθ)

m
π

∫ π/m
−π/m dθ

∫ r̃r
r̃l
dr(j(rx)− j0(r))cos(mθ)

, (30)

where j(r, θ) is the current density at saturation. This formula gives fF = 0.25, not very

different from what the semi-analytical calculation requires.
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FIG. 1: Comparison of ψ1(r) and ψ′1(r). ψ1(r) is normalized to 1 at rs. The results at the

beginning of the island growth(Start) and at saturation(End) from simulation are plotted.

rl rr rx ro rs As w

Analytic 0.6272 0.7485 0.7051 0.6858 0.6964 0.7964 0.1214

Simulation 0.6266 0.7480 0.7036 0.6849 0.6964 0.7342 0.1214

TABLE I: Characteristics of the magnetic island.

IV. SUMMARY

In this work, ∆′ql and ∆′A are derived analytically and used to calculate island saturation.

Although this method is not as accurate as Ref. 3, it is much simpler. The comparison

with the numerical simulation confirms that the island asymmetry must be considered in

calculating island saturation. The island characteristics, ψ1(r) and ψ′1(r) from the analytical

calculation and the simulation show good agreement. This result is important because

it demonstrates that the linear eigenfunction can be used to calculate properties of an

island state, including saturation width, and that the solution external to the island is not

significantly changed by the internal island dynamics.
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