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Variational principles for dissipative (sub)systems,
with applications to the theory of dispersion and geometrical optics

I. Y. Dodin,1, 2 A. I. Zhmoginov,3 and D. E. Ruiz1

1Department of Astrophysical Sciences, Princeton University, Princeton, New Jersey 08544, USA
2Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543, USA
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Applications of variational methods are typically restricted to conservative systems. Some exten-
sions to dissipative systems have been reported too but require ad hoc techniques such as artificial
doubling of variables. Here, a different approach is proposed. We show that, for a broad class of
dissipative systems of practical interest, variational principles can be formulated using constant La-
grange multipliers and Lagrangians nonlocal in time, which allow treating reversible and irreversible
dynamics on the same footing. A general variational theory of linear dispersion is formulated as
an example. In particular, we present a variational formulation for linear geometrical optics in a
general dissipative medium, which is allowed to be nonstationary, inhomogeneous, nonisotropic, and
exhibit both temporal and spatial dispersion simultaneously.

PACS numbers: 45.20.Jj, 41.20.Jb, 42.15.-i, 52.35.-g

I. INTRODUCTION

A. Motivation

Variational methods (VM) have long been known as
powerful tools in theoretical physics, especially in the
context of reduced modeling. As opposed to approximat-
ing differential equations, approximating the action func-
tional guarantees that the corresponding model too has
a variational structure by definition. This implies that
conservation laws are also generally preserved, so a model
inherits key features of the original system notwithstand-
ing the reduction [1]. One of the areas that particularly
benefit from this fact is wave theory [2, 3], where even
crude approximations to an action functional often yield
insightful reduced models [4–10]. The advantages of VM
become especially obvious when one deals with media
such as plasmas, which can be nonstationary, inhomoge-
neous, anisotropic, and exhibit both temporal and spatial
dispersion simultaneously [11–17]. First-principle differ-
ential equations are often unrealistic to handle in this
case, whereas VM allow for simple and intuitive model-
ing. Specifically, a wave theory can be constructed as
an axiomatic field theory without even specifying the
waves’ nature (electromagnetic, acoustic, etc.). Defining
the action functional explicitly is needed only to connect
the resulting general equations with specific quantities
of interest [4–6]. For example, this provides a conve-
nient alternative to using Maxwell’s equations for elec-
tromagnetic waves [4], which are generally complicated
[18] (as opposed to the corresponding VM) even in the
geometrical-optics (GO) limit [19].

But which exact variational principle does one begin

∗Currently at Google Inc., 1600 Amphitheatre Parkway, Mountain
View, California 94043.

with? The microscopic least action principle (LAP) is
typically available in the form δA[q, ξ] = 0, where q de-
scribes the wave field, ξ describes the medium, and A
is a known functional. However, practical applications in
the context described above require a different variational
principle, where q is the only independent variable, while
the medium’s degrees of freedom are “integrated out”,
i.e., somehow expressed through q. If the medium re-
sponse is adiabatic (e.g., if ξ[q] can be approximated with
a local function), an effective LAP for q can be formulated
simply as δA[q, ξ[q]] = 0, as will also be discussed below.
This principle has enjoyed insightful applications, e.g.,
in the theory of generalized ponderomotive forces [15–
17] and nonlinear plasma waves [11–14]. However, when
the medium response is not adiabatic, the dynamics of q
becomes dissipative. Then, the mentioned effective LAP
becomes inapplicable, and the problem requires a more
subtle approach. This issue has been recently receiving
attention in plasma physics [20] and is also important for
advancing variational formulations of plasma and wave
kinetics such as in Ref. [15]. The purpose of the present
paper is to find the appropriate modification of the effec-
tive LAP that would incorporate dissipation under the
above assumptions.

B. Historical context

Accommodating dissipative effects within the LAP has
a long history (e.g., cf. Ref. [21]) both as a formal prob-
lem of finding a variational principle for a given equation
[22–39] and also in modeling physical systems, for ex-
ample, quantizing radiation in dissipative media [40–52].
It is hardly possible to overview the topic here, so the
given references are intended as representative but not
exhaustive. In any case, the subject of our paper is dif-
ferent from those discussed in literature, particularly, in
the following aspects:
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• We do not address the problem of finding a LAP for
a system with general dissipation. Instead, we con-
sider only emergent dissipation in nonconservative
subsystems of systems that are overall conservative.

• We avoid the standard approach (known under
many different names [22–25, 53]) where additional
independent functions are introduced that serve as
Lagrange multipliers [54]. In our formulation, only
time-independent Lagrange multipliers are used.

• We avoid variable transformations that are used (as
in, e.g., Refs. [26–32]) to compensate the loss of the
phase space volume caused by dissipation.

• In contrast to theories discussed in quantum con-
texts, our theory is not statistical. Instead, we
search for a LAP that describes deterministic dy-
namics on a finite time interval for a given initial
state of the medium. Thus, we cannot describe
wave fields using the standard Fourier representa-
tion, and we also have to specify boundary con-
ditions (BC) in time, which are often ignored. In
fact, it is the attention to these BC that helps ac-
commodate dissipation within a LAP.

• Instead of modeling media as collections of station-
ary oscillators (as in, e.g., Refs. [40, 46, 48]), we
allow for media that are nonstationary, inhomo-
geneous, anisotropic, and have both temporal and
spatial dispersion simultaneously. Moreover, our
approach allows treating classical and quantum de-
grees of freedom on the same footing.

• Our theory is formulated within the standard cal-
culus of variations. We avoid exotic constructs such
as complex actions or fractional derivatives [33–35].
Feynman integrals, which are used in related quan-
tum theories (e.g., see Ref. [46]), are also avoided.

C. Main results and outline

Our main results are as follows. We formulate a varia-
tional principle for a dissipative subsystem of an overall-
conservative system by introducing constant Lagrange
multipliers and Lagrangians nonlocal in time. We call it
the variational principle for projected dynamics (VPPD).
Although the work is originally motivated by needs of the
plasma wave theory, our results are applicable to general
dynamical systems just as well. In the first part of the
paper (Secs. II-IV), we introduce the general approach
where ξ[q] is an arbitrary nonlinear functional and de-
rive an exact effective LAP for q. In the second part
(Sec. V), we elaborate on applications of this approach
to the important special case of linear ξ[q], which corre-
sponds to linear media. Our formulation is equally ap-
plicable to both classical and quantum media. In the
third part (Secs. VI and VII), we discuss various asymp-
totic approximations of the effective LAP for oscillations

and waves in linear media, including the quasistatic and
GO approximation. To our knowledge, this is the first
variational formulation of dissipative GO in a general
linear medium, which is allowed to be nonstationary, in-
homogeneous, nonisotropic, and exhibits both temporal
and spatial dispersion simultaneously. Also notably, the
“spectral representation” of the dielectric tensor ε(ω,k)

that enters the GO equations is shown to be, strictly
speaking, the Weyl symbol of the medium dielectric per-
mittivity. (Previously, it has been known that Weyl sym-
bols emerge naturally in wave kinetics [55–57].) This can
be considered as an invariant definition of ε(ω,k), as op-
posed to ad hoc definitions used in literature that have
been a source of a continuing debate [58–60].

Our work is also intended as a stepping stone for ex-
tending the variational theory of modulational stability
in general wave ensembles [15] to dissipative systems. De-
tails will be described in a separate publication.

II. NOTATION

The following notation is used throughout the paper.
The symbol

.
= denotes definitions, and (. . .)T denotes

transposition. For example, for a column vector q
[Eq. (1)], one has qT = (q1, q2, . . . , qN ), which is a row
vector; i.e., in this case, (. . .)T merely lowers the index.
We assume an = δnma

m = an for any a, where δnm is the
Kronecker delta. (Summation over repeated indices is
assumed unless specified otherwise.) Hence, in principle,
an and an could be considered equivalent, but we prefer
to retain the distinction because some quantities (such
as coordinates) are naturally defined with upper indexes,
while others (such as momenta) are naturally defined
with lower indexes. Introducing a more fundamental
geometrical interpretation will not be needed for our
purposes. Note also that some indexes will be used just
to introduce new symbols. This applies to all scalars
(e.g., t1 and t2) and to some vectors (e.g., q0, qT , ξ0,
ξ′0). We also define a · b .

= anb
n. The symbol ∂a will

denote ∂/∂a. The notation “δa :” will denote that the
equation is obtained by extremizing a corresponding
action functional with respect to a. The remaining
notation is introduced within the main text. Finally, the
abbreviations used in the text are summarized as follows:

BC – boundary condition(s),
ELE – Euler-Lagrange equation(s),
GO – geometrical optics,

LAP – least action principle,
VM – variational method(s),

VPPD – variational principle for projected dynamics.

III. LAGRANGIAN FORMULATION

We start by introducing the general formalism of La-
grangian mechanics. Although this formalism is com-
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monly found in textbooks (e.g., see Ref. [61]), it is es-
sential to restate it here, so we can explicitly reference
specific definitions and equations later in the text.

A. Single system

Consider a Lagrangian system S (q) characterized by
some real coordinate vector

q
.
=


q1

q2

...
qN

 . (1)

The dynamics of S (q) on a time interval t ∈ (t1, t2) is
governed by the LAP. We call this interval T , and we also
use the symbol T to denote its duration, T

.
= t2− t1. We

assume the action functional A(q) to have the form

A(q)[q] =

∫ t2

t1

L(q)(t, q, q̇) dt, (2)

where L(q) is called a Lagrangian. Then, the standard
formulation of the LAP is as follows:

δA(q)[q] = 0, (3)

δq(t1,2) = 0. (4)

[Here and further, the notation q(t1,2) means “both q(t1)
and q(t2)”]. Note that Eq. (4) implies BC

q(t1) = q0, q(t2) = qT , (5)

where q0 and qT are some given constants.
From Eq. (2), one obtains

δA(q) = (p · δq)
∣∣t2
t1

+

∫ t2

t1

[
∂qL

(q) − ṗ
]
δq dt, (6)

where we introduced the “canonical momentum”

p = (p1, p2, . . . , pN ) (7)

with pn
.
= ∂L(q)(t, q, q̇)/∂q̇n, or, more compactly, p

.
=

∂q̇L
(q). The first term on the right in Eq. (6) vanishes

because q(t1,2) are fixed. Hence, the LAP leads to the
following Euler-Lagrange equations (ELE):

δq : 0 = ∂qL
(q) − ṗ. (8)

This is a second-order equation for the N -dimensional
coordinate q, so the 2N BC (5) (two per each compo-
nent of q) provide just the right number of parameters
to define a solution of Eq. (8). Alternatively, one can
also approach Eq. (8) as an initial-value problem; then,
the condition on on q(t = t2) would need to be replaced
with a condition on q̇(t = t1). It is straightforward to
extend this formulation to Lagrangians that depend also
on higher-order derivatives, but we will not consider such
extensions for the sake of brevity.

B. Coupled systems

Now suppose that S (q) is coupled to another La-
grangian system S (ξ), which we call the “medium”.
Suppose also that S (ξ) is characterized by some M -
dimensional coordinate ξ. The dynamics of the resulting
system S is governed by the LAP δA[q, ξ] = 0, where A
is the total action. For clarity, we adopt it in the form

A =
∫ t2
t1
Ldt, where L is the Lagrangian given by

L = Λ(q)(t, q, q̇) + Λ(ξ)(t, ξ, ξ̇) + Λ(int)(t, q, q̇, ξ, ξ̇). (9)

The assumed BC are

δq(t1,2) = 0, δξ(t1,2) = 0, (10)

which introduce 2(M+N) BC similar to Eq. (5), namely,

q(t1) = q0, q(t2) = qT , ξ(t1) = ξ0, ξ(t2) = ξT .
(11)

Like in Sec. III A, one then obtains

δA[q, ξ] = (p · δq)
∣∣t2
t1

+ (η · δξ)
∣∣t2
t1

+

∫ t2

t1

[
(∂qL

(q) − ṗ) δq + (∂ξL
(ξ) − η̇) δξ

]
dt, (12)

where we introduced

L(q) .
= Λ(q) + Λ(int), L(ξ) .

= Λ(ξ) + Λ(int), (13)

p
.
= ∂q̇L

(q), η
.
= ∂ξ̇L

(ξ). (14)

The first two terms on the right side of Eq. (12) vanish
due to Eqs. (10), so the LAP yields the following ELE:

δq : 0 = ∂qL
(q) − ṗ ≡ F (q), (15)

δξ : 0 = ∂ξL
(ξ) − η̇ ≡ F (ξ). (16)

Equations (15) and (16) are second-order equations for
q(t) and ξ(t), so the mentioned BC provide just enough
parameters to define a solution.

C. Projected dynamics

Although Eqs. (15) and (16) form a self-consistent sys-
tem, it is also convenient to approach Eq. (16) formally as
if q were as a prescribed function. In that case, one can,
in principle, solve for ξ and express it as some functional

ξ̂ = ξ[q], provided that one is given a 2M -dimensional in-
tegration constant C to determine a solution unambigu-
ously. The resulting system is characterized by q alone
and is not conservative. Our goal is to derive an effec-
tive variational principle for this subsystem, or, in other
words, for the dynamics of S “in projection” on S (q).
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First, consider the variation of A evaluated on [q, ξ̂]:

δA[q, ξ̂] = (p · δq)
∣∣t2
t1

+ (η̂ · δξ̂)
∣∣t2
t1

+ δF (q) + δF (ξ),

δF (q) .
=

∫ t2

t1

F (q)(t, q, q̇, ξ̂,
˙̂
ξ) δq dt,

δF (ξ) .
=

∫ t2

t1

F (ξ)(t, q, q̇, ξ̂,
˙̂
ξ) δξ dt.

By definition of ξ̂, one has δF (ξ) = 0. We will also adopt
δq(t1,2) = 0, as usual. Then,

δA[q, ξ̂] = (η̂ · δξ̂)
∣∣t2
t1

+ δF (q). (17)

If C is a local function of (ξ0, ξT ), then the first term on
the right of Eq. (17) vanishes. In this case, by requiring
that A is extremized, one arrives at the correct equation
(15). However, such choice of C is inconvenient. It is
more practical to choose C such that it characterizes the
initial state of the medium, namely,

ξ̂(t1) = ξ0,
˙̂
ξ(t1) = ξ′0. (18)

[For example, if q is electric field, and ξ is linear polar-
ization, then ξ̂ = X(t, ξ0, ξ

′
0) +

∫ t
t1
κ(t, t′) q(t′) dt′, where

X describes free oscillations independent of q, and κ is
some kernel (Secs. V-VII).] In this case, δξ̂(t1) is zero,
but δξ̂(t2) is not even though q(t1,2) are fixed. Hence,

δA[q, ξ̂] = (η̂ · δξ̂)
∣∣t2 + δF (q), (19)

where the first term on the right generally does not van-
ish. [An exception is the special case when ξ̂ is a local
function of q; then, fixing q(t2) implies fixing ξ̂(t2) too.]
This means that satisfying Eq. (15) at fixed q(t1,2) is not
sufficient to extremize A[q, ξ̂]. In order to ensure that the
action is extremized at fixed q(t1,2), we must constrain
the value of ξ̂(t2) separately.

The problem of extremizing A under an additional con-
straint ξ̂(t2) = const is a standard isoperimetric problem
that is solved by introducing a Lagrange multiplier [62,
Sec. II.14]. In our case, it is an M -dimensional multiplier,
which we will call λ. [The fact that λ itself needs to be
found increases the number of independent variables in

the system, which is why ξ̂(t2) can be constrained inde-
pendently from q(t1,2).] Specifically, the dynamics “pro-

jected” on S (q) is governed by the “effective” action

A(eff)[q]
.
= A[q, ξ̂] + λ · ξ̂(t2), (20)

and the corresponding variational principle, VPPD, is

δA(eff)[q] = 0, δq(t1,2) = 0. (21)

The value of λ can be readily found in the general case
as follows. Under the BC (21), one has

δA(eff)[q] = δF (q) + (ηT + λ) · δξ̂(t2). (22)

Here, ηT is the value of the functional η̂(t2) corresponding
to the physical trajectory for given q0, qT , ξ0, and ξ′0.

The fact that the assumed fixed value of ξ̂(t2) must be
consistent also with the assumed q(t2) implies δF (q) = 0.
Hence, to satisfy Eq. (21), we adopt

λ = −ηT . (23)

This ensures that δA(eff)[q] = 0, so the variational prin-
ciple (21) indeed leads to the correct equation (15).

The VPPD (21), combined with the solution for λ
given by Eq. (23), is the main conceptual result of this
paper. In what follows, we discuss various modifications
of this principle and its applications to specific types of
problems of practical interest.

IV. ROUTHIAN FORMULATION

A. Basic equations

First, consider the following alternative formulation.
We start by introducing the Hamiltonian of S ξ,

H(ξ) .
= η · ξ̇ − L(ξ), (24)

as a function of (t, q, q̇, ξ, η). At fixed (t, q, q̇), one has

dH(ξ) = dη · ξ̇ + η · dξ̇ − (∂ξL
(ξ)) · dξ − (∂ξ̇L

(ξ)) · dξ̇

= dη · ξ̇ + η · dξ̇ − η̇ · dξ − η · dξ̇
= dη · ξ̇ − η̇ · dξ, (25)

where we substituted Eqs. (14) and (16). This leads to

ξ̇ = ∂ηH
(ξ), η̇ = −∂ξH(ξ), (26)

which are known as Hamilton’s equations. They are
equivalent to the combination of Eqs. (14) and (16), as
one can also recheck by direct calculation using Eq. (24).

Consider rewriting A in terms of these new variables:

A =

∫ t2

t1

[
Λ(q)(t, q, q̇) + η · ξ̇ −H(ξ)(t, q, q̇, ξ, η)

]
dt,

(27)

where −Λ(q) +H(ξ) can be recognized as a Routhian [61,
Sec. 41]. Then,

δA = p · δq
∣∣t2
t1

+ η · δξ
∣∣t2
t1

+ δF (q) + δF (ξ), (28)

δF (ξ) .
=

∫ t2

t1

[
δη · (ξ̇ − ∂ηH(ξ))− (η̇ + ∂ηH

(ξ)) · δξ
]
dt.

Let us assume that q(t1,2) are kept fixed, as in Sec. III B.
Then, the requirement δA = 0 leads to correct equations
[Eqs. (15) and (26)] if (q, ξ, η) are treated as N + 2M
independent variables. For this reason, the LAP for our
coupled systems can be reformulated as

δA[q, ξ, η] = 0 (29)
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with BC still given by Eqs. (10). (Note that, although η
is now an independent variable too, it yet does not need
to be fixed at the end points. Otherwise, the problem
would be overdefined.) Accordingly, A(eff) is defined as

A(eff)[q]
.
= A[q, ξ̂, η̂] + λ · ξ̂(t2), (30)

where λ is a constant Lagrange multiplier. Like earlier,
one can show that the solution for λ is given by Eq. (23).

B. Symmetrized representation

Let us also introduce a “symmetrized” representation
[63] of the above equations that we will need in Sec. V.
Notice that the action (27) can be rewritten as

A[q, ξ, η] =
1

2
η · ξ

∣∣t2
t1

+ A [q, ξ, η], (31)

A [q, ξ, η]
.
=

∫ t2

t1

[
Λ(q) +

1

2
(η · ξ̇ − η̇ · ξ)−H(ξ)

]
dt.

(32)

Using δA = δA− δ(η · ξ/2)
∣∣t2
t1

and Eq. (28), one gets

δA =
[
p · δq +

1

2
(η · δξ − δη · ξ)

]∣∣∣t2
t1

+ δF (q) + δF (ξ).

(33)

As usual, we require δq(t1,2) = 0. Then, we have M BC
per end point, and the first term in the square brackets
vanishes. The remaining BC can be defined, e.g., as

(ηmδξ
m − δηmξm)

∣∣t1,2 = 0. (34)

(Summation over indexes is not assumed here; also, the
symbol

∣∣t1,2 denotes that the equality must be satisfied
independently at t = t1 and t = t2.). With obvious
reservations, Eq. (34) is also equivalent to

0 = δ(ξm/ηm)
∣∣t1,2 . (35)

This provides precisely M BC per each end point, as
needed, and eliminates the second term in the square
brackets in Eq. (33). Hence, the requirement of extremal
A leads to correct equations [Eqs. (15) and (26)]. There-
fore, the LAP can be reformulated as

δA [q, ξ, η] = 0 (36)

with BC given by Eqs. (4) and (34). Since the phase
space variables ξ and η enter A on the same footing, we
call A a phase-space action.

For A , the analog of the constrained variational prin-
ciple that we introduced in Sec. III C is

δA (eff)[q] = 0, δq(t1,2) = 0, (37)

where the action can be taken in the form

A (eff)[q]
.
= A [q, ξ̂, η̂] +

∑
m

λm(ξ̂m/η̂m)
∣∣t2 . (38)

It is easy to see that this VPPD leads to correct equations
for q provided that λm satisfy

λm = −η2
m,T , (39)

where ηm,T is the value of η̂m(t2) corresponding to the
physical trajectory for given q0, qT , ξ0, and ξ′0.

Let us also introduce an alternative form of A (eff)[q]
that we will need further on. Instead of fixing
ξ̂m(t2)/η̂m(t2), one can fix η̂(t2) and ξ̂(t2) independently
at the expense of doubling the number of unknown La-
grange multipliers. Specifically, one can introduce two
M -dimensional Lagrange multipliers, λ(ξ) and λ(η), and
define the effective action as follows:

A (eff)[q]
.
= A [q, ξ̂, η̂] + η̂(t2) · λ(η) + λ(ξ) · ξ̂(t2). (40)

Then, one can show that Eq. (37) yields correct equations
for q provided that

λ(ξ) = −ηT /2, λ(η) = ξT /2, (41)

where ηT and ξT are the values of η̂m(t2) and ξ̂m(t2)
corresponding to the physical trajectory for given q0, qT ,
ξ0, and ξ′0. These equations can also be presented in a
more compact form, as discussed in Appendix A.

V. COUPLING TO LINEAR OSCILLATORS:
GENERAL THEORY OF LINEAR DISPERSION

Let us now consider, as an example of practical inter-
est, the case when S (ξ) is an ensemble of linear oscilla-
tors. In this case, the above phase-space representation
facilitates the formulation of a general theory of linear
dispersion in a convenient “quantumlike” form that is in-
troduced below. Note that truly quantum equations are
also subsumed under this formulation. As a side note,
the special case of adiabatic oscillators can be described
by a simpler machinery discussed in Appendix B.

A. Quantumlike formalism

When S (ξ) is an ensemble of linear oscillators, there
exists [5] a linear transformation of the variables (ξ, η)
to some variables (ψr, ψi) (Roman indexes are used to
distinguish them from standard italic indexes that denote
vector components) such that A (ξ)[ψr, ψi] =

∫ t2
t1

Λ(ξ) dt,

Λ(ξ) =
i

2
(ψ† · ψ̇ − ψ̇† · ψ)− ψ† ·H0 · ψ

+W (t, ψ, ψ) +W †(t, ψ†, ψ†), (42)

where ψ
.
= ψr + iψi and ψ†

.
= ψT

r − iψT
i . (Here, we

assume that the underlying oscillators have positive en-
ergies for simplicity. Negative-energy oscillations [64],
which are somewhat exotic and typically unstable yet
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not impossible, could be included by generalizing the no-
tation as explained in Ref. [5].) The matrix H0 is Her-
mitian and serves as a Hamiltonian. Also, W is a bilin-
ear form of ψ, and W † is the complex-conjugate bilinear
form of ψ†. The terms W and W † are determined by the
rate at which parameters of the medium evolve in time
and vanish when those parameters are time-independent.
Also [5],

(η · dξ − dη · ξ)/2 = (i/2)(ψ† · dψ − dψ† · ψ)

= ψi · dψr − dψi · ψr, (43)

so the BC (34) can be expressed as

0 =
i

2
(ψ†mδψ

m − δψ†mψm)
∣∣t1,2

=
[
(ψi)

†
mδ(ψr)

m − (ψr)
†
mδ(ψi)

m
]∣∣t1,2 , (44)

or, equivalently, as δ[(ψr)
m/(ψi)m]t1,2 = 0 [65].

The corresponding ELE are as follows:

δA (ξ)

δψr
= 0,

δA (ξ)

δψi
= 0. (45)

Yet ψr and ψi can be expressed as linear combinations of
ψ and ψ†. Hence, one can also rewrite Eqs. (45) in an
equivalent complex form

δA (ξ)

δψ
= 0,

δA (ξ)

δψ†
= 0, (46)

where A (ξ) is considered a functional of ψ and ψ†. In this
sense, ψ and ψ† can be formally treated as independent
variables. Then, it is easy to see that, under the BC (44),
one has

δA (ξ) =

∫ t2

t1

[
δψ† · (iψ̇ −H0 · ψ + ∂W †/∂ψ†)

+ (−iψ̇† − ψ† ·H0 + ∂W/∂ψ) · δψ] dt. (47)

Accordingly, the ELE can be cast as follows:

δψ† : iψ̇ = H0 · ψ − ∂W †/∂ψ†. (48)

An additional equation is obtained for ψ†, but it is simply
the adjoint of Eq. (48). (This is understood because we
have only two independent real functions, ψr and ψi, so
there can be only one independent complex equation.)
Thus, the equation for ψ† will be omitted for brevity.

The terms W and W † describe effects caused by para-
metric resonances. (For example, if ψ were the complex
probability amplitude of a free quantum particle, they
would describe particle annihilation and production.) We
ignore such effects for simplicity, so W and W † are hence-
forth omitted. Then, the Lagrangian of S (ξ) can be rep-
resented simply as follows:

Λ(ξ) =
i

2
(ψ† · ψ̇ − ψ̇† · ψ)− ψ† ·H0 · ψ. (49)

This leads to a quantumlike equation for ψ,

δψ† : iψ̇ = H0 · ψ, (50)

which conserves ψ† · ψ even though H0 may depend on
time. The quantity ψ† · ψ is understood as the total
number of “quanta”, or “particles”, in S (ξ) [5]. [Another
name of this quantity is the total action of oscillations
in S (ξ). We prefer not to use this term here to avoid
confusion, since A (ξ) is also called the action of S (ξ).]

B. Interaction model

Now, let us introduce the interaction between S (ξ) and
S (q). We will describe it by an additional Hamiltonian
H(int). Assuming that the coupling is sufficiently weak,
one can model H(int) with a function linear in ξ and η.
Since H(int) is also real, its representation through ψ and
ψ† must then have the form

H(int) = −γ† · ψ − ψ† · γ, (51)

where γ is some complex vector and the minus sign is
added for convenience. We will assume γ to depend on
(t, q) for clarity, but the dependence on derivatives of q
could also be included. As a side note, this particular
model does not conserve ψ† · ψ. A conservative model,
which describes parametric interactions and quantum in-
teractions in particular, is discussed in Appendix C.

Since H0 in this model can depend only on time, it is
convenient to eliminate it using a variable transforma-
tion. Specifically, consider a new variable Ψ defined via
ψ

.
= U · Ψ. Let us choose the operator U (a “propaga-

tor”) such that iU̇ = H0 ·U and require that U be a unit
matrix at t = t1. This ensures that U remains unitary at
all times, so it can be cast as U = e−iϑ, where ϑ is some
Hermitian operator. More specifically, the propagator
can be expressed in terms of the following time-ordered
exponential T exp(. . .):

U(t, t1) = e−iϑ = T exp

[
−i
∫ t

t1

H0(t′) dt′
]
. (52)

Also importantly, for any ta, tb, and t, one has

U(tb, ta) = U(tb, t) · U(t, ta). (53)

In the new variables, the symmetrized action has the

form A [q,Ψ,Ψ†] =
∫ t2
t1
Ldt, where

L = Λ(q)(t, q, q̇) +
i

2
(Ψ† · Ψ̇− Ψ̇† ·Ψ)

+ Γ†(t, q) ·Ψ + Ψ† · Γ(t, q), (54)

and Γ
.
= U† ·γ. The corresponding LAP is formulated as

δA [q,Ψ,Ψ†] = 0 (55)



7

with BC given by Eq. (4) and[
(Ψi)

†
mδ(Ψr)

m − (Ψr)
†
mδ(Ψi)

m
]∣∣t1,2 = 0. (56)

It is easy to see that the corresponding ELE are

δq : ṗ = ∂qΛ
(q) + (∂qΓ

†) ·Ψ + Ψ† · (∂qΓ), (57)

δΨ† : iΨ̇ = −Γ. (58)

C. Projected dynamics

Now suppose that one has been able to express Ψ
through q. We denote the resulting functional Ψ̂ and
assume that it is parameterized by some M complex con-
stants (i.e., 2M real constants), say, Ψ̂(t1) = Ψ0. Hence,
we can introduce a VPPD for S (q) as in Sec. IV B with

A (eff)[q] =

∫ t2

t1

{
Λ(q)(t, q, q̇)

+
1

2
[Γ†(t, q) · Ψ̂ + Ψ̂† · Γ(t, q)]

}
dt+ B,

B =
i

2

[
ν† · Ψ̂(t2)− Ψ̂†(t2) · ν

]
. (59)

Here, ν is a complex Lagrange multiplier introduced such
that the action remains real. This representation implies
that we seek to fix the values of Ψ̂r(t2) and Ψ̂i(t2) inde-
pendently from q(t2) by introducing just the right num-
ber of Lagrange multipliers (namely, the 2M components
of ν, where the real and imaginary parts are counted sep-
arately). The values of these multipliers are to be found
from the condition that the values of Ψ̂r(t2) and Ψ̂i(t2)
must be consistent with the value of q(t2). It is easily
seen that choosing

ν = −ΨT , (60)

where ΨT is the value of Ψ̂(t2) corresponding to the phys-
ical trajectory for given Ψ0, leads to a correct equation
for q [Eq. (57)]. Hence, A (eff) is indeed the sought effec-
tive action for the projected dynamics of S (q).

D. Polarizability

1. Response function

By integrating Eq. (58), one can express Ψ̂ as follows:

Ψ̂ = Ψ0 + αΓ ◦ Γ. (61)

Here, αΓ is a linear integral operator,

(αΓ ◦ Γ)(t)
.
= i

∫ t

t1

Γ[t′, q(t′)] dt′, (62)

which can be understood as the polarizability of S (ξ)

with respect to Γ. (The symbol ◦ means “applied to
the expression on the right”.) Hence, the effective La-
grangian can be cast as follows:

A (eff)[q] =

∫ t2

t1

Λ
(q)
0 dt+ Ξ + B, (63)

Ξ
.
= Re

∫ t2

t1

Γ† · (αΓ ◦ Γ) dt. (64)

The difference between Λ
(q)
0

.
= Λ(q)+Re (Γ† ·Ψ0) and Λ(q)

produces an effect similar to that of an external force,
while Ξ can be described as follows.

Suppose a “small-amplitude approximation”, namely,
that the coordinate q is chosen such that q = O(a), where
a is a small parameter. Assuming that the interaction
is weak, a typical interaction Hamiltonian will then be
linear in q, so we assume γ = v · q/

√
2, where v = O(1)

is an M × N complex matrix that may depend only on
t, if at all. (The coefficient

√
2 is introduced to simplify

the interpretation of the final result.) This gives

Γ(t, q) =
1√
2
V (t) · q, (65)

where V is another M ×N complex matrix, namely,

V
.
= U† · v = eiϑ · v (66)

(so that, while v is typically slow, V is oscillatory). Then,

Ψ̂(t) = Ψ0 +
i√
2

∫ t

t1

V (t′) · q(t′) dt′, (67)

and Ξ can be written as follows:

Ξ =
1

2

∫ t2

t1

qT · (α ◦ q) dt, (68)

where α is an integral operator defined as α◦q .
= Re [V † ·

αΓ ◦ (V · q)]. It is convenient to express this operator in
terms of a response (or Green’s) function α as

(α ◦ q)(t) =

∫ t

t1

α(t, t′) · q(t′) dt′

=

∫ t2

t1

α(t, t′) Θ(t− t′) · q(t′) dt′. (69)

Here, Θ is the Heaviside step function, and α is a real
matrix function given by

α(t, t′)
.
= Re

[
iV †(t) · V (t′)

]
= −Im

[
V †(t) · V (t′)

]
= (i/2)

[
V †(t) · V (t′)− V T(t) · V ∗(t′)

]
, (70)

which satisfies

αT(t, t′) = −α(t′, t). (71)
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Note that “Re” and “Im” above actually mean real
and imaginary parts, not Hermitian and anti-Hermitian
parts, and, in general, α is not Hermitian.

As a side remark, the polarizability can be understood
as a pseudodifferential operator expressible through t and
i∂t. The fact that the polarizability operator is not nec-
essarily Hermitian can be related to the fact that i∂t is
not Hermitian on a finite time interval, as opposed to the
whole time axis. A related discussion for spatial (rather
than temporal) dispersion can be found in Refs. [5, 66].

Also note that, using Eq. (69), one can cast Ξ as

Ξ =
1

2

∫ t2

t1

∫ t2

t1

qT(t) · α(t, t′) Θ(t− t′) · q(t′) dt dt′, (72)

or, equivalently, as

Ξ =
1

4

∫ t2

t1

dt

∫ t2

t1

dt′ qT(t) · α(t, t′) sgn(t− t′) · q(t′),

(73)

where we used Eq. (71) and sgn(t) = Θ(t)−Θ(−t). These
formulas will be used below.

2. Covariant representation, or index lowering

If q is understood as a vector, then α serves as a tensor
of rank (1, 1). Hence, it is convenient to introduce also
the related covariant tensor of rank (0, 2), i.e., “lower
the index” of the matrix αmn. We denote such index
lowering by underlining. Using the corresponding matrix
αmn, one can write

aT · (α · b) ≡ anαnmbm = αnmb
man = (α · b) · a (74)

for any a and b. Accordingly, we can lower the index also
in α, i.e., define

(α ◦ q)(t) .
=

∫ t

t1

α(t, t′) · q(t′) dt′. (75)

This allows one to write (α ◦ q)T = α ◦ q (because trans-
posing a vector is the same as lowering its index), and
also Ξ can be expressed without involving qT:

Ξ =
1

2

∫ t2

t1

(α ◦ q) · q dt. (76)

If one does not need to distinguish upper and lower in-
dexes, the distinction between α and α can be ignored.

E. Derivation of the ELE for q

It is instructive to explain at this point how the ELE
(57) that we anticipate from the general theory can be
derived also by a brute-force calculation using

δA (eff)[q] =

∫ t2

t1

[
∂qΛ

(q) − ṗ+
Re (V † ·Ψ0)√

2

]
· δq dt

+ δΞ + δB. (77)

First, using Eq. (72) and the fact that aT = a for any
scalar a, one gets

δΞ =
1

2

∫ t2

t1

∫ t2

t1

[
δqT(t) · α(t, t′) Θ(t− t′) · q(t′) + qT(t) · α(t, t′) Θ(t− t′) · δq(t′)

]
dt dt′

=
1

2

∫ t2

t1

∫ t2

t1

[
qT(t′) · αT(t, t′) Θ(t− t′) · δq(t) + qT(t) · α(t, t′) Θ(t− t′) · δq(t′)

]
dt dt′

=
1

2

∫ t2

t1

∫ t2

t1

[
qT(t′) · αT(t, t′) Θ(t− t′) · δq(t) + qT(t′) · α(t′, t) Θ(t′ − t) · δq(t)

]
dt dt′

=
1

2

∫ t2

t1

[∫ t

t1

qT(t′) · αT(t, t′) dt′ +

∫ t2

t

qT(t′) · α(t′, t) dt′
]
· δq(t) dt

≡
∫ t2

t1

Ξ(q)T(t) · δq(t) dt. (78)

Using Eq. (71), we can also rewrite Ξ(q) as follows:

Ξ(q)(t) =
1

2

∫ t

t1

α(t, t′) · q(t′) dt′

− 1

2

∫ t2

t

α(t, t′) · q(t′) dt′. (79)

Next, one gets from Eq. (59) that

δB =
i

2

[
ν† · δΨ̂(t2)− δΨ̂†(t2) · ν

]
, (80)
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where δΨ̂(t2) can be obtained from Eq. (67); namely,

δΨ̂(t2) =
i√
2

∫ t2

t1

V (t) · δq(t) dt. (81)

Let us substitute Eq. (60) and again use Eq. (67), now
to express ΨT . This gives

δB = Re

{[
Ψ†0 −

i√
2

∫ t2

t1

qT(t′) · V †(t′) dt′
]

· 1√
2

∫ t2

t1

V (t) · δq(t) dt
}
, (82)

or, equivalently,

δB =

∫ t2

t1

{
Re[Ψ†0 · V (t)]√

2
+ B(q)T

}
· δq(t) dt, (83)

B(q) .
=

1

2

∫ t2

t1

α(t, t′) · q(t′) dt′, (84)

and we also notice that

B(q)(t) =
1

2

∫ t

t1

α(t, t′) · q(t′) dt′

+
1

2

∫ t2

t

α(t, t′) · q(t′) dt′. (85)

By combining Eqs. (78) and (83), we obtain

δΞ + δB =

∫ t2

t1

{
Re[Ψ†0 · V (t)]√

2

+ [Ξ(q)(t) + B(q)(t)]T
}
· δq(t) dt, (86)

and Eqs. (79) and (85) give Ξ(q) + B(q) = α ◦ q. Thus,

δΞ + δB =

∫ t2

t1

{
Re[Ψ†0 · V (t)]√

2
+ (α ◦ q)(t)

}
· δq(t) dt,

so Eq. (77) becomes

δA (eff)[q] =

∫ t2

t1

[
∂qΛ

(q) − ṗ+ α ◦ q

+
V † ·Ψ0√

2
+

Ψ†0 · V√
2

]
· δq dt. (87)

Then, the requirement δA (eff)[q] = 0 leads to

δq : ṗ = ∂qΛ
(q) + α ◦ q +

V † ·Ψ0√
2

+
Ψ†0 · V√

2
. (88)

Considering the assumed expression for Γ [Eq. (65)], this
agrees with the general ELE [Eq. (57)], as expected.

VI. ASYMPTOTIC APPROXIMATIONS

In this section, we make approximations to the VPPD
and derive reduced theories for certain limiting cases. Al-
though the calculations below may seem cumbersome,
producing equivalent results by a brute-force reduction of
Eq. (88) (as opposed to the underlying functional) would
still have been harder to do in the general case.

A. Basic concepts

1. “Symmetrized” polarizability

Consider a representation of the response function in
terms of the “symmetrized” time coordinates

t̄
.
= (t+ t′)/2, τ

.
= t− t′. (89)

Specifically, we define

ᾱ(t̄, τ)
.
= α(t̄+ τ/2, t̄− τ/2) ≡ α(t, t′), (90)

which has the following important property:

ᾱ(t̄,−τ) = −ᾱT(t̄, τ). (91)

Using Eqs. (70)-(90) along with Eq. (66), one can write

ᾱ(t̄, τ) = −Im
[
v†(t̄+ τ/2) · U(t̄, τ) · v(t̄− τ/2)

]
, (92)

U(t̄, τ)
.
= U(t̄+ τ/2, t1) · U†(t̄− τ/2, t1). (93)

Since U is unitary, one has U† = U−1. Using this along
with Eq. (53), we can rewrite U as follows:

U(t̄, τ) = U(t̄+ τ/2, t1) · U−1(t̄− τ/2, t1)

= U(t̄+ τ/2, t1) · U(t1, t̄− τ/2)

= U(t̄+ τ/2, t̄− τ/2), (94)

or, in other words,

U(t̄, τ) = T exp

[
−i
∫ t̄+τ/2

t̄−τ/2
H0(t′) dt′

]
, (95)

where T exp(. . .) is a time-ordered exponential.

2. Phase mixing and the associated small parameters

First, consider a stationary medium, i.e., a medium
where v and H0 are constant. Then, Eq. (95) gives U =
exp(−iH0τ), and Eq. (92) gives

ᾱ(τ) = −Im
(
v† · e−iH0τ · v

)
. (96)

For simplicity, assume the basis in which H0 is diagonal
(“energy basis”); i.e., H0 = diag (Ω1,Ω2, . . . ,ΩM ). Then,
matrix elements of ᾱ can be written as

ᾱmn(τ) = −Im
∑
s

vs
m∗vsne

−iΩsτ . (97)
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Provided that the set of Ωs is dense enough, the sum
over s can be replaced with an integral [s 7→ s(Ω)]:

ᾱ(τ) ≈ −Im

∫
e−iΩτf(Ω) dΩ, (98)

where fmn(Ω)
.
= (ds/dΩ) [vs(Ω)

m∗vs(Ω)
n]. Since ᾱ(τ) is

thereby a Fourier image of f(Ω) (or vice versa), it ap-
proaches zero at τ → ∞, at least if f(Ω) is continuous.
If the characteristic gap ∆Ω between neighboring eigen-
frequencies is nonzero (and M � 1), the same conclusion
applies at τ � ∆Ω−1, when the spectrum discreteness is
inessential. Thus, as long as larger τ are not of interest
(as will be assumed below), there is no need to distin-
guish continuous and discrete spectra.

The effect ᾱ(τ → ∞) → 0 is known as phase mixing.
Although introduced here for a stationary medium, it
extends also to media evolving at large enough time scales
T , namely,

τpm

T
� 1, Ω̄T

(τpm

T

)2

� 1, (99)

where Ω̄ is the characteristic eigenvalue of H0. The for-
mer requirement ensures that v and H0 be approximately
constant on the time scale τpm. The latter requirement
allows approximating Eq. (95) much like in the case of a
stationary medium:

U(τ, t̄) ≈ exp[−iH0(t̄)τ ]. (100)

Our intention is to discuss approximations to the VPPD
that become possible in this limit. In order to do that,
let us introduce some definitions first.

3. Polarizability in the spectral representation

Let us introduce an auxiliary matrix function

α̃ω(t̄)
.
=

∫ τm

0

ᾱ(t̄, τ) eiωτ dτ, (101)

where ω is assumed real, ᾱ is given by Eq. (90), and τm
is some constant. (In later sections, we will treat τm as a
function of t̄, but this distinction is not important here.)
Let us also introduce the Hermitian and anti-Hermitian
parts of α̃ω, namely,

α̃ω,H
.
=
α̃ω + α̃†ω

2
, α̃ω,A

.
=
α̃ω − α̃†ω

2i
, (102)

such that α̃ω = α̃ω,H + iα̃ω,A. (In this notation, both
α̃ω,H and α̃ω,A are Hermitian, so iα̃ω,H and iα̃ω,A are
anti-Hermitian.) As shown in Appendix D,

α̃ω,H(t̄) =
1

2

∫ τm

−τm
ᾱ(t̄, τ) sgn(τ) eiωτ dτ, (103)

α̃ω,A(t̄) =
1

2i

∫ τm

−τm
ᾱ(t̄, τ) eiωτ dτ. (104)

Provided efficient phase mixing, the function α̃ω has a
well-defined limit at large τm. We call this limit αω; i.e.,

αω(t̄)
.
=

∫ ∞
0

ᾱ(t̄, τ) eiωτ dτ

≡
∫ ∞
−∞

α(t̄+ τ/2, t̄− τ/2) Θ(τ) eiωτ dτ. (105)

The function αω is recognized as the Laplace image of ᾱ
evaluated at real ω and also, more generally, as the Weyl
image of the polarizability operator [67]. Like for α̃ω, the
Hermitian and anti-Hermitian parts of αω satisfy

αω,H(t̄) =
1

2

∫ ∞
−∞

ᾱ(t̄, τ) sgn(τ) eiωτ dτ, (106)

αω,A(t̄) =
1

2i

∫ ∞
−∞

ᾱ(t̄, τ) eiωτ dτ. (107)

Approximate formulas for α̃ω and αω in the limit (99)
can be found in Appendix D. It is also shown there that
αω,H and αω,A satisfy the Kramers-Kronig relations.

B. Quasistatic limit

First, let us consider the case when q and, possibly, the
medium evolve on time scales T that satisfy

ε0
.
= max

{
τpm

T
, Ω̄T

(τpm

T

)2

,
1

Ω̄T

}
� 1. (108)

(To simplify the notation, we will assume all the three
small parameters to be comparable to each other, but
this is not essential.) Below, we derive an asymptotic
expression for A (eff) using ε0 as a small parameter.

1. Expression for Ξ

To approximate the term Ξ as given by Eq. (73), let
us first map the integration variables (t, t′) in the double
integral to (t̄, τ) using Eqs. (89). The integration domain
is then mapped as shown in Figs. 1(a) and (b), namely,
to (t̄, τ) ∈ (t1, t2) × (−τm(t̄), τm(t̄)), where τm(t̄) is a
piecewise-linear function. This gives

Ξ =
1

4
Tr

∫ t2

t1

dt̄

∫ τm(t̄)

−τm(t̄)

dτ w(t̄, τ) · ᾱ(t̄, τ) sgn(τ), (109)

where Tr stands for “trace”, and w is a matrix given by

w(t̄, τ)
.
= q(t̄− τ/2) qT(t̄+ τ/2) = q(t̄) qT(t̄) +O(ε0).

To the lowest (zeroth) order in ε0, one has

Ξ ≈ 1

4
Tr

∫ t2

t1

dt̄ w(t̄, 0) ·
∫ τm(t̄)

−τm(t̄)

dτ ᾱ(t̄, τ) sgn(τ)

=
1

2

∫ t2

t1

qT(t̄) · α̃0,H(t̄) · q(t̄) dt̄. (110)
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FIG. 1: Integration domains (shaded): (a) The exact domain in (t, t′) space; namely, (t, t′) ∈ (t1, t2) × (t1, t2). (b) The exact
domain in (t̄, τ) space; namely, (t̄, τ) ∈ (t1, t2)×(−τm(t̄), τm(t̄)). The function τm(t̄) is plotted in bold red. (c) The approximate
domain in (t̄, τ) space; namely, (t̄, τ) ∈ (t1, t2) × (−∞,∞). This approximation is justified by the fact that the integrand is
negligible at |τ | & τpm, as indicated by a gradient fill. The red triangles indicate the error introduced by this approximation.

The function α̃0,H [given by Eq. (103) at ω = 0] can be
approximated with α0,H everywhere except for an O(ε0)
part of the integration domain. Neglecting this O(ε0)
correction, we get

Ξ ≈ 1

2

∫ t2

t1

qT(t̄) · α0(t̄) · q(t̄) dt̄

≡
∫ t2

t1

[α0(t̄) · q(t̄)] · q(t̄) dt̄, (111)

which corresponds to the approximation illustrated in
Fig. 1(c). We have omitted the index H in α0,H be-
cause, in the zero-frequency limit, the polarizability’s
Weyl symbol (105) becomes Hermitian (Appendix D);
i.e., α0 ≈ α0,H . Specifically,

α0 ≈ v† ·H−1
0 · v (112)

as seen from Eq. (D4) in the limit when the oscillating
term is eliminated by phase mixing.

2. Expression for B

Using Eq. (67), let us express Ψ̂ as

Ψ̂ = Ψ0 +
i√
2

∫ t

t1

eiϑ(t′) · v(t′) · q(t′) dt′. (113)

The function ϑ is such that, at zero ε0, it has a constant
derivative equal to H0. Hence, at small nonvanishing ε0,
one can expect ∂tϑ to be slow and close to H0. Then,
the integrand in Eq. (113) is a rapidly oscillating expo-
nent times a slow function v · q. Such integral is entirely
determined by values of the integrand at the ends of the
integration domain and is of order ||v|| ||q||/Ω̄ [68]. This
gives the following estimate for the term B in Eq. (59):

B ∼ ||v||2 ||q||2/Ω̄2, (114)

assuming the effect of Ψ0 vanishes due to phase mixing.
Hence, B/Ξ ∼ ε0.

3. Final result

By combining the above results and neglecting correc-
tions O(ε0) and smaller, one obtains

A (eff)[q] =

∫ t2

t1

[Λ
(q)
0 (t, q, q̇)− Φ0(t, q)] dt, (115)

Φ0(t, q)
.
= −1

2
[α0(t) · q] · q. (116)

Clearly, the corresponding ELE is as follows:

δq : ṗ = ∂qΛ
(q)
0 + α0 · q. (117)

These results indicate that the interaction of a qua-
sistatic system with a linear medium S (ξ) is equivalent
to the interaction with an effective potential Φ0 given by
Eq. (116). The symmetric matrix α0 represents the co-
variant form of α0 given by Eq. (112) and serves as the
polarizability of S (ξ) with respect to q. Also note that,
for positive-definite Hamiltonian H0, the polarizability
α0 is positive-definite too, and thus Φ0 < 0.

C. Limit of fast oscillations

Here, we derive an asymptotic variational principle for
the case when q oscillates rapidly compared to the evo-
lution of the medium. The method is akin to Whitham’s
averaging [2], but the averaging procedure is justified dif-
ferently. Specifically, this is done as follows.

1. Basic equations

Suppose Λ(q) is bilinear in (q, q̇). Then, Eq. (88) is lin-
ear and allows complex solutions. Let us consider a com-
plex solution q+ of the form q+ = Q(t) eiθ(t), where Q is
a complex vector and θ is a real phase. Provided that
the time scale T at which the medium evolves is large
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enough, in principle it is possible to construct asymp-
totic Q and θ such that ω(t)

.
= −θ̇(t) is slow compared

to θ at all t; i.e., q is quasimonochromatic. (The effect of
Ψ0 will be assumed negligible, like in Sec. VI B.) More
specifically, harmonics of ω remain suppressed with expo-
nential accuracy in the small parameter (ωT )−1. (If the
system supports more than one mode, we assume that
only one mode is excited, and the spectral distance to
other modes is ∆ω & ω.) Here, we assume that T is also
the time scale of the evolution of Q and ω, and T ∼ T .

Clearly, if q+ = Q(t) eiθ(t) is a solution, then q− =
Q∗(t) e−iθ(t) a solution too, and so is (q+ + q−)/2. Since
the latter is also real, it can be adopted as an exponen-
tially accurate asymptotic model of a realizable physical
process, which we can also express as follows:

q = Re [Q(t) eiθ(t)]. (118)

Let us substitute this model into Eq. (54). As usual [68],
the rapidly oscillating terms that couple q+ and q− can
be eliminated, which is also expected from the definition
of q+ and q−. (Such “θ-averaging” is denoted below with
angular brackets, 〈. . .〉.) This implies that the medium
responds to q+ and q− independently, as if there were two
independent subsystems S (ξ) that interact with q+ and
q−, respectively. The corresponding responses will be de-
noted Ψ±. Hence, instead of the Lagrange multipliers ν
and ν† that we introduced before, now we must introduce
twice as much Lagrange multipliers. We denote them ν±
and ν†±. Hence, like in Sec. V C, the effective action (63)
can be represented as follows:

A (eff) = 〈A(q)〉+ 〈Ξ〉+ 〈B〉, (119)

〈A(q)〉 =

∫ t2

t1

〈Λ(q)〉 dt, (120)

〈Ξ〉 =
1

8

∫ t2

t1

dt

∫ t2

t1

dt′ eiθ(t
′)−iθ(t)

×Q†(t) · α(t, t′) sgn(τ) ·Q(t′) (121)

[where we used Eq. (73)], and 〈B〉 = B+ + B−, where

B± = − 1√
2

Re
∑
±

[
ν†± ·

∫ t2

t1

V (t′) ·Q±(t′) e±iθ(t
′) dt′

]
,

(122)

assuming the notation Q+
.
= Q and Q−

.
= Q∗. Also like

in Sec. V C, one finds

ν± = −Ψ±,T
4

= − i

4
√

2

∫ t2

t1

V (t) ·Q±(t) e±iθ(t) dt.

(123)

[The quantity ν± must not be confused with ν given by
Eq. (60). In particular, note the extra factor 1/4.]

As usual, the functions θ, Q, and Q† are considered
independent. Then,

δA (eff) =

∫ t2

t1

[
δA (eff)

δθ
δθ

+

∞∑
n=1

(
δA (eff)

δQ
· δQ+Q† · δA

(eff)

δQ†

)]
dt.

We seek to approximate δA (eff) to the zeroth order in
the small parameter

εω
.
= max

{
τpm

T
, ωT

(τpm

T

)2

,
1

ωT

}
� 1, (124)

where τpm is the phase-mixing time (Sec. VI A 2). (As in
Sec. VI B, we adopt for clarity that all the three param-
eters are comparable to each other.) We assume Ω̄ ∼ ω
and also the standard ordering for αω (Sec. VI A 3), which
will be be verified a posteriori :

αω,H = O(1), αω,A . O(εω). (125)

Then, the individual terms on the right side of Eq. (119)
can be calculated as follows.

2. Approximation of 〈A(q)〉

Since Λ(q) is a local function of (q, q̇), the function
〈Λ(q)〉 cannot depend on θ other than through ω. Hence,

δ〈A(q)〉 =

∫ t2

t1

[
∂

∂t

(
δ〈A(q)〉
δω

)
δθ

+
δ〈A(q)〉
δQ

· δQ+ δQ† · δ〈A
(q)〉

δQ†

]
dt,

where we used δω = −∂t(δθ) and integrated by parts
with δθ(t1,2) = 0. Since

δθ = O(ε−1
ω ), δQ = O(1), (126)

while ∂t(δω〈A(q)〉) = O(εω), δQ〈A(q)〉 = O(1), and
δQ†〈A(q)〉 = O(1), all the three terms in the square
brackets are O(1). Hence, within the accuracy of our
model, it is enough to approximate 〈A(q)〉 to the zeroth
order in εω. Since Λ(q) was assumed to be a bilinear
function of (q, q̇), the functional 〈A(q)〉 then has the
following form:

〈A(q)〉 ≈ 1

4

∫ t2

t1

Re [Q†(t) · D(q)
ω(t)(t) ·Q(t)] dt, (127)

where the factor 1/4 is introduced for convenience, and
D

(q)
ω(t) is some matrix that is determined by the local fre-

quency ω(t) and, in nonstationary systems, also t. [Be-
low, we also refer to this matrix using a shortened nota-
tion D

(q)
ω .] The anti-Hermitian part of this matrix pro-

vides zero contribution to Re [Q† · D(q)
ω ·Q], so we can

assume that D
(q)
ω is Hermitian for all real ω without loss

of generality. Then, “Re” in Eq. (127) can be omitted.
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3. Approximation of 〈Ξ〉, dressed action

Let us now approximate 〈Ξ〉 given by Eq. (121). First,
note that, due to Eq. (89), we have

θ(t′) = θ(t̄)− τ

2
∂tθ(t̄) +

τ2

8
∂2
t θ(t̄)−

τ3

48
∂3
t θ(t̄) + . . . ,

θ(t) = θ(t̄) +
τ

2
∂tθ(t̄) +

τ2

8
∂2
t θ(t̄) +

τ3

48
∂3
t θ(t̄) + . . . .

Hence,

θ(t′)− θ(t) = −τ ∂tθ(t̄)−
τ3

24
∂3
t θ(t̄) + . . .

= τω(t̄) +
τ3

24
∂2
t ω(t̄) + . . . , (128)

where the second term on the right is estimated as

τ3∂2
t ω ∼

τpm

T

[
ωT

(τpm

T

)2
]

= O(ε2ω)� 1. (129)

This gives

eiθ(t
′)−iθ(t) = eiω(t̄)τ+O(ε2ω) = eiω(t̄)τ +O(ε2ω). (130)

Omitting O(ε2ω), one can rewrite Eq. (121) as follows:

〈Ξ〉 ≈ 1

8
Re Tr

∫ t2

t1

dt

∫ t2

t1

dt′W (t̄, τ)

· ᾱ(t̄, τ) sgn(τ) eiω(t̄)τ . (131)

Here, the matrix W is given by

W (t̄, τ)
.
= Q(t′)Q†(t) = Q(t̄)Q†(t̄) +O(εω). (132)

Since the integrand in Eq. (131) does not depend on θ
explicitly, the correction O(εω) can be omitted for the
same reason as in Sec. VI C 2. Hence, we switch from
integration in (t, t′) to the integration in (t̄, τ) and get

〈Ξ〉 ≈ 1

4
Tr

∫ t2

t1

W (t̄, 0) · α̃ω,H(t̄) dt̄. (133)

Note that α̃ω,H ∼ αω,H = O(1) (Sec. VI C 1). This func-
tion can be approximated with αω,H everywhere except
for an O(εω) part of the integration domain. Since cor-
rections O(εω) in 〈Ξ〉 are deemed negligible, we obtain

〈Ξ〉 ≈ 1

4

∫ t2

t1

Q† · αω,H ·Qdt. (134)

As a side note, one can also rewrite Eq. (134) as 〈Ξ〉 ≈
−
∫ t2
t1

Φω(t) dt, so 〈Ξ〉 is understood as a contribution of
an effective potential

Φω
.
= −1

4
Q† · αω,H ·Q (135)

that the subsystem S (q) experiences due to the interac-
tion with the subsystem S (ξ). The potential Φω repre-
sents the ponderomotive energy (or, more precisely, the
ponderomotive term in the Lagrangian) of S (ξ). In the
context of particle dynamics with Hermitian αω, the ob-
tained linear relation between Φω and αω is also known
as the K-χ theorem [15, 69–71].

Since 〈Ξ〉 has the same form as 〈A(q)〉 [Eq. (127)],
let us combine them into a “dressed action” A

(q)
dr

.
=

〈A(q)〉+ 〈Ξ〉. For that, let us introduce Dω
.
= D

(q)
ω + αω,

whose Hermitian and anti-Hermitian parts are

Dω,H = D(q)
ω + αω,H , Dω,A = αω,A. (136)

Then,

A
(q)
dr =

1

4

∫ t2

t1

Q† · Dω,H ·Qdt. (137)

This can also be written as A
(q)
dr =

∫ t2
t1
L dt, where

L(t, ω,Q,Q†)
.
=

1

4
Q† · Dω,H(t) ·Q (138)

is understood as the dressed Lagrangian of S (q). Ac-
cordingly, one gets

δA
(q)
dr =

∫ t2

t1

[
(∂tI) δθ +

1

4
δQ† · (Dω,H ·Q)

+
1

4
(Q† · Dω,H) · δQ

]
dt, (139)

where

I
.
= ∂ωL(t, ω,Q,Q†) = Q† · ∂ωDω,H ·Q/4 (140)

is understood as the number of quanta of the oscillation
mode, or the action of this mode [4, 5] [again, not to be
confused with the action such as A (eff)].

4. Approximation of δB±

A straightforward calculation (Appendix E) gives

δ〈B〉 = δBθ + δBQ +O(ε2ω), (141)

δBθ
.
= − i

4
Tr

∫ t2

t1

dt

∫ t2

t1

dt′ eiωτ δθ(t̄)W (t̄, τ) · ᾱ(t̄, τ),

(142)

δBQ
.
= − i

4
Tr

∫ t2

t1

dt

∫ t2

t1

dt′ eiωτ δY (t̄, τ) · ᾱ(t̄, τ),

(143)

δY (t̄, τ)
.
=
i

2

[
Q(t′) · δQ†(t)− δQ(t′) ·Q†(t)

]
. (144)

Using W (t̄, τ) ≈W (t̄, 0) + τ ∂τW (t̄, 0), one further gets

δBθ =
1

2
Tr

∫ t2

t1

dt̄ δθ(t̄)

×
{
W (t̄, 0)− i[∂τW (t̄, 0)]∂ω

}
· α̃ω,A. (145)
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Note that α̃ω,A ∼ αω,A = O(εω) (Sec. VI C 1) and δθ =
O(ε−1

ω ) [Eq. (126)]. Since we need to calculate δBθ to the
zeroth order in εω, the contribution of ∂τW ∼ W/T can
then be neglected. Hence,

δBθ ≈
1

2

∫ t2

t1

[Q†(t̄) · α̃ω,A(t̄) ·Q(t̄)] δθ(t̄) dt̄. (146)

Similarly, one obtains that δBQ = O(εω), so BQ is en-
tirely negligible. In summary, substituting this result
into Eq. (141) gives

δ〈B〉 ≈ δBθ ≈
1

2

∫ t2

t1

(Q† · αω,A ·Q) δθ dt, (147)

where we omitted corrections O(εω) and, for the same
reason, replaced α̃ω,A with αω,A.

5. Euler-Lagrange equations

Using A (eff) ≈ A
(q)
dr + 〈B〉 along with Eqs. (139) and

(147) and also requiring δA (eff) = 0, we get the following
set of ELE:

δθ : ∂t(Q
† · ∂ωDω,H ·Q) = −2Q† · Dω,A ·Q, (148)

δQ† : Dω,H ·Q = 0, (149)

plus the conjugate equation for Q†. Note that Eq. (148)
implies αω,A . αω,H/(ωT ), which is in agreement with
the original assumption (125).

It is also instructive to rewrite these in terms of the
unit polarization vector eω and the scalar amplitude a,
assuming Q = eωa:

Dω,H · eω = 0, (150)

∂t[(e
†
ω · ∂ωDω,H · eω) a2] = −2(e†ω · Dω,A · eω) a2. (151)

Equation (150) can be understood as a local dispersion
relation, which determines eω(t) and the local frequency
ω(t). Equation (151) can be understood as an amplitude
equation. In a dissipationless medium, which we define as
a medium with αω,A = 0, this equation becomes ∂tI = 0,
which is known as the action conservation theorem [72].

For example, consider a one-dimensional stationary
system. In this case, Eq. (150) becomes

Dω,H = 0, (152)

and the amplitude equation gives a = e−γt×const, where

γ
.
= Dω,A/∂ωDω,H . (153)

(This quantity is not to be confused with γ that was
introduced in Sec. V B.) One hence obtains that q has a
well-defined complex frequency; i.e., q(t) = Re (e−iωct ×
const), where ωc

.
= ω − iγ = ω − iDω,A/∂ωDω,H . Within

the accuracy of our theory, this can be understood as a
solution of the complex dispersion relation

Dωc
= 0, (154)

as seen from the fact that Dωc
= Dω−iγ,H + iDω−iγ,A ≈

Dω,H + i(−γ∂ωDω,H + Dω,A) combined with Eqs. (152)
and (153). Hence, Dωc can be understood as the complex
dispersion function.

VII. WAVES IN DISTRIBUTED SYSTEMS

A. Basic definitions

Although the above results were derived for discrete
oscillators, they can be readily extended to waves in con-
tinuous media. A continuous medium is understood as a
system where the scalar product can be expressed as an
integral over some continuous space X (we assume that
X is Euclidean for clarity, but see Refs. [4, 5] for a more
general case), specifically as

a · b =

∫
X
a(x) · b(x) dDx. (155)

Here, D = dimX , and a(x) and b(x) are fields of some
finite dimension D′. For example, they can be electro-
magnetic fields in physical space; then D′ = 3. (We use
bold symbols to distinguish D-dimensional coordinates
and D′-dimensional vectors from N - and M -dimensional
coordinates and vectors that we introduced earlier, since
N and M are infinite in the continuous limit.) Accord-
ingly, the polarizability operator can be rewritten as

(α ◦ q)(t,x) =

∫ t

t1

dt′
∫
X
dDx′α(t, t′;x,x′) · q(t′,x′).

The symmetrized kernel is introduced as ᾱ(t̄, τ ; x̄,χ)
.
=

α(t, t′;x,x′), where t̄ and τ are defined as usual
[Eq. (89)], and

x̄
.
= (x + x′)/2, χ

.
= x− x′. (156)

We also introduce the corresponding Weyl symbol (the
term is used with the same reservations as earlier [67]),

αω,k(t̄, x̄)
.
=

∫ ∞
0

dτ

∫
X
dDχ ᾱ(t̄, τ ; x̄,χ) eiωτ−ik·χ.

The modification of the remaining notation is obvious,
so it will not be presented in detail.

B. Geometrical optics

Let us consider a special case of practical interest where
the medium is weakly inhomogeneous in both time and
space. (Anisotropy and general dispersion, including
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both temporal and spatial dispersion, are implied.) Un-
like in Sec. VI C, where all oscillators were assumed to
have the same ω at given t, we now allow the frequency
to be spatially inhomogeneous. Specifically, we adopt

q(t,x) = Re[Q(t,x) eiθ(t,x)] (157)

and assume that the frequency and the wave vector,

ω
.
= −∂tθ, k

.
= ∇θ, (158)

are slow functions of (t,x). Explicitly, we require

max{εω, εk} � 1, (159)

where εω is defined in Eq. (124), and εk is the analogous
parameter that involves spatial scales instead of tempo-
ral scales. Then, one obtains A (eff) ≈ A(q)

dr + 〈B〉, where

A
(q)
dr =

∫
L dDx, and L is the Lagrangian density given by

L(t,x,Q,Q†, ω,k) =
1

4
Q† ·D(ω,k),H(t,x) ·Q. (160)

This leads to [4]

δA
(q)
dr =

∫ t2

t1

dt

∫
X
dDx

{
(∂tI + ∇ ·J ) δθ

+
1

4
δQ† · [D(ω,k),H ·Q] +

1

4
[Q† ·D(ω,k),H ] · δQ

}
,

where I .
= ∂ωL and J .

= −∂kL. The expression for δ〈B〉
is obtained like in Sec. VI C and can be written as

δ〈B〉 ≈ 1

2

∫ t2

t1

dt

∫
dDx [Q† ·α(ω,k),A ·Q] δθ. (161)

Hence, one obtains the following ELE:

δθ : ∂tI + ∇ ·J = −2[Q† ·D(ω,k),A ·Q], (162)

δQ† : D(ω,k),H ·Q = 0, (163)

plus the conjugate equation for Q†.
It is also instructive to rewrite these equations as

D(ω,k),H · eω,k = 0, (164)

∂tk = −∇ω, (165)

∂tI + ∇ · (vgI) = −2γI. (166)

Here, eω,k is the unit polarization vector. We also
added an equation for k that flows from its definition
[Eq. (158)], introduced vg

.
= −∂kL/∂ωL, which repre-

sents the group velocity, and also introduced

γ
.
=

e†ω,k ·D(ω,k),A · eω,k
e†ω,k · ∂ωD(ω,k),H · eω,k

, (167)

which represents the local dissipation rate. Equations
(164)-(167) form a complete set of equations that de-
scribe dissipative GO waves in inhomogeneous nonsta-
tionary media. They are in agreement with results of

Ref. [4], where dissipative effects were described as an
addition to the variational formulation rather than as a
part of it. (The variational formulation of dissipationless
wave dynamics is also discussed in Refs. [2, 3].)

Applications of these general equations to electromag-
netic waves are discussed in detail in Ref. [4]. Here, we
only point out that one can choose Q to be the complex
amplitude of the electric field, Ec; then,

L =
1

16π
E∗c · ε(ω,k),H ·Ec −

c2|k×Ec|2

16πω2
, (168)

D(ω,k),A =
ε(ω,k),A

16π
. (169)

The second term in Eq. (168) is understood as |Bc|2/16π,
where we used Faraday’s law Bc ≈ (ck/ω)×Ec to express
the complex amplitude of the magnetic field Bc, and c
is the speed of light. Also, ε(ω,k) is the dielectric ten-
sor in the spectral representation (or, more specifically,
the Weyl symbol of the dielectric permittivity operator),
and the indexes H and A denote its Hermitian and anti-
Hermitian parts, as usual. Accordingly, Eq. (162) can be
understood as a restatement of Poynting’s theorem [4].

As a side note, an even simpler variational deriva-
tion of the results reported in this section is possible by
means of the Weyl calculus combined with a technique
à la Ref. [28]. We leave details to future publications.

VIII. CONCLUSIONS

In summary, we have formulated a variational princi-
ple for a dissipative subsystem of an overall-conservative
system by introducing constant Lagrange multipliers and
Lagrangians nonlocal in time. We call it the variational
principle for projected dynamics, or VPPD. We have also
elaborated on applications of the VPPD to the special
case of linear systems, particularly in the context of wave
propagation in general linear media. The focus was on
how the variational formulation helps in deriving reduced
models, such as the quasistatic and GO models. In par-
ticular, we have proposed a variational formulation of dis-
sipative GO in a linear medium that is inhomogeneous,
nonstationary, nonisotropic, and exhibits both tempo-
ral and spatial dispersion simultaneously. The “spectral
representation” of the dielectric tensor ε(ω,k) that enters
GO equations is shown to be, strictly speaking, the Weyl
symbol of the medium dielectric permittivity. This can
be considered as an invariant definition of ε(ω,k), as op-
posed to ad hoc definitions that are commonly adopted in
literature and have been a source of a continuing debate.

Our work is also intended as a stepping stone for ex-
tending the variational theory of modulational stability
in general wave ensembles [15] to dissipative systems. De-
tails will be described in a separate publication.
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APPENDIX A: COMPACT FORM OF THE
PHASE-SPACE ACTION

As a side note, equations of Sec. IV B can be expressed
in a more compact form in terms of the phase space co-
ordinate z and the Poincaré two-form ωαβ ,

z
.
=

(
ξ

η

)
, ωαβ

.
=

(
0 −I
I 0

)
, (A1)

where I is a M ×M unit matrix. In particular, one can
cast Eq. (32) as

A [q, z] =

∫ t2

t1

[
Λ(q) +

1

2
ωαβz

αżβ −H(z)
]
dt (A2)

(Greek indexes span from 1 to 2M) and Eq. (33) as

δA [q, z] =
[
p · δq +

1

2
ωαβz

α δzβ
] ∣∣∣t2
t1

+ δF (q) + δF (z),

δF (z) .
=

∫ t2

t1

(ωαβ ż
β − ∂αH(z)) δzα dt, (A3)

where ∂α
.
= ∂/∂zα and H(z)(t, z)

.
= H(ξ)(t, ξ, η). Ac-

cordingly, Hamilton’s equations (26) are cast as follows:

ωαβ ż
β = ∂αH

(z). (A4)

Also, Eq. (40) can be represented as follows:

A (eff)[q] = A [q, ẑ] +
1

2
ωαβ ẑ

α(t2)zβT , (A5)

where

zT
.
=

(
ξT

ηT

)
. (A6)

On physical trajectories one has ẑα(t2) = zαT . Since ωαβ
is antisymmetric, this implies that the second term on
the right side of Eq. (A5) vanishes on such trajectories.

APPENDIX B: COUPLING TO ADIABATIC
OSCILLATORS

Here, we discuss an instructive special case, namely,
the situation when the Hamiltonian H(ξ) in Eq. (27) does
not depend on ξ explicitly. In this case, η is conserved
and can be treated as a constant parameter, which we
denote J . Hence, one can write

A(eff)[q] =

∫ t2

t1

[Λ(q)(t, q, q̇)−H(ξ)(t, q, q̇; J)] dt. (B1)

An alternative derivation of the same result, also known
as the Routh reduction can be found, e.g., in Ref. [73].

In particular, Eq. (B1) can be applied [74] when S (ξ) is
an adiabatic oscillator in which (ξ, η) are the angle-action
variables. (Then, J is called an adiabatic invariant [61].)
In the special case when S (ξ) is a linear oscillator, one
can further write H(ξ) = J ·Ω, where Ω is the correspond-
ing canonical frequency (i.e., such that ξ̇ = Ω), which is
independent of J but may depend on (t, q, q̇). Then,

A(eff)[q] =

∫ t2

t1

[Λ(q)(t, q, q̇)− J · Ω(t, q, q̇)] dt. (B2)

For example, one can use this to describe a charged
particle in a weakly inhomogeneous field B. In this case,
Ω is the gyrofrequency, and J is proportional to the par-
ticle magnetic moment µ, such that J · Ω = µB [75].
Then, the last term in Eq. (B2) is nothing but the effec-
tive potential responsible for the diamagnetic force.

APPENDIX C: PARAMETRIC AND QUANTUM
INTERACTIONS

1. Basic equations

In addition to the linear coupling discussed in Sec. V B,
it is instructive to consider parametric interactions, par-
ticularly because they subsume quantum interactions and
thus can be understood as most general. Specifically, let
us consider

H(int) = Ψ† · h(t, q) ·Ψ, (C1)

where h is some Hermitian operator. (We assumed
that H(int) is independent of derivatives of q for brevity,
but the corresponding generalization is straightforward.)
The total Lagrangian in this case can be written as

L = Λ(q)(t, q, q̇) +
i

2
(Ψ† · Ψ̇− Ψ̇† ·Ψ)−Ψ† · h(t, q) ·Ψ,

(C2)

and the corresponding ELE are

δq : ṗ = ∂qΛ
(q) −Ψ† · ∂qh ·Ψ, (C3)

δΨ† : iΨ̇ = h ·Ψ. (C4)

Notably, Eq. (C4) conserves Ψ† ·Ψ even in the presence
of coupling, in contrast with Eq. (58).

For projected dynamics, the effective action A (eff) is
introduced just like in Sec. V C. When the solution for
Ψ and Ψ† are substituted into Eq. (C2), the second term
and the third term cancel each other due to Eq. (C4), so
one ends up with

A (eff)[q] =

∫ t2

t1

Λ(q)(t, q, q̇) dt+ B, (C5)

B .
=
i

2

[
ν† · Ψ̂(t2)− Ψ̂†(t2) · ν

]
. (C6)
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2. Derivation of the ELE for q

Let us show how a correct ELE for q is obtained from
here by a straightforward calculation. First,

δA (eff)[q] =

∫ t2

t1

[∂qΛ
(q) − ṗ] δq dt+ δB, (C7)

δB =
i

2

[
ν† · δΨ̂(t2)− δΨ̂†(t2) · ν

]
. (C8)

In order to calculate δΨ̂(t2), let us use the fact that

Ψ̂(t2) = Uh(t2, t1) ·Ψ0, where Uh is a unitary propagator
given by the following time-ordered exponential:

Uh(t2, t1) = T exp

[
−i
∫ t2

t1

h(t′, q(t′)) dt′
]
. (C9)

If the variation δq is localized to an infinitesimal time
interval ∆t following some time τ , one can readily write

δΨ̂(t2) = Uh(t2, τ + ∆t) · δUh(τ + ∆t, τ) · Uh(τ, t1) ·Ψ0,

δUh(τ + ∆t, τ) ≈ −i∂qh(τ, q(τ)) δq(τ) ∆t,

where one can further substitute Uh(τ, t1) · Ψ0 = Ψ̂(τ).
Then, for a general variation δq, one gets

δΨ̂(t2) = −i
∫ t2

t1

[
Uh(t2, τ) · ∂qh(τ, q(τ)) · Ψ̂(τ)

]
δq(τ) dτ.

For δB/δq at any given time t, this gives

δB
δq

= Re
[
ν† · Uh(t2, t) · ∂qh(t, q(t)) · Ψ̂(t)

]
. (C10)

Then, after substituting Eq. (60), one gets

δB
δq

= −Re
[
Ψ̂†(t2) · Uh(t2, t) · ∂qh(t, q(t)) · Ψ̂(t)

]
= −Re

[
Ψ̂†(t) · ∂qh(t, q(t)) · Ψ̂(t)

]
. (C11)

Here, we also used Ψ̂(t2) = Uh(t2, t) · Ψ(t) and the fact
that [Uh(t2, t)]

† · Uh(t2, t) is a unit operator, because Uh
is unitary. Since ∂qh(t, q(t)) is Hermitian, one can omit
“Re”, so Eq. (C11) becomes

δB
δq

= −Ψ̂†(t) · ∂qh(t, q(t)) · Ψ̂(t). (C12)

After substituting this into Eq. (C7) and requiring
δA (eff)[q] = 0, one obtains

δq : ṗ = ∂qΛ
(q) − Ψ̂† · ∂qh · Ψ̂. (C13)

This is equivalent to Eq. (C3), as expected.

3. Approximate Lagrangian of weak coupling

Suppose that the coordinate q is chosen such that q =
O(a), where a is a small parameter. Assuming that the
interaction is weak, a typical interaction Hamiltonian is
then linear in q. Like H0, any zeroth-order term can
be removed by a variable transformation, so we assume
h(t, q) = w · q, where w = O(1) may depend only on t,
if at all. We now seek to derive an approximation of L
accurate up to O(a2); i.e., terms o(a2) will be neglected.

To construct such an approximation, we adopt an
asymptotic representation of Ψ as a power series in a; i.e.,
Ψ =

∑
n Ψn, where Ψn = O(an). According to Eq. (C4),

Ψ̇n = o(an), so truncating this series as Ψ = Ψ0 + Ψ1

is sufficient. Since Ψ0 is constant, S (ξ) is then fully
described by Ψ1, which serves as the new independent
variable instead of the original Ψ. Hence, after omit-
ting complete time derivatives (which do not affect ELE),
Eq. (C2) becomes similar to Eq. (54), namely,

L = Λ
(q)
0 (t, q, q̇) +

i

2
(Ψ†1 · Ψ̇1 − Ψ̇†1 ·Ψ1)

+ Γ†(t, q) ·Ψ1 + Ψ†1 · Γ(t, q), (C14)

where the new Λ
(q)
0 and Γ are given by

Λ
(q)
0 (t, q, q̇)

.
= Λ(q)(t, q, q̇)−Ψ†0 · h(t, q) ·Ψ0, (C15)

Γ(t, q)
.
= −h(t, q) ·Ψ0. (C16)

(One may also recognize this as the leading-order Born
approximation of the original problem.) This result
shows that theory of linear dispersion for interaction
Hamiltonians of the form (C1) can be constructed iden-
tically to that for interaction Hamiltonians of the form
(51). In particular, this means that general predictions of
linear dispersion theory are independent of whether os-
cillators comprising a medium are classical or quantum.

APPENDIX D: PROPERTIES OF α̃ω AND αω

Here, we discuss some properties of the functions α̃ω
and αω that are introduced in Sec. VI A 3.
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a. Function α̃ω

First, Eq. (103) is proved as follows:∫ τm

−τm
dτ ᾱ(t̄, τ) sgn(τ) eiωτ

=

∫ τm

0

dτ ᾱ(t̄, τ) eiωτ −
∫ 0

−τm
dτ ᾱ(t̄, τ) eiωτ

=

∫ τm

0

dτ ᾱ(t̄, τ) sgn(τ) eiωτ +

∫ 0

τm

dτ ᾱ(t̄,−τ) e−iωτ

=

∫ τm

0

dτ ᾱ(t̄, τ) eiωτ −
∫ τm

0

dτ ᾱ(t̄,−τ) e−iωτ

=

∫ τm

0

dτ ᾱ(t̄, τ) eiωτ +

∫ τm

0

dτ ᾱT(t̄, τ) e−iωτ

= α̃ω(t̄) + α̃†ω(t̄) = 2α̃ω,H(t̄), (D1)

where we used that ᾱ is real by definition. Equation
(104) is proved similarly.

Second, let us explicitly derive an approximation for
α̃ω in the limit (99). Using Eq. (92) for ᾱ together with
Eq. (100) for U , we obtain

ᾱ(t̄, τ) eiωτ =
i

2

[
v†(t̄+ τ/2) · ei(ω−H0)τ · v(t̄− τ/2)

− vT(t̄+ τ/2) · ei(ω+H0)τ · v∗(t̄− τ/2)
]
.

Then, using v(t̄± τ/2) ≈ v(t̄), one gets

α̃ω,H =
1

2
v† ·

{
1− cos[(H0 − ω)τm]

H0 − ω

+
1− cos[(H0 + ω)τm]

H0 + ω

}
· v,

α̃ω,A =
1

2
v† ·

{
sin[(H0 − ω)τm]

H0 − ω
− sin[(H0 + ω)τm]

H0 + ω

}
· v,

or, in the continuous-spectrum limit (Sec. VI A 2),

α̃ω,H =

∫
1− cos[(Ω− ω)τm]

2(Ω− ω)
[f(t̄,Ω)− f(t̄,−Ω)] dΩ,

(D2)

α̃ω,A =

∫
sin[(Ω− ω)τm]

2(Ω− ω)
[f(t̄,Ω)− f(t̄,−Ω)] dΩ. (D3)

Notably, the anti-Hermitian part of α̃ω vanishes in the
zero-ω limit; i.e., α̃0,A = 0, so α̃0 ≈ α̃0,H , and

α̃0,H ≈ v† ·H−1
0 ·

[
1− cos(H0τm)

]
· v

→
∫

Ω−1[1− cos(Ωτm)] f(t̄,Ω) dΩ. (D4)

b. Function αω

Asymptotic expressions for αω under the condition
(99) can be obtained by taking the large-τm limit of
Eqs. (D2) and (D3). The oscillating terms vanish for
Ω 6= ω. For Ω = ω, one has 1 − cos[(Ω − ω)τm] ≡ 0, so,
instead of averaging the corresponding cosine to zero, we
entirely exclude the point Ω = ω from the integration do-
main. Also, sin[(Ω−ω)τm]/(Ω−ω)→ πδ(Ω−ω). Hence,
one gets

αω,H = PV

∫
f(t̄,Ω)− f(t̄,−Ω)

2(Ω− ω)
dΩ, (D5)

αω,A =
π

2
[f(t̄, ω)− f(t̄,−ω)], (D6)

where PV denotes the Cauchy principal value. Equation
(D5) can be understood also as αω,H = −Hαω,A, where
H is the Hilbert transform. Using that H2 = −1, we then
obtain αω,A = Hαω,H . Thus, in summary,

αω,H =
1

π
PV

∫
αω,A
Ω− ω

dΩ, (D7)

αω,A = − 1

π
PV

∫
αω,H
Ω− ω

dΩ, (D8)

which can be recognized as the Kramers-Kronig relations.

APPENDIX E: CALCULATION OF δ〈B〉

To calculate δ〈B〉 used in Sec. VI C, we proceed as follows. First, using Eqs. (122) and (123), we get

δB+ = Re

{
− i

8

∫ t2

t1

dt

∫ t2

t1

dt′ e−iθ(t)Q†(t) · V †(t) · V (t′) · δ[Q(t′)eiθ(t
′)]

}
. (E1)
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Using the notation E(t̄, τ)
.
= eiθ(t

′)−iθ(t), we further rewrite this as follows:

δB+ =
1

8
Re

{∫ t2

t1

dt

∫ t2

t1

dt′E(t̄, τ)Q†(t) · V †(t) · V (t′) · [Q(t′) δθ(t′)− iδQ(t′)]

}
=

1

16

{∫ t2

t1

dt

∫ t2

t1

dt′E(t̄, τ)Q†(t) · V †(t) · V (t′) ·Q(t′) δθ(t′) +

∫ t2

t1

dt

∫ t2

t1

dt′ [E(t̄, τ)Q†(t) · V †(t) · V (t′) ·Q(t′)]† δθ(t′)

− i
∫ t2

t1

dt

∫ t2

t1

dt′E(t̄, τ)Q†(t) · V †(t) · V (t′) · δQ(t′) + i

∫ t2

t1

dt

∫ t2

t1

dt′ [E(t̄, τ)Q†(t) · V †(t) · V (t′) · δQ(t′)]†
}

=
1

16

{∫ t2

t1

dt

∫ t2

t1

dt′E(t̄, τ)Q†(t) · V †(t) · V (t′) ·Q(t′) δθ(t′) +

∫ t2

t1

dt

∫ t2

t1

dt′E(t̄,−τ)Q†(t′) · V †(t′) · V (t) ·Q(t) δθ(t′)

− i
∫ t2

t1

dt

∫ t2

t1

dt′E(t̄, τ)Q†(t) · V †(t) · V (t′) · δQ(t′) + i

∫ t2

t1

dt

∫ t2

t1

dt′E(t̄,−τ) δQ†(t′) · V †(t′) · V (t) ·Q(t)

}
=

1

16

{∫ t2

t1

dt

∫ t2

t1

dt′E(t̄, τ)Q†(t) · V †(t) · V (t′) ·Q(t′) δθ(t′) +

∫ t2

t1

dt′
∫ t2

t1

dtE(t̄, τ)Q†(t) · V †(t) · V (t′) ·Q(t′) δθ(t)

− i
∫ t2

t1

dt

∫ t2

t1

dt′E(t̄, τ)Q†(t) · V †(t) · V (t′) · δQ(t′) + i

∫ t2

t1

dt

∫ t2

t1

dt′E(t̄, τ) δQ†(t) · V †(t) · V (t′) ·Q(t′)

}
=

1

8

{∫ t2

t1

dt

∫ t2

t1

dt′E(t̄, τ)Q†(t) · V †(t) · V (t′) ·Q(t′)
δθ(t′) + δθ(t)

2

− i

2

∫ t2

t1

dt

∫ t2

t1

dt′E(t̄, τ)Q†(t) · V †(t) · V (t′) · δQ(t′) +
i

2

∫ t2

t1

dt

∫ t2

t1

dt′E(t̄, τ) δQ†(t) · V †(t) · V (t′) ·Q(t′)

}
=

1

8
Tr

∫ t2

t1

dt

∫ t2

t1

dt′E(t̄, τ)

{
W (t̄, τ)

δθ(t′) + δθ(t)

2
+
i

2

[
Q(t′) · δQ†(t)− δQ(t′) ·Q†(t)

]}
· V †(t) · V (t′).

Next, we notice that δB−[Q, θ] = δB+[Q∗,−θ] = (δB+[Q∗,−θ])∗. Hence,

δB− =
1

8
Tr

[∫ t2

t1

dt

∫ t2

t1

dt′E(t̄,−τ)

{
W ∗(t̄, τ)

−δθ(t′)− δθ(t)
2

+
i

2

[
Q∗(t′) · δQT(t)− δQ∗(t′) ·QT(t)

]}
· V †(t) · V (t′)

]∗
= −1

8
Tr

∫ t2

t1

dt

∫ t2

t1

dt′E(t̄, τ)

[
W (t̄, τ)

δθ(t′) + δθ(t)

2
+ δY (t̄, τ)

]
· V T(t) · V ∗(t′),

where W is given by Eq. (132) and δY is given by Eq. (144). For δ〈B〉 = δB+ + δB−, this leads to

δ〈B〉 =
1

8
Tr

∫ t2

t1

dt

∫ t2

t1

dt′E(t̄, τ)

[
W (t̄, τ)

δθ(t′) + δθ(t)

2
+ δY (t̄, τ)

]
·
[
V †(t) · V (t′)− V T(t) · V ∗(t′)

]
=

1

8
Tr

∫ t2

t1

dt

∫ t2

t1

dt′E(t̄, τ)

[
W (t̄, τ)

δθ(t′) + δθ(t)

2
+ δY (t̄, τ)

]
· [−2iα(t, t′)]

= − i
4

Tr

∫ t2

t1

dt

∫ t2

t1

dt′E(t̄, τ)

[
W (t̄, τ)

δθ(t′) + δθ(t)

2
+ δY (t̄, τ)

]
· α(t, t′)

= − i
4

Tr

∫ t2

t1

dt

∫ t2

t1

dt′ eiω(t̄)τ [W (t̄, τ) δθ (t̄) + δY (t̄, τ)] · ᾱ(t̄, τ) +O
(
ε2ω
)

≈ δBθ + δBQ, (E2)

where δBθ and δBQ are given by Eqs. (142) and (143), respectively.
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