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Abstract. Linear and nonlinear kinetic-MHD hybrid simulations have been
carried out to investigate linear stability and nonlinear dynamics of beam-driven
fishbone instability in spherical tokamak plasmas. Realistic NSTX parameters
with finite toroidal rotation are used. The results show that the fishbone is driven
by both trapped and passing particles. The instability drive of passing particles
is comparable to the trapped particles’ in linear regime. The effects of rotation
are destabilizing and a new instability region appears at higher qmin (> 1.5)
values with qmin being the minimum of safety factor profile. In nonlinear regime,
the mode saturates due to flattening of beam ion distribution, and it persists
after initial saturation while mode frequency chirps down in such a way that the
resonant trapped particles move out radially and keep in resonance with the mode.
Correspondingly, the flattening region of beam ion distribution expands radially
outward. A substantial fraction of initially non-resonant trapped particles become
resonant around the time of mode saturation and keep in resonance with the mode
as frequency chirps down. On the other hand, the fraction of resonant passing
particles is significantly smaller than that of trapped particles. Our analysis shows
that trapped particles provide the main drive to the mode in the nonlinear regime.

PACS numbers: 52.35.-g, 52.35.Mw, 52.35.Py, 52.30.Gz, 52.55.Fa

Keywords : NSTX, Fishbone, Frequency Chirping, Nonlinear Dynamics, Wave-
Particle Interaction
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1. Introduction

Energetic particle physics is critical for understanding behaviours of burning plasma
experiments such as ITER. Energetic particle-driven instabilities may degrade
energetic particle confinement and alpha particle heating efficiency. Fishbone is
one of the most important energetic particle instabilities and is commonly observed
in many tokamaks and stellarators with Neutral Beam Injection (NBI) heating
and/or Radio Frequency (RF) heating. It was first observed in the Poloidal Divertor
Experiments (PDX) with perpendicular neutral beam injection[1]. The instability
was driven resonantly by energetic trapped beam ions with resonance condition
ω = ωd, where ωd is the trapped particle’s precessional drift frequency[2, 3]. The
mode had strong downward frequency chirping, with magnetic signal evolution
resembled the bones of a fish, and was thus named “fishbone”. Since then fishbone
instability has been observed in many tokamaks, spherical torii, and stellarators [4–
11]. It has been shown that the instability can also be driven by passing energetic
particles in addition to trapped particles[12, 13].

In this paper, we focus on nonlinear dynamics of fishbone instability in spherical
tokamak plasmas. Experimental studies showed that there exists low frequency and
high frequency fishbone[14, 15]. In this study, the simulation results correspond to
the low frequency fishbone. The 3D global kinetic/MHD hybrid code M3D-K[16, 17]
is used to simulate beam-driven fishbone in this work. In M3D-K, the thermal plasma
is described by the resistive MHD equations, while fast ion species is treated by the
drift-kinetic equations. The fast ion pressure tensor Ph is coupled to the momentum
equation. The system of hybrid equations are solved numerically as an initial value
problem in toroidal geometry. The MHD equations are solved by the finite element
method, and the drift-kinetic equations are solved by particle-in-cell method. The
code has been used to simulate successfully internal kink mode, sawteeth, fishbone,
toroidal Alfvén eigenmode, reversed shear Alfvén eigenmode, and tearing mode with
effects of energetic particles[18, 19, 21–28].

Recently, the code was used to study the linear stability and nonlinear dynamics
of both non-resonant kink mode (NRK) and fishbone in NSTX plasmas with weakly
reserved shear q profile and zero rotation[31, 32]. It was shown that the fishbone
saturates with strong downward frequency chirping and flattening of beam ion
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Figure 1. Equilibrium profiles vs.
√
ψ: (a) total pressure Ptotal, energetic particle

pressure Phot, (b) safety factor q, (c) toroidal rotation Ω.

distribution. In this work, we extend the previous study to include the effects
of finite toroidal plasma rotation. More importantly, the detailed nonlinear wave
particle interaction is investigated in order to understand the mechanism of frequency
chirping and beam ion redistribution.

The paper is organized as follows. In the next section, the main parameters and
profiles of our simulations are described. In section 3, we present simulation results
of fishbone instability and wave particle resonances in linear phase. In section 4, we
present the analysis of the nonlinear dynamics of fishbone including mode nonlinear
evolution, frequency chirping, and nonlinear behaviors of wave particle interaction,
and compare our results with the Berk&Breizman hole/clump theory [29, 30]. In
section 5, we summarize our main results.
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2. Equilibrium profiles and fast ion parameters

This work extends the previous work[31, 32] of n=1 mode simulation in NSTX
to include the effects of finite toroidal rotation and detailed analysis of nonlinear
dynamics of fishbone. The simulations in this study are also based on profiles and
parameters of the NSTX discharge 124379 at t = 0.635 s. The profiles of pressure,
energetic particles’ pressure, safety factor (q) and toroidal rotation are shown in Fig.
1, where ε ≡ a/R0 = 0.701, B0 = 0.44 T , and ω0 = vA/R = 8.246 × 105 rad/s.
The rotation profile and amplitude are chosen according to the experimental data
with vφ,0 = 8.5 × 104m/s. In the NSTX experiment, the beam power was 4 MW ,
the total plasma beta was βt ≡ 2µ0Pthermal+beam,0/B

2
0 = 0.39, beam ion beta

βh ≡ 2µPbeam,0/B
2
0 and βh/βt = 0.28. The fast ion distribution is slowing-down

in energy with a peaked distribution in pitch angle parameter:

F0 =
cH(Emax − E)

E3/2 + E
3/2
c

e−
(Λ−Λ0)2

∆Λ2 e−
〈ψ〉
∆ψ , (1)

where c is a normalization factor, H is the step function. E = v2/2mi+eΦ, where e is
the particle charge and φ is the electric potential associated with the plasma rotation.
Emax = v20mi/2 + eΦ, where v0 is the beam particle injection speed, and Ec =

v2cmi/2 + eΦ, where vc is the critical velocity given by v3c ≡ 3
√
πme(2Te/me)

3/2/mi,
Λ ≡ µB0/E is the pitch angle parameter, where µ is the magnetic moment. ψ

is normalized poloidal flux, and 〈ψ〉 is ψ averaged over particle orbit. The NBI
injection energy of NSTX is 80 keV , the central pitch angle Λ0 = 0.6, and ∆Λ = 0.3,
∆ψ = 0.3. Note that these parameters are estimated based on the results of the
beam ion code NUBEAM[33]. For simplicity, we only keep the n = 1 component of
perturbation in the simulations discussed below, where n = 1 is the toroidal mode
number, and simultaneously, we retain all poloidal harmonics for both linear and
nonlinear studies. We also ignore the rotation effects on equilibrium due to low ratio
of rotation velocity to ion thermal velocity. The energetic particles are described
using the drift-kinetic equation with the δf particle-in-cell method, and sources &
sinks are not included in the simulations. The thermal plasma is described using the
extended MHD equations.
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Figure 2. Linear growth rate (a) and mode frequency, (b) versus qmin with and
without rotation, βh/βt = 0.35.

3. Linear Simulation Results

In this section, linear simulations of beam-driven fishbone have been carried out
based on parameters and profiles given above. In particular the effects of finite
plasma rotation neglected in the previous work are included. In this study, the
effects of equilibrium component of vφ are retained in the system of hybrid equations
including the momentum equation and the Ohm’s Law. The static electric field
associated with the toroidal rotation is included in the drift-kinetic equation for
energetic particles. The rotation profile and amplitude are chosen according to the
experimental data with vφ,0 = 8.5× 104m/s at the magnetic axis.

Figure 2 shows the growth rate (γτ0) and mode frequency (ω) as a function of
qmin at βh/βt = 0.35, where τ0 = R/vA = 1.2 µs. Note that in this qmin scan, the q
profile is shifted up and down with its shape kept fixed. We observe that effects of
rotation are destabilizing. Specifically, a new unstable region at higher qmin values
appears due to the toroidal rotation. Figure 4 shows the linear mode structures
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Figure 3. Continuous spectrum from NOVA with qmin = 1.02 and qmin = 1.46.
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Figure 4. Linear mode structure (stream function U) with qmin = 1.021, 1.321

and 1.621.

with qmin = 1.021, 1.321, and 1.621. It indicates that with qmin ' 1, the mode is
dominated by m/n = 1/1 component, and with higher qmin, the mode is dominated
by m/n = 2/1 component and has a ballooning structure.

It is not totally clear why rotation destabilizes fishbone at high qmin. The
sheared rotation can affect mode structure, beam ion drive and continuum damping.
It can also affect beam ion resonance condition with finite orbit width. The sheared
rotation can also affect the MHD stability. In order to better understand the sheared
rotation effects on fishbone instability, figure 3 shows the low-frequency part of the
sound-Alfvén continuous spectrum obtained using the ideal MHD code NOVA[20].
Clearly the continuous spectrum shape is significantly changed due to the finite
sheared toroidal rotation. Therefore the sheared rotation can affect the fishbone
stability via its effects on mode structure, beam ion drive and continuum damping.
The detailed parameter dependence and physics of the rotational effects on fishbone
will be investigated in future.

Note that in the actual experiment, there was no fishbone instability observed in
this discharge around time = 0.635s. Instead, the dominant mode was a neoclassical
tearing mode (NTM)[21]. One reason is that our simulation model does not include
the key NTM physics that is important in this case. Another reason is that the
instability is sensitive to the q and fast beam ion pressure profiles. With lower
qmin, the fishbone is stable, instead, the NRK mode is unstable in simulation,
which may trigger NTM. Typically, in NSTX plasmas, fishbone’s initial frequency in
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plasma frame is 8 − 10 kHz, and the chirping time is ' 3 ms (discharge #138872,
time = 0.43− 0.46 s) [34]. Basically, it agrees with the simulation results, where the
frequency is ω = 0.07ω0 = 9.19 kHz, and the chirping time is ' 3.5 ms. For NRK,
the mode frequency in plasma frame is very small as compared to the fishbone’s.
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Figure 5. Unperturbed distribution function F0, and linear resonant particles in
Pφ and E spaces, with qmin = 1.321, βh/βt = 0.2 and µ ' 0.467.

The instability drive of the fishbone is analyzed. In general, the mode is excited
by free energy associated with radial gradient of beam ion distribution via wave
particle resonant interaction. The resonance condition is given by

ω = nωφ + pωθ, n, p ∈ Z (2)

where p is an integer. For passing particles, ωθ and ωφ are particle poloidal and
toroidal transit frequencies respectively. For trapped particles, ωθ is the bounce
frequency and ωφ ≡ ωd is the toroidal precession drift frequency. For typical
parameters it is found that main resonances are p=0 and p=1. Figure 5 plots p=0
(red circles) and p=1 (blue cross) resonant locations in the phase spaces of (E, Pφ) as
well as contours of unperturbed beam ion distribution (F0) at fixed value of magnetic
moment µ ' 0.467 (normalized by E0/B0). The value of magnetic moment is in the
range of [0.0, 1.3]. The selected value of µ = 0.467, is a typical one which contains
substantial region of both trapped and passing resonant particles. It is chosen to
clearly illustrate the effects of both trapped and passing particles. However, the
relative contribution of trapped and passing particles to the mode instability drive
is calculated for whole phase space, not only for µ = 0.467.
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Note that the maximum energy of particles is a little larger than the injection
energy (Emax = 1.03 E0) due to the electric potential induced by the toroidal
rotation. Pφ = eψ + mv‖RBφ/B is the toroidal angular momentum, here we use
the code units for Pφ, ψ denotes the poloidal flux in code units with ψ = ψmin at
the magnetic axis and ψ = ψmax = 0 at the plasma edge, which means for a fixed
E, small Pφ corresponds to the plasma core, and large Pφ corresponds to the plasma
edge. The approximate boundary between passing particles and trapped particles is
indicated by the black dashed line. It is clear that p=0 corresponds to precessional
resonance of trapped particles and p=1 corresponds to parallel resonance of passing
particles.

Furthermore, the relative contribution of trapped particles and passing particles
to the fishbone drive is estimated by calculating each particle’s energy change at
the end of the linear simulation. It is found that passing particles’ destabilizing
contribution is comparable to the trapped particles’. For the specific case of
qmin = 1.321 and βh/βt = 0.2, the passing particles’ contribution is about 40%

higher than the trapped particles’. This is quite different from fishbone instability in
conventional tokamaks where the mode is driven mainly by either trapped or passing
particles.

4. Nonlinear dynamics of beam-driven fishbone: mechanism of chirping

Here we investigate nonlinear evolution of chirping fishbone and associated dynamic
behaviours of particles near resonances. The purpose is to understand the chirping
mechanism of beam-driven fishbone in spherical tokamaks. Figure 6 shows the
nonlinear evolution of fishbone for a relatively low linear growth rate case with
βh/βt = 0.2, and qmin = 1.321. The calculated linear mode frequency and growth
rate is ω = 0.13 (ω0) and γτ0 = 0.005. The figure shows time evolution of (a) cos
component of stream function U , here U is the stream function of the incompressional
part of the perturbed plasma velocity, (b) mode frequency, (c) total energy changes
of passing particles and trapped particles (positive means losing energy), and (d)
ratio of the energy changes between trapped and passing particles. We observe that
the mode saturates around t ∼ 1600 τ0 and the mode amplitude persists thereafter.
Correspondingly, the mode frequency chirps down strongly from ω = 0.13 (ω0) to
ω = 0.06 (ω0). Interestingly, about half of the frequency drop occurs before the initial
saturation. We also observe that, although the passing particle drive (measured
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Figure 6. Nonlinear evolution of the fishbone mode: (a) the cos component of U ,
(b) mode frequency, (c) energetic particles energy contribution from trapped and
passing particles, (d) the ratio of trapped particles’ energy contribution to passing
particles’.

by energy change) is somewhat larger than trapped particles’ initially, the trapped
particle drive becomes increasingly more important and dominant from t ∼ 1000 τ0.
This indicates that the chirping mode is driven mainly by trapped particles in the
nonlinear phase. In addition to mode saturation and frequency chirping, the mode
structure also changes significantly as shown in Fig.7. We observe that the mode
structure evolves from ballooning structure in the linear phase to anti-ballooning
structure with a broader (2, 1) component in the nonlinear phase.

The corresponding beam ion distribution evolution is shown in Fig. 8 and
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Figure 7. The amplitude of velocity stream function U in nonlinear evolution,
R, Z are normalized by minor radius.
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particles with E ' 0.406 (E0), (b) passing particles with E ' 0.636 (E0).

Fig. 9 in 1D and 2D phase spaces at t = 0, 1000, 2000 and 3000 τ0 respectively.
Clearly, there is a large flattening region induced by both trapped and passing
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particles. Figure 8 shows the flattening region of the distribution function expands
outwards/inwards radially (or in Pφ space) in time for trapped/passing particles.
For trapped particles, the center of the flattening region also moves from the core to
edge as the mode chirps down. Figure 9 shows the 2D distribution function in Pφ
and E spaces, which clearly presents some details of the distribution change in the
nonlinear phase. At t = 1000 τ0, when the mode amplitude is small, the perturbation
mainly appears around the resonance line shown in Fig. 5, which proves the main
resonances are p = 0 and p = 1 (mentioned in the previous section). At t = 2000

and 3000 τ0, around E ' 0.4 (E0), which corresponds to trapped particles, the
distribution function is flat from the resonance line to the edge. For distribution
around E ∼ 0.55 (E0) to E ∼ 0.8 (E0), which corresponds to passing particles,
the distribution function is flat from the resonance line to the core. This expansion
of flattened region can be understood by dynamics of resonant particles interacting
with a chirping mode as shown below.

We now analyze the dynamics of resonant and non-resonant particles interacting
with a chirping fishbone in order to understand the mechanism of fishbone nonlinear
evolution including frequency chirping. First, we examine the dependence of particle
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resonance frequency as a function of E and Pφ at µ ' 0.467. Figure 10 (a) shows
the location of p = 0 resonance and p = 1 resonance for three mode frequencies
including the linear fishbone frequency of ω ' 0.13 (ω0) and two nearby frequencies.
Note that the resonant location does not correspond to smooth lines because it
is obtained from particle simulation with a narrow range of µ values. To see the
dependence of resonance frequency more clearly, Fig. 10 (b) plots p=0 resonant
frequency (or precessional drift frequency) of trapped particles and p=1 resonant
frequency of passing particles as a function of Pφ at energy value of E ' 0.45 (E0)
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and E ' 0.64 (E0), respectively. We observe that the precessional frequency
firstly decreases with Pφ strongly for Pφ < −0.4, and then changes very slowly
for Pφ > −0.4. On the other hand, the p=1 resonance frequency of passing particles
increases strongly with Pφ for Pφ < −0.4. We will soon show that these different
behaviours of resonant frequency are important to understand dynamics of trapped
and passing particles interacting with the mode resonantly.
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Figure 11. Nonlinear dynamic of a typical trapped particle with ωd,t=0 ' ωlinear:
(a) mode frequency, and ωd; (b)Pφ versus time; (c) the particle’s trajectory in Pφ
and E spaces.

Figure 11 shows the evolution of precessional drift frequency ((a), red line),
Pφ (b) and trajectory of a typical resonant trapped particle which is initially in
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Figure 12. Nonlinear dynamic of trapped particles with ωd,(t=0) ' 0.7ωlinear. Red
and green markers present two typical nonlinear resonance particles respectively.

resonance with the fishbone. The mode frequency evolution is also shown ((a), blue
line). We observe that the particle keeps in resonance as the mode frequency chirps
down. Correspondingly the particle moves outward radially as Pφ increases and
energy decreases. The movement of particle in the (E, Pφ) phase spaces can be
understood from the relationship[35]

dPφ
dt

= −n
ω

dE

dt
, (3)

This equation means that the change of particle toroidal angular momentum
is proportional to the change of particle energy in the presence of a perturbation
with frequency ω and toroidal mode number n. Since Pφ can be regarded as a radial
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Figure 13. Nonlinear dynamic of trapped particles with ωd,(t=0) ' 1.3ωlinear.

variable, this means that a particle moves out radially with decreasing energy. The
oscillation of Pφ in plot (b) indicates that the particle is trapped in the fishbone
mode. The averaged value of Pφ increases at such rate that precessional frequency
keeps in resonant with the chirping mode. We observe that almost all of these linear
resonance trapped particles are phase-locked with the mode, and we plot only one of
them to keep the plot clear. It is instructive to note that there is a big jump in Pφ
and its oscillation amplitude at t ∼ 2800 τ0 and Pφ ∼ −0.4. This is due to the sudden
change of the slope of function ωd(Pφ) near Pφ = −0.4 (see in Fig. 10). It should be
noted that these phase-locking resonant particles cause the radial expansion of beam
ion redistribution as mode frequency chirps down (see Fig. 8).
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We now examine the behaviour of non-resonant trapped particles. Figure 12
shows the evolution of precessional drift frequency ((a), red and green lines), Pφ (b)
and trajectory (c) of two typical non-resonant trapped particles with precessional
frequencies less than the initial fishbone frequency. Similarly, Fig. 13 shows evolution
of precessional drift frequency ((a), red and green lines), Pφ (b) and trajectory (c) of
two typical non-resonant trapped particles with precessional frequencies larger than
the initial fishbone frequency. We observe that in both cases some of initially non-
resonant trapped particles can become resonant before mode saturation and keep in
resonance with the mode as the frequency chirps down.
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Figure 14. Nonlinear dynamic of passing particles with ωφ,(t=0) + ωθ,(t=0) '
ωlinear.
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We now look at the behaviour of resonant passing particles. Figure 14 shows two
typical passing particles nonlinear dynamic with initial frequency ωφ,(t=0) +ωθ,(t=0) '
ωlinear. For orbit a (red lines), the particle keeps in resonance with the mode while
the averaged Pφ decreases as the mode frequency chirps down. The direction of Pφ
change is different from that of resonant trapped particles due to the opposite slopes
of particle frequencies (see Fig. 10). As a result, the particle gets energy from the
mode, in other words, it damps the mode nonlinearly. For orbit b (green lines),
initially, the particle is in resonance. As the mode frequency chirps, the particle does
not lock to the wave phase, in contrast, its frequency slightly increases, while energy
decreases. At the end, it oscillates in a small range of Pφ and E spaces, but it still
contributes energy to the mode on average.
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Figure 15. κ ≡ Phase locked particle number
Total particle number after the mode saturated as a function

of the initial particle’s frequency.

Figure 15 shows the fraction of phase-locked particles versus initial particle
frequency. Here the phase-locked particles include all the particles that are in
resonance with the mode near the end of simulation (t=3500) whether they are
initially resonant or not. Numerically the ration is defined κ ≡ Nr(ωp,t=0)/N(ωp,t=0)

, where Nr(ωp,t=0) is the number of phase-locking particles with |ωp(t = 3500)−ω(t =

3500)| < 0.01 in ωp,t=0 space, and N(ωp,t=0) is the number of total particles in ωp,t=0

space. For trapped particles, ωp = ωd, and for passing particles, ωp = ωφ + ωθ.
We observe that for particle frequency between 0.15 (ω0) and 0.06 (ω0), majority

of trapped particles are phase-locked particles while less than half of passing particles
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keep in resonance with the mode. This indicates that the main mode drive in the
nonlinear phase comes from trapped particles. Furthermore, for either trapped or
passing particles, a substantial fraction of initially non-resonant particles become
resonant particles and thus play a significant role in mode nonlinear drive and
frequency chirping.

Now we can connect the nonlinear dynamics of single particle’s orbit,
distribution function and the mode together. For trapped particles, as the frequency
chirps down, most of the linear resonant and near resonant particles are phase-locked
with the wave, and they move radially and drive the mode continuously, which leads
to distribution evolution in the phase space. Meanwhile the mode structure becomes
broader at the low field side.

For passing particles, there are also a fraction of particles keep in resonance
nonlinearly. Due to the opposite slopes of the particle frequencies in Pφ space, they
move from edge to core, and get energy from the mode. But there are more particles
near resonance that are not phase-locked with the mode. They instead move from
core to edge and drive the mode. These particles do not drive the mode continuously
like trapped particles, but as the mode frequency chirp down and the resonance line
for passing particles move inwards, more and more particles can become resonant
with the mode and drive the mode nonlinearly. Trapped particles provide the
dominant driving force nonlinearly since the nonlinear driving trapped particles are
phase-locked particles, and they increase in number as frequency chirps down and
the mode amplitude grow.

It is instructive to compare our results of fishbone’s chirping and particle
dynamics with the Berk-Breizman’s hole/clump theory of bump-on-tail instability[29,
30]. The theory shows that a hole/clump structure in distribution can develop from
a near-threshold energetic particle-driven instability and the mode frequency chirps
up/down while the hole/clump structure moves in phase spaces. Our results are
consistent with the Berk-Breizman theory with respect to frequency chirping and
associated resonant particle dynamics. In particular, our analysis shows that the
resonant particles are trapped by the mode and thus they keep in resonance with
the mode as frequency chirps down. Furthermore, a substantial fraction of initially
non-resonant particles become resonant as the mode grows and frequency chirps
down. This suggests the formation of phase spaces island of resonant particles move
in phase spaces as frequency chirps down. Our estimate shows that the adiabatic
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parameter α ≡ dω
ω2
bdt
≤ 0.005 is very small where ωb is the bounce frequency of a

resonant particle trapped in the mode. This indicates that the adiabatic assumption
of the Berk-Breizman theory is valid for our case.

It should be noted that our results also differ from that of Berk-Breizman theory
in important ways. The simulated evolution of beam ion distribution does not show
a clear local hole/clump structure moving in phase spaces. Instead the beam ion
redistribution is fairly global. This is probably due to large oscillation of Pφ of
resonant particles or large phase space island. It can be shown that a large island
size can result from weak gradient of ωd(Pφ) as shown in Fig. 10.

Specifically an equation of motion for a resonant particle trapped in the finite
amplitude fishbone mode can be derived to show that the corresponding oscillating
amplitude of Pφ is inversely proportional to

√
|dωd/dPφ|. Thus the width of phase

space island of resonant trapped particles is larger for smaller gradient of ωd(Pφ).
Finally our results show that the mode structure changes significantly during the
nonlinear evolution. This effect might affect the mode chirping and beam ion
redistribution. However, this effect was not included in the Berk-Breizman theory.

5. Summary

In summary, linear and nonlinear simulations of n=1 fishbone have been carried out
for the first time for the parameter regime of NSTX with low aspect ratio, high
beta, high sheared rotation, and qmin > 1. This parameter regime is very different
from that of moderate aspect ratio, low beta, and small rotation of conventional
tokamaks. The simulation is self-consistent with evolving mode structure in the
nonlinear regime. This spherical tokamak parameter regime leads to new features of
fishbone with respect to linear stability and nonlinear evolution. The main results
are listed below:

(1) Linearly, the fishbone is driven by both trapped particles and passing
particles. For a realistic distribution function from NBI, the instability drive of
passing particles is comparable to the trapped particles’. This is quite different from
that of the classical fishbone in conventional tokamaks where the fishbone is mainly
driven by either trapped or passing particles.

The significant passing particle contribution is likely induced by a finite
precession drift frequency due to low aspect ration and high beta.

(2) The effects of rotation are destabilizing and a new instability region appears
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at higher qmin. It is shown that the sheared rotation affects the sound-Alfreń
continuum significantly, which can in turn lead to modification of mode stability.

(3) The mode saturates nonlinearly due to flattening of distribution function,
and it persists after initial saturation while mode frequency chirps down in such a
way that the resonant trapped particles move out radially and keep in resonance with
the mode. Correspondingly the flattening region of beam ion distribution expands
radially outward. There is no apparent hole/clump structure of Berk-Breizman model
because of large oscillating amplitude in Pφ of resonant particles phase-locked with
the fishbone.

(4) A substantial fraction of initially non-resonant trapped particles become
resonant and keep in resonance with the mode as mode grows and frequency chirps
down. On the other hand, the fraction of resonant passing particles is significantly
smaller than that of trapped particles. Indeed our analysis shows that trapped
particles provide the main drive in the nonlinear phase.
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