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Energetic particle-driven compressional Alfvén eigenmodes and

prospects for ion cyclotron emission studies in fusion plasmas∗

N. N. Gorelenkov

Princeton Plasma Physics Laboratory,

P.O. Box 451, Princeton, NJ, USA 08543-0451†

Abstract

As a fundamental plasma oscillation the compressional Alfvén waves (CAW) are interesting for

plasma scientists both academically and in applications for fusion plasmas. They are believed to be

responsible for the ion cyclotron emission (ICE) observed in many tokamaks. The theory of CAW

and ICE was significantly advanced at the end of 20th century in particular motivated by first DT

experiments on TFTR and subsequent JET DT experimental studies. More recently, ICE theory

was advanced by ST (or spherical torus) experiments with the detailed theoretical and experimental

studies of the properties of each instability signal. There the instability responsible for ICE signals

previously indistinguishable in high aspect ratio tokamaks became the subjects of experimental

studies. We discuss further the prospects of ICE theory and its applications for future burning

plasma (BP) experiments such as the ITER tokamak-reactor prototype being build in France where

neutrons and gamma rays escaping the plasma create extremely challenging conditions for fusion

alpha particle diagnostics.
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I. INTRODUCTION

Among the papers which initiated fast ion (or energetic particle, EP) physics research and

published about fifty years ago several dealt with the cyclotron instabilities [1, 2]. In those

and some later studies the fusion ion products drove instabilities dubbed as thermonuclear

instabilities.

The cyclotron thermonuclear instabilities are quite unique due their high frequencies and

the possibility to tap the energy from fast ions. The excitation of the cyclotron instabili-

ties were treated in a perturbative manner because of relatively small density of energetic

particles in fusion plasmas in general,

nh/ne ≪ 1, (1)

where nh and ne are the densities of fast or hot (subscript “h”) ions and the background

plasma electrons. In earlier publications it was found that the cyclotron instability could

have nonperturbative growth rates, i.e. nonlinear in nh, ∼
√

nh/ne [3, 4]. This stimulated

a lot of interest due to potentially strong growth and dangerous effects on the plasma

when even small density EP population may have deleterious consequences for the plasma

discharge as we discuss below.

An interest in EP cyclotron instabilities emerged after observations of the Ion Cyclotron

Emission (or ICE) in tokamaks (see review [5] for experimental and initial theoretical ref-

erences). ICE is measured by the magnetic field pick up coils at the integer harmonics of

thermal ion cyclotron frequency at the low field side of the tokamak. ICE was commonly

acknowledged as driven by the super-thermal fast ions such as beam ions, ICRH minority

ions, or fusion charged products. In fact some names were introduced associated with the

driving species: beam-driven ICE, minority ICRH driven ICE or mICE and fusion product

driven ICE (FP-ICE).

Perhaps the most convincing argument in support of ICE excitation by fast ions was

presented by Cottrell et al. [6] where it was demonstrated that the intensity of ICE is

linearly proportional to the fusion product density for Ohmic and beam-heated discharges

over six orders of magnitudes of ICE (and fast ion) power. Similar correlation was reported

by JT-60U, TFTR and LHD groups. In some recent LHD experiments, NBI was applied

perpendicularly to the direction of the equilibrium magnetic field. In LHD ICE was timed
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with TAE excitations [7]. It is Cottrell’s publication [6] that brought the attention of the

community to the problem of ICE excitation whereas the main elements of ICE theory were

already available to a great extent by that time (see review [8]).

Despite the convincing arguments presented by Cottrell[6] in some later studies for ex-

ample in TFTR the correlation between ICE and neutron signal did not have such linear

proportionality. On the contrary, ICE in DT TFTR experiments had more complicated

dependences on fusion product density which was not completely understood as pointed

out in Ref.[9], although studied theoretically [10, 11]. We should also say that the fast ion

cyclotron harmonics do not always coincide with thermal ion harmonics. Examples are T

or He3 fusion products in DD plasma or the case of α particle products in DT plasmas.

Similar to the case of cyclotron instability study the development of the ICE theory

started from the analysis of the experimentally observed instabilities in the homogeneous

limit ignoring the mode structure. In this limit it was assumed that the oscillations have

compressional Alfvén (CA) polarization with the dominant parallel component of the mag-

netic field perturbation. This implied that the plasma displacement is mostly due to the

plasma compressibility although coupled to the shear Alfvén branch in toroidal plasma con-

figurations. The interactions between oscillations and the fast ions included realistic drift

ion motion [12]. The homogeneous ICE theory was recently reviewed in Refs.[13, 14]. Never-

theless, the limit of the homogeneous plasma allowed to make the case for ICE applications

to tokamaks as a diagnostic originally proposed in Refs.[6, 15] (see also recent review [16]).

Later the theory of ICE related instabilities was generalized to include realistic structures

of the underlying eigenmodes called later CA eigenmodes or CAEs. We start the review of

CAE theory with the relatively recent development of detailed CAE studies in spherical torus

(or ST) devices which confirmed the analytic predictions for the eigenmodes dispersion and

structure in many respects. This development occurred in early 2000s in connection with

ST fusion experiments where ion sub-cyclotron frequency instabilities of CA polarization

cavity modes were observed. In particular in NSTX and MAST they were identified as high

frequency compressional Alfvénic (or fast magnetosonic) modes driven by fast ions injected

by the heating beams [17–22].

In connection with the homogeneous approach to the ICE problem we should say that

there are several points worth mentioning which are due to the plasma inhomogeneity. The

main point is that CAEs are ubiquitously coupled to kinetic Alfvén waves in realistic plasmas,
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see sec. III. This adds to the damping of CAEs and shapes the unstable modes spectrum.

Another feature of the inhomogeneous plasma contribution to CAE instability is through

the thermal ion cyclotron damping which is straightforward to avoid at certain frequencies

which seem to be wider in the case of inhomogeneous plasma. Inhomogeneity also affects

the CAE instability due to the fact that spatial variations in the magnetic field broaden the

region of the plasma in which thermal ion cyclotron damping can occur.

This review is written in the introductory style. We are giving preference to understanding

the physics rather than rigorous derivations of the underlying equations and refer the reader

to the original publication references. Mostly we cover the linear physics of ICE instabilities,

for which the basics are welldeveloped. The paper is organized as follows. We review first

the CAE theory and experiments in ST devices in Sec.II where high, sub-cyclotron frequency

modes were analyzed and used to confirm CAE nature of these mode. Then we consider

the newly discovered CAE to KAW coupling heuristically in Sec.III as well as its potential

applications to ICE problem and thermal electron power channeling. The current status of

ICE linear instability theory is summarized in section IV where the plasma inhomogeneity

is taken into considerations. Nonlinear progress in ICE theory is briefly discussed in Sec.V.

We summarize and discuss the present tasks for ICE theory development in section VI.

II. OBSERVATIONS OF HIGH FREQUENCY MODES IN STS SUPPORT ICE

INTERPRETATIONS

Initial studies of cyclotron instabilities responsible for the Ion Cyclotron Emission (ICE)

were based primarily on the analysis of the high frequency spectra of the Mirnov magnetic

signal. The studies showed that the underlying fluctuations are of Alfvénic nature, driven by

super-Alfvénic ions and the resonances are cyclotron with the Doppler shift. These properties

helped to identify the magnetic activities as the cyclotron instabilities of the Compressional

Alfvén Eigenmodes (CAEs, also called fast Alfvén or magnetosonic eigenmodes) [23–27].

We should note that another kind of plasma oscillations could be, in principle, a candidate

to explain the ICE observations, namely the shear Alfvén eigenmodes. However they are

known to be heavily damped due to strong interaction with the Alfvén continuum. Only

at frequencies, much lower than the thermal ion cyclotron frequency, can the shear Alfvén

modes can be formed without strong continuum damping [28, 29].
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In STs the shear Alfvén eigenmode instabilities with the frequencies comparable to the

cyclotron frequency of thermal ions correspond to the excitations of the so-called global

shear Alfvén (GAE) [30] modes. It is now believed that the instabilities of GAEs have

sub-cyclotron excitations, i.e. ωA = ωcAk‖/k⊥ < ωch, whereas CAEs might be excited at

higher frequencies (at and above ωci) [31]. CAEs are used to explain the ICE phenomena

in tokamaks [25–27]. Here we denoted the shear Alfvén frequency as ωA, the frequency of

the compressional Alfvén wave branch as ωcA and the hot ion and thermal ion cyclotron

frequencies as ωch and ωci (also denoted as ωc if the distinction is not required).

Significant progress in studies of CAE properties was made in ST tokamaks by exciting

the sub-cyclotron instabilities in a beam heated discharges. Observations of CAEs in STs

allowed the measurements of the dispersion and the polarization properties of a single ICE

relevant instability including their internal structures. The main reason for this is the

intrinsically low equilibrium magnetic field in STs, so that the frequency spacing between

the neighboring CAEs, δf ∼ vA/r, is small but measurable [17]. Because of the importance

of CAE dispersion and structure we will introduce them next. First we will cover this topic’s

theory in the next section according to its present understanding.

A. Heuristic introduction to CAE theory

Let us illustrate the basics of the CAE theory heuristically following earlier publications

[24, 25] (see also Ref. [20]). In particular, in Ref. [24] the eigenmode equation was postulated

(later derived more rigorously in Ref.[25]) taking the right-hand side (RHS) of the following

compressional Alfvén wave dispersion

ω0 = nωc = ωcA ≡ k⊥vA, (2)

to the second power and making use of the standard inequality for tokamaks, k‖/k⊥ ≪
1. Within the approximation of this section we can readily treat the CA dispersion as

an operator acting on the dominant magnetic perturbation k̂2
⊥δB‖ = (ω2

cA/v
2
A) δB‖ since

for CAEs the dominant perturbed quantity is the parallel component of the equilibrium

magnetic field, δB‖:

1

r

∂

∂r
r
∂

∂r
δB‖ +

1

r2
∂2

∂θ2
δB‖ = − ω2

v2A (0)

n (r)

n0
(1 + ǫ cos θ)2 δB‖, (3)

5



where r is the radial coordinate, θ is the poloidal angle, ǫ = r/R is the inversed aspect ratio

of the plasma column, and the plasma density profile is introduced via n (r). Pure CAE

polarization limits the analysis by ignoring the interaction with the shear Alfvén branch

which we consider in the next section.

The RHS of this equation has the minimum at the localization region of the mode struc-

ture as illustrated in Fig.(1). Typically this is at the edge of the plasma being elongated

vertically in the poloidal direction. Radially localized normal mode solutions of Eq.(3) can

be found by considering that the potential well is formed with the narrow radial width and

shallow but long poloidal extension. In other words CAE poloidal wavelength is shorter

than the radial wavelength. This justifies the choice of the eikonal for the following poloidal

mode structure (cf. [24]):

δB‖ (r, θ) = b (r, θ) exp [−iωt+ im (θ + ǫ0 sin θ)− inϕ] , (4)

where ϕ is the toroidal angle, m is the poloidal mode number, and the subscript 0 denotes

the value taken at the minimum of the local effective potential well, r = r0 (the definition

isdefined after Eq.(6)). We should note here that because of the potential well poloidal

elongation CAEs (see illustration of this in STs in Ref.[20]) have the following ordering for

its wave-vectors

kθ ≫ kϕ ≫ kr, (5)

which is supported by the CAE stability theory.

The poloidal mode number is assumed to be large so that the equation for CAE mode

amplitude, b (r, θ), implies slow variation in both directions but sill requiring ∂b/∂ ln r ≫
∂b/∂θ. The envelop of CAE mode structure can be found iteratively with zeroth iteration

accounting only for the poloidal variation in the eikonal (4). Introducing the plasma density

dependence as n (r) = n0 (1− r2/a2)
σi , the first and second iterations produce the solution

envelops [32]

b (r, θ) = b0φk

(√
2θ2

Θ

)

φs

(√
2 (r − r0)

∆

)

, (6)

where φs is the Chebyshev-Hermite function and the characteristic widths of those functions

are Θ2 = 1/ (ǫ0 − α0) (m+ 1/2), r20/a
2 ≃ 1/ (1 + σi), and ∆2/a2 = κ

√

2σi/ (1 + σi) (ǫ0 − α0)/ (2m+ 1),

where α0 = B2
θ/2B

2
ϕ. The assumptions of Ref.[32] included m ≫ nq (r0) and ε > 1− κ2.
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Figure 1. CAE potential well radial dependence (in a.u.) is indicated on a graph and is given by

the sum of the RHS of Eq.(3) (blue curve) and the poloidal wave-vector m2/r2 (green curve). The

potential well is formed by the plasma density profile and the poloidal eikonal m2/r2−ω2/v2A. The

radial wavelength is defined via the operator k2r = −r−1 (∂/∂r) r (∂/∂r).

A variational method of solving the eigenmode equation (3) was adopted in Ref. [33]. It

assumes low m values. While for ∆/a Ref. [33] has found a similar to Eq.(6) expression for

the poloidal localization the expression was somewhat different, namely:

Θ−4 ≃ n2q2
(

κ2 − R0

R

)

,

where we show only the leading order terms in n2.

Although the poloidal mode number dependence is the same in both treatments the

numerical factors are different, in part due to the expected eikonal of Ref. [32] being enforced

by Eq.(4). Predictions for the mode frequency as a function of CAE mode numbers are also

different. The dominant reason for this is that the used poloidal number m in Ref.[32] was

consistent with employed approximation.

Because of the complexity of the above eikonal the realistic CAE dispersion as we will see

is difficult to analyze and compare with experiments. For example, in the aforementioned

papers [32, 33] used theoretical methods are rather approximate since they are based on the

assumption of the eikonal. Instead a heuristic dispersion relation of CAEs adopted in Ref.

[34], by analogy with the dispersion (2), finds the characteristic length and corresponding

“quantum” numbers in each three relevant directions: toroidal mode number, n, with the

major radius R being the characteristic length; radial mode number, S, with the radial width

of the effective potential in radial direction, andm, with the plasma minor radius giving the

characteristic length. One can write then
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ω2
MSn ≃ v2A

(

m2

r2
+

S2

L2
r

+
n2

R2

)

. (7)

The numerical solutions obtained in Ref.[34] using the ideal MHD code NOVA agreed

with the dispersion relation (7) which in its turn is consistent with the eikonal (4). The

above dispersion was checked numerically only for n = 0, 1 due to strong coupling of the

dominant compressional Alfvénic polarization of CAEs and the shear Alfvénic harmonics at

higher n numbers.

Another paper, Ref.[35], within the used model debated the validity of the above approach

which is based on the eikonal Eq.(4), although the treatment of Ref.[35] does not seem

suitable for large ellipticity tight aspect ratio plasmas. More recently CAE studies were

dealt with the ST plasmas where the authors managed to decouple the shear Alfvén and the

compressional Alfvén plasma oscillations [36]. The obtained equations are for “pure” CAEs,

i.e. ignoring the interactions with the kinetic Alfvén waves (KAW) and thus ignoring the

important dissipation mechanism for CAEs with the sub-cyclotron eigenfrequencies. The

interaction was recently considered as a way to channel the energy from beam ions to thermal

electrons [37]. This mechanism is covered in the next section.

Nevertheless, the modeling of pure CAEs was very important for the interpretation of

the experimental results from NSTX and MAST experiments. CAE dispersion of Eq.(7)

was brought into consideration in Refs. [17, 21, 34]. The comparison with the experiments

illustrated clear frequency separation for the modes at subsequent “quantum” numbers of

CAEs according to Eq.(7). These CAE dispersion properties were validated after ST experi-

mental measurements of high frequency sub-cyclotron instabilities were interpreted [17, 32].

Moreover, the CAE dispersion seems to be instrumental in helping experimentalists identify

the kind of the instabilities by following the mode frequency evolution, i.e. their dispersions,

without unambiguously knowing the polarizations [38].

We show examples of CAE observed magnetic field signals from NSTX and MAST devices

in left and right Figs. (2) respectively. In the left figure from NSTX, two CAE unstable

peaks cluster clearly around 1MHz and 2MHz, which corresponds to the largest frequency

separation, ∼ 1MHz, associated with the radial mode number S (see Eq.(7)). Smaller

frequency separation is due to the poloidal mode number, ∆f ≃ 120kHz, whereas the

smallest separation in frequency could also be distinguished around each peak in the left

figure (2). It is due to the toroidal mode number n at ∆f ≃ 20kHz. Similar frequency
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separations were reported in Ref.[33] which is mentioned above.

An experimental study of CAE modes on MAST was done in a similar manner and is

illustrated in the spectrogram of the right figure (2). Although the spectrogram shows the

low part of the frequency spectrum, clear peaks indicated by their toroidal mode numbers

correspond to the ICE unstable CAEs at much higher frequencies. The values of those CAE

frequencies were recovered by assuming that measured signals are actually aliases of real

peaks. The inferred values of the frequency separation were similar to the values seen in

NSTX. That is, the poloidal mode number separation is on the order of 150kHz and, the

toroidal mode numbers are separated by ∆f = 10 − 15kHz, whereas the whole observed

band is estimated at the value of its frequency f = 1− 2MHz.

At first glance the spectra shown in Figs.2 resemble the harmonics of ICE: discrete peaks

in the Mirnov coil spectrum, almost equally spaced in frequencies. However the edge cy-

clotron frequency of the background thermal deuterium ion was ∼ 2.2MHz in NSTX and

∼ 2.5MHz in MAST in those shots which are much larger than the peak frequency separa-

tion shown in the figures. Nevertheless the frequency separations corresponding to various

mode numbers as we highlighted served as an important confirmation of CAE’s dispersion

and their theory. It potentially allows the development of diagnostics to study fusion plas-

mas and burning plasmas in particular as we will be discussing below (discussion on ICE as

a diagnostic for fusion is presented in Sec.VI).

Due to this understanding the CAE theory helped to offer the ways for its validations

in spherical tokamaks. Furthermore, Ref. [36] offered the method of how to decouple the

CAE eigenmode problem from problem of shear Alfvén waves. This allowed to focus on the

“pure” CAE properties only. A similar approach with slightly further reduced model was

developed and applied to the MAST plasma [39]. In that work co- and counter- propagating

solutions in the direction of the plasma current are reported. Let us illustrate those studies

by showing the numerically computed CAE mode structures in Fig. (3). The shown CAE

modes have the mode structure similar to the one we used in this review (see Eq.(6)). Both

theoretically [40] and numerically [36] CAEs that were localized at the high field side (HFS)

were also reported.

Above we demonstrated radial localizaton of CAEs (see illustration on Fig.1). Poloidal

CAE localization can be seen from the poloidal variation of the effective potential well (see
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Figure 2. Two representative spectra of CAE activity seen on NSTX [17] (left), and MAST [21]

(right) are shown. The spectra were measured by the pick-up magnetic field (or Mirnov) coils

installed just outside the plasma. The MAST spectrum depicts the toroidal mode numbers corre-

sponding to the smallest frequency splits between the signals as indicated.

Eq.3), i.e. the solution is bounded in poloidal direction by zeros of the potential well [20]:

m2

r2
− ω2

v2A (0)

n (r0)

n0

(

1 +
r0
R

cos θ
)2

= 0.

The critical role of the aspect ratio on the poloidal localization of CAEs was studied in

Ref.[36]. In particular in a high aspect ratio plasma, i.e. in a so-called “tokamak” approxima-

tion, the poloidal localization could not be seen. However in ST-like devices, at R/a ∼ 1.3,

CAEs were found to be well localized on the low field side. This is similar to the results

reported by the WHALES code which are also shown in Fig.3.

Finally we summarize this section by stating that it is due to CAE observations in ST

devices and to theoretical advances that it became possible to understand the nature of

modes responsible for ICE.

III. CAE TO KAW COUPLING

We proceed here in the spirit of the heuristic analysis introduced in the previous section in

the case of sub-cyclotron CAE frequency. But first let us show the example of CAE/KAW

coupling for the sub-cyclotron frequency case which was found recently in Ref.[37]. The

results are from the initial value hybrid MHD/kinetic fast ions code HYM simulations of

CAE/KAW structure in NSTX plasma as shown in Fig.4. The left figure clearly depicts
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Figure 3. Poloidal structure of the CAE mode computed by the code WHALES. We are showing

the real and imaginary values as indicated on the graph of the variable η∗. It represents the normal

to the magnetic surface component of the plasma displacement. The depicted mode corresponds to

n = 10 and the mode frequency f = 2.23MHz. [39].

the dominant CAE structure which is mostly δB‖/B perturbation whereas KAW is rep-

resented primarily by the δB⊥/B perturbation. Shown CAE structure is similar to pure

“CAE polarization” mode from the previous section computed by the WHALES code. More

complete analyses using HYM code has discovered an additional excitation of the kinetic

shear Alfvén wave structure at a point of CAE and KAW local frequency resonance. It can

be seen that the resonance occurs at the HFS in the mid-plane and the KAW structure

propagates poloidally until it damps. The wave-vector of KAW as expected has dominant

kθ which is clearly follows from figure 4 where part of the eigenmode KAW structure propa-

gates poloidally. Another important point to make here is that KAW structure is relatively

narrow which means that all the energy is in the CAE component of the solution.

For further analyses, the CAE eigenvalue problem represented by equation (3), needs

to be corrected to account for more complete system which allows the coupling to KAWs.

We include small radial scale contributions, i.e. fourth order radial derivatives following

Refs.[41, 42]. The exact form of that is not important as we argue below. What is important

is how much power from CAE is available to channel to KAW structure since all the power
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Figure 4. n=8 CAE coupled to KAW in NSTX plasma as computed by the HYM code. Shown on

the left is the parallel component of the perturbed magnetic field representing the CAE structure.

Right figure depicts δB⊥ corresponding to the KAW part of the mode. Black curves correspond to

the magnetic surfaces on the left and the CAE/KAW resonant surface on the right, i.e. Eq.(9).

The mode frequency is ω = 0.48ωci.

is absorbed[37].

Let us do several transformations to Eq.(3). First, we rewrite it in terms of the perturbed

electric potential φ [25]. Then we multiply it by by ω2 − k2
‖v

2
A which will account for local

shear Alfvén resonances [43]. And we add the fourth order derivative in radius following

Refs.[41, 42]. Finally we obtain a CAE/KAW eigenmode equation to understand the HYM

obtained hybrid solution

k2
‖v

2
Aρ

2 ∂4

∂r4
φ+ ∂

∂r
r
(

ω2 − k2
‖v

2
A

)

∂
∂r

φ
r
=

=
(

ω2 − k2
‖v

2
A

) [

− 1
r2

∂2

∂θ2
− k2

‖ − ω2

v2
A
(0)

n(r)
n0

(1 + ǫ cos θ)2
]

φ
, (8)

where ρ2 =
[

3ω2/4k2
‖v

2
A + (1− iδ) Te/Ti

]

ρ2i and ρi is the thermal ion Larmor radius.

Let us note here several important points. First is that KAW is not an eigenmode but a

propagating part of the eigenmоde structure. Second note is that the CAE/KAW equation

is important to analyze in order to understand its consistency with some limiting cases. One

such case is the MHD and k2
‖v

2
A ≪ ω2 condition limits when one can drop the first term

and straightforwardly arrive at the CAE eigenmode equation, Eq.(3). However if we keep
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k‖ at finite value and assume that ω2 ∼ k2
‖v

2
A we arrive at the shear Alfvén equation such as

discussed in Ref.[44]. For our analysis Eq.(8) is sufficient because it illustrates the coupling

of two fundamental MHD branches. We will also add here that the equation similar to

Eq.(8) was obtained and analyzed in Ref. [43] in the limit of one-dimensional plasma of the

magnetosphere.

We also note that the KAW local dispersion is covered in Swanson’s textbook [45] as

well as in a more recent preprint [46] where KAW dispersion was accurately evaluated at

frequencies well above ωc, i.e. when thermal ions are unmagnetized. Thus, the CAE to

KAW power channeling problem is relevant for ICE at arbitrary frequencies but needs to be

specially addressed which is beyond the scope of this review. The frequency of propagating

KAW structure of CAE eigenmode satisfies the following dispersion relation found within

the HYM code simulation model:

ω2 = k2
‖v

2
A

[

1 +
nh

ne

(

3k2
⊥ρ

2
h

4
− ω2

ω2
c

)]

, (9)

as assumed in Ref.[37] where the model includes FLR contributions from beam ions only.

But more sophisticated modeling should expand used assumptions and include thermal ion

FLR as well as thermal electron contributions which generalize KAW dispersion to

ω2 = k2
‖v

2
A

[

1 +
nh

ne

3k2
⊥ρ

2
h

4
+

3k2
⊥ρ

2
i

4
+ k2

⊥ρ
2
s −

ω2

ω2
c

]

, (10)

where ρs is the sound gyro-radius.

Eq.(8) can be solved using the asymptotic analysis [41] where the radial domain is sub-

divided with two scales characterizing the solution: the MHD scale corresponding to the

balance of the second and the last terms of Eq.(8),

1
r

∂
∂r
r
(

ω2 − k2
‖v

2
A

)

∂
∂r
φ =

=
(

ω2 − k2
‖v

2
A

) [

− 1
r2

∂2

∂θ2
− k2

‖ − ω2

v2
A
(0)

n(r)
n0

(1 + ǫ cos θ)2
]

φ
, (11)

and near the resonance point rres of the frequencies match, ω2
cA = k2

‖ (rres) v
2
A, the kinetic

scale corresponding to the first and second terms balance,

k2
‖v

2
Aρ

2 ∂2

∂r2
φ′ +

(

ω2 − k2
‖v

2
A

)

φ′ ≃ 0, (12)

where φ′ ≡ ∂φ/∂r. The CAE part of the eigenmode away from rres is found by solving

Eq.(3) which has the 2D mode structure (4) and (6). Then near the resonance location we

13



expand ω2 − k2
‖v

2
A ≡ ω2

cAx (δ/Lr), where x = (r − rres) /δ, Lr is given by the radial profile

of the plasma density and the safety factor, and δ3 ≡ ρ2Lr.

In new variables Eq.(12) has the following form

∂2

∂x2
Er + xEr + (Lr/ρ)

2/3 (kθ/kr)Eθ = 0, (13)

where Eθ,r are the poloidal and radial components of the perturbed electric field and are

determined by the CAE mode structure near the CAE/KAW resonance point. This equation

is similar to the one analyzed in Ref.[47]. The role of the external field plays the poloidal

component of the CAE part of the solution, Eθ. Together with the radial part of CAE

electric field, ErcA, it can be expressed via the dominant magnetic perturbed component

[48]

ErcA ≃ ω

ckθ
δB‖ =

kr
kθ

Eθ ≃ ikrφ. (14)

The KAW part is found following Ref.[47] (coefficients of this equation differ from [47], their

derivation will be published elsewhere),

Er = −Eθkθ
kr

(

Lr

ρ

)2/3 √
π

(

δ

r

)1/4

exp

{

i
2

3

(r

δ

)3/2

+
π

4

}

+
Eθkθ
kr

Lr

r
, (15)

for r > rres and

Er =
Eθkθ
kr

Lr

r
, (16)

for r < rres.

Finally we summarize the above analysis for the solution of the CAE/KAW eigenmode

problem. It is given by the combination of CAE dominated structure, Eqs.(4,6), together

with KAW propagating solution, Eqs.(15,16). It can be seen that the found solution is

consistent with the solution found by HYM (see Fig.4). Its KAW structure is propagating

mostly poloidally due to kθ ≫ kr and is quickly absorbed by the surrounding thermal

plasma. Its mathematical formulation can be improved using the Umov-Poynting vector

formalism [49, 50]. Not everything is understood in HYM numerical CAE/KAW solutions,.

I in particular the poloidal KAW localization as well as the magnitude of its damping rate

on thermal electrons.

Depending on the needs of the analysis the above CAE/KAW solution can provide either

damping rate or power channeling to thermal electrons. The damping implications for CAEs

is due to relatively short radial wavelength of KAW structures i.e. k⊥ρi ∼ 1, which have
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strong parallel electric fields and strong power channeling to the electrons. We should note

that this mechanism was overlooked in the conventional ICE theory. The CAE to KAW

power channeling is an important dissipation mechanism which has to beconsidered in codes

targeting CAEs.

IV. ICE AS A CAE INSTABILITY

Among many candidates for ICE discussed earlier[5] the most probable is the CAE cy-

clotron instability driven by the velocity space anisotropy of super-thermal ions. In section

IIA the CAE theory was reviewed using the ideal MHD eigenmode equations which are

sufficient to interpret and understand the experimental data from tokamaks and STs. It was

shown more recently that for more accurate treatment of the modes the Hall term has to be

included in the CAE framework to compute the dependence of the solutions on the poloidal

phase velocity [27, 51, 52]. One particular consequence of this is the shift of the eigenmode

frequencies depending on the sign of m. For the plasma cross section with the ellipticity κ

the eigenfrequencies of CAEs were found to be asymmetric with respect to poloidal mode

number sign [27]:

ωCAE = k (κ) vA (r0)





σmvA (lnn)′

2ω̄c
+

√

1 +

(

vAn′

2ω̄cn

)2




r0

, (17)

where the location of the eigenmode is given by the equation

2 + r (lnn)′ − σm
vA
ω̄c

(

r (lnn)′
)′

√

1− 2 + r (lnn)′
(

r (lnn)′
)′ = 0, (18)

and as above (. . . )′ ≡ ∂ (. . . ) /∂r. Other notations here are: k (κ) = |m|
√

1+κ−2

2
/r is the

poloidal wave vector, ω̄c ≡ ωc

√

1+κ2

2
is the cyclotron frequency, and σm = m/ |m| is the sign

of the poloidal wave number. Further analytic and numerical treatments of CAE eigenvalue

problem can be found in Ref.[40]. As we point out in the discussion section VI the dispersion

17 should be important in ICE applications for possible diagnostics of burning plasmas since

this will affect the stability of the CAE modes and will certainly modify ICE spectrum.

A theory of CAE instabilities driven by super-Alfvenic ions in applications to ICE is

developed for various cases. Below we highlight its main elements following the author’s

earlier works [25, 48]. They were strongly influenced by A.B. Mikhailovskii reviews on
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cyclotron instabilities by fast ions and in particular by Ref. [8]. A similar approach to

CAE instabilities was developed in Ref. [53], where the slow instability limit was implied

although no applications to ICE in experiments were made. Other papers dealing with ICE

instabilities were limited to the strong instability as discussed below [10, 26] (see also recent

publications on those interactions in strong instability limit Refs.[13, 14] and in earlier papers

[12, 15]). More recent formulations of CAE growth rates in applications to STs analyze the

growth rate expressions accounting for EP drift frequency contributions which carefully

address not only the cyclotron but EP drift frequencies [54, 55].

Nevertheless the CAE growth rates and their derivations are common for cited publi-

cations. However one difference exists which is how the instability is considered: being

strong or weak. There are two known theoretical limits of ICE theory with respect to

the instability growth rate. The first one is the strong CAE instability theory when the

mode grows faster than the EP drift motion or the growth rate satisfies γ > ∆τ−1, where

∆τ = min
(

τres,ΘqR/v‖
)

is the characteristic time of wave-particle interaction, τres is the

time of particle interaction with the perturbation near the local resonance, ΘqR/v‖ is the

time which the particle spends in the localization domain of the unstable mode. Here we

followed the line of arguments of Ref. [18] where the example of NSTX plasma was used

for which ∆τ = 0.7 × 10−6s is found at Θ = 1, R = 100cm, q = 1, and χ = 0.5 (pitch

angle, χ = v‖/v). The validity condition for the strong instability theory in NSTX example

is then:
γCAE

ω
> 0.1

ωc

ω
.

The second limit is known as the slow instability limit. In it the EP drift motion should be

included in the wave-particle interaction. The cyclotron instability example considered above

is of the first type, i.e. it is the strong instability. The instabilities of this type were proposed

to explain ICE in TFTR and in JET DT tokamak experiments in Refs. [10, 26]. In fact, in

both papers a smooth transition from the linear or perturbative in EP density dependence

of the growth rate to square root dependence is found numerically at nh/ne ∼ 10−6. Such

and even higher values of EP density were reported for TFTR experiments but no clear

picture of ICE signal transition to square root dependence was demonstrated using the

experimental data [9]. ICE signal delay shown in Fig.6 of Ref.[6] clearly exhibits a linear

dependence of ICE signal vs. nh/ne in JET DT plasmas. Experimentally it may not be

straightforward to determine in which regime, weak or strong, the CAE instability is excited.
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This is because the instability can likely be observed in the saturated nonlinear state which

is only beginning to be developed and is beyond the scope of this review. Nevertheless both

regimes are important to distinguish theoretically to compute CAE growth rates.

CAE growth rates are typically computed via the anti-Hermitian part of the permeability

tensor of species j, ǫ̂Aj :

γ ≃ −ω

2

∑

j ℑ
∫

E∗
1 ǫ̂

A
j11E1d

3r
∫

E2
1 |ǫ̂11| d3r

, (19)

where E1 is the component of the perturbed electric field in the direction of the mode

propagation which is expected to be poloidal if kθ ≫ kr, and the integration is taken over

the plasma volume occupied by the mode. The permeability tensor appears in the above

expression for the anti-Hermitian part of the perturbed current, j̃
A
, of plasma species j

which in its turn can be expressed via the perturbed distribution function:

∫

E∗
1 ǫ̂

A
j11E1d

3r =
4iπ

ω

∫

E∗ · j̃A
d3r =

4iπ

ω
e

∫

E∗
1 · v⊥f̃jd

3vd3r, (20)

where v⊥ is the vector of the perpendicular particle velocity, f̃j is the perturbed distribution

of species j. Then after some algebra one arrives at (for more complete derivation we refer

to Ref.[48])

∫

E∗
1 ǫ̂

A
11E1d

3r = −8π2e2B

ωcω2T

∫

dPϕdµdEτb
∑

l,p

F ′∗
lp

(

ω − ωT
∗

)

Flp

ω − lω̄c − ω̄D − pωb
f, (21)

where we dropped subscript j which refers all the relevant terms to j species. Here we

made use of the set of COM (constants of motion) variables, E - particle energy, Pϕ -

toroidal canonical momentum, µ - adiabatic moment, and denoted τb the ion drift bounce

(or transit - for passing particles) frequency, f the equilibrium distribution function, and

the functions F ′
lp account for the wave particle interactions[48], the set of frequencies in the

denominator includes CAE eigenfrequency, cyclotron, drift and drift bounce frequencies. A

similar expression was obtained earlier by Mikhailovskii[8] in the limit of zero banana width

for well-trapped and strongly passing ions. This equation contains the bounce resonances

of slow growing CAE mode. They were summed in the following novel way [48].

The resonant denominator in Eq.(21) is expandable into the integrable form involving

the delta function of the resonance condition:

1

ω − lω̄c − ω̄D − pωb
=

P
ω − lω̄c − ω̄D − pωb

− iπδ (ω − lω̄c − ω̄D − pωb) , (22)
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where P denotes the principal part of the integral. The delta function makes it possible

to to transform and integrate the sum over the bounce harmonic: integer p. Finally the

expression for the growth rate of the CAE mode becomes

γ

ωc
=

ω3

ω2
pω

2
c

√
2ecB√

π∆r0R0

∑

l,σ

∫

dPϕdEdµI2
E2

1

E2
0

µlJ2
l (z)

z2

[

∂

∂E +
lωc

ωB

∂

∂µ

]

f̃ , (23)

where ωp is the plasma frequency, E1 = E0f (r, θ) is the CAE structure in the poloidal cross

section required for proper averaging of the local growth rate expression, ∆ is its radial

width, Jl is the Bessel function of order l of the argument z = k1ρhv⊥/v, and ρh is the

Larmor radius of the fast ions. The resonance condition is then ω− lωc (r, θ)−ωD (r, θ) = 0

which is to be evaluated along the EP drift trajectory. This resonant condition is different

from the resonance in (22) by the bounce harmonics term pωb which is summed over with

the novel technique by substituting it with the integration over µ. That is in the model

assumption the harmonics number is large whereas the cyclotron resonance is implicitly

included in Eq.(23). Also a special function involving the time derivative of fast ion local

freqeunciesfrequencies is introduced I2 = 8π/
∣

∣

d
dt
(lωc + ωD)

∣

∣ and is to be taken at the point

where the ion has the cyclotron resonance with the mode (for more details see [48]). The

term I has the dimension of a time and determines how long the particle was in a resonant

layer.

An important element of ICE theory is the quest for the dampings which can shape

the spectrum of unstable CAEs in linear simulations. Several damping mechanisms were

considered in recent publications on the alpha channeling [56], including thermal electron

and ion Landau cyclotron resonant dampings. However, as we said above in Sec.(III), an

important and often dominant damping mechanism is the coupling of the KAW structures

to CAEs [37], which was previously overlooked in ICE studies. As we show in Sec.10 KAWs

induce damping of CAE modes which can be very large, on the order of the mode frequency.

Another damping mechanism which depends on thermal ion FLR is the cyclotron damping

due to the interaction with the Bernstein waves [12]. It can be minimized in tokamaks

since thermal ions have small velocities and thus small Doppler shift. However the power

channeling to KAW is argued to be ubiquitous in toroidal geometry[37]. As a result CAE

instability linear theory needs to be revisited in view of this finding.

In connection with CAE dampings we would like to note that CAE instabilities do not

necessarily lead to ICE. They can occur at arbitrary frequencies between the integer har-
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Figure 5. ICE spectrum computed for JET parameters excited by fusion products, α-particles. Two

classes of CAE instabilities are shown with the negative (figure (a)) and positive (figure (b)) poloidal

mode numbers as noted in the figures. Showing both figures we made the horizontal axis to be on

the same scale.

monics of plasma ion cyclotron frequency, ω 6= lωc. However it is believed that the further

away from the exact cyclotron resonance the CAE frequency is the less important thermal

ion damping becomes which helps to shape the ICE spectrum. A substantial discussion on

allowed CAE eigenfrequencies from the point of view of the mode damping on thermal ions

and electrons is presented in Ref.[56].

Let us illustrate the linear ICE growth rate calculations performed in Ref.[26] by showing

CAE instability leading to ICE in Fig. (5). One can note a doublet lines near each of the

cyclotron harmonic. This feature of ICE exists in experiments and was considered in Ref.[26]

in particular. One can also note that closer to low number harmonics of ωc the instability

peaks merge and were argued to be the reason for the absence of double peak structure at

l = 1− 2.
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V. CAE NONLINEAR EVOLUTION

There are few known publications where the nonlinear aspects of CAE evolution were

considered as we briefly list in here although this area is largely unexplored. A pioneering

study was done in Ref.[57] (main results are summarized in Ref.[8]). The study was fo-

cused on the trapped fast ion excitation of some compressional mode characterized by the

magnetosonic polarization. The evolution of the CAE mode was considered for the initial

stage of the instability in which the EP velocity distribution function is given by the source

distribution, which represents a shifted Maxwellian distribution in velocities. Because of this

assumption, the considered case can be applicable to the initial stage of the discharge or to

when the plasma is heated quickly and alphas do not slow down. The authors concluded,

based on numerical results, that the thermal broadening of the α-particle source grows log-

arithmically with time. The considered scenario is not directly applicable to the burning

plasmas which are designed for slow evolutions, so that the α-particle distribution function

remains nearly slowing down at all times[58].

In another publication a set of quasilinear (QL) diffusion equations was considered[59]

for the case when the resonance between the oscillations and the fast ions is cyclotron

with or without contributions from the EP bounce resonances. The resonance overlap due

to Coulomb collisions was also included. The performed theoretical analysis is applicable

to the ICRH problem according to that paper and could be used in developing the ICE

nonlinear simulations.

Relatively recent studies of ICE in both linear and nonlinear regimes have been done

numerically [60, 61]. In those publications particle-in-cell simulations address ICE evolu-

tion using the hybrid model computations where ion drift motion is advanced numerically

while thermal electrons are treated as a fluid. Simulation allowed the authors to more ac-

curately model both stages of ICE in experiments. In particular, the frequency dependence

of expected CAE instabilities had a shape similar to those observed for ICE in JET DT

experiments.
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VI. DISCUSSION AND SUMMARY

We over-viewed the linear ICE theory in its present status. ICE theory seems to be

sufficiently well developed but needs to be developed further focusing on its potential appli-

cations to present day and future experiments on ICE and on its nonlinear aspects. Focusing

on experimental studies of ICE will be helpful to unify various existing theories.

It had been theoretically predicted, and now observed experimentally, that many CAE

instabilities with narrow spectrum peaks will overlap and form a broader peak near ion

cyclotron frequency harmonics. The main difference between more recent observations from

STs and those of earlier studies is that the frequency spectrum of observed CAE instabilities

in high toroidicity plasma is discrete, so that the properties of each mode can be and were

measured separately [17, 62, 63]. In the conventional tokamak ICE was found to consist

of the double peaks near each of the cyclotron harmonic as was shown in Ref.[26]. The

frequency shift of the instability of those peaks is argued to be due to different signs of the

poloidal mode numbers.

From previous studies it is known that due to high magnetic fields in conventional toka-

maks the ICE frequency spectrum is populated more densely by the unstable modes. This

makes the ST plasma very attractive for studying the properties of individual CAE mode

and for verifying the theoretical predictions. In particular, NSTX presents a unique op-

portunity to study mode numbers, structure, polarization, amplitude etc. We note that,

based on CAE observations in NSTX, one would expect that ICE spectrum contains more

complicated, fine structures [17, 21] than previously reported [6, 64] perhaps in plasmas with

intermediate values of the equilibrium magnetic fields. In addition one should look for the

ICE-like high harmonics of the ion cyclotron frequency features in the magnetic activity of

STs.

Utilizing ICE theory for EP diagnostics in burning plasma conditions is a challenge facing

the EP community. The linear theory as it is outlined above carries the most important

elements which is (i) the distribution function of energetic particles. At the moment it is

not clear how the distribution function can be extracted from the ICE signal. Dedicated

efforts in theory and tokamak experiments are required in order to address the problem.

AnoOther items of interest for the community include (ii) the diagnostics of the core plasma

and (iii) the phase-space engineering of the EP component of the plasma. BothNeither of
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these possibilities are not is discussed here.

Nevertheless in connection with the item (i) it seems reasonable to consider linear ICE

theory in which can viewed the CAE growth rates can be viewed as a set of EP distribution

function moments in velocity space (see Sec.IV). If we assume that the damping rates are

small and ICE signal amplitudes are proportional to the growth rates the information about

EP distribution function is contained in the growth rate expressions. They are complicated

but the very fact that ICE is excited tells us that resonant particles with the source of free

energy are present. The shape of ICE spectrum contains more detailed information about

the contributions of EP drive and dampings over the velocity space. At this point perhaps

the experimental study of ICE especially in STs should be in the focus of the research.

The dDeveloping an understanding of ICE for diagnostic purposes in burning plasma

conditions makes a perfect case for both the linear and nonlinear development of ICE theory.

This was considered in several recent publication, see Refs.[13], and in a recent review [16] in

which the summary and current understanding of ICE theory and experiments were included.

A pioneering observational analysis from JET by Cottrell pointed out at the proportionality

of the ICE signal to the neutron flux over six orders of magnitude of its amplitude[6]. Another

example was discussed recently on the ICE activity in DIII-D experiments in which its signals

were observed in clear correlation with the off-axis fishbones [65]. Such correlations serve

as a compelling case for using ICE for fusion products diagnostics (see Fig.15 f with the

Mirnov pick-up coil data in that paper).

A fFurther idea of interest in connections wtih the ICE problem is the anomalous ther-

mal ion heating, i.e. energy channeling, pointed out in Ref.[66]. In that paper, CAEs

were proposed as mediators for energy channeling from the fast ions to thermal ions. In

this mechanism, fast ions excite the CAE modes during NBI heating as demonstrated in

NSTX. The modes in turn stochastically transfer their wave energy to thermal plasma ions

due to the cyclotron damping. Recently, some dedicated studies use the special CAE to

KAW decoupling technique [67] to verify the theoretical predictions. Using model parame-

ters, the paper demonstrates the feasibility of this technique and states that more detailed

experimental observations of CAE internal amplitudes are required for validations of this

idea.

A similar idea of thermal ion anomalous energy diffusion and associated plasma heating

is behind the so-called “alpha channeling” [68] when certain plasma oscillations are excited
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by the external antennae. Recently, CAEs were suggested to explain strong fast ion energy

diffusion in TFTR [69] which was required for alpha channeling to work [56, 70]. This argu-

ment pointed to further experiments, even on existing devices, that might verify and further

extend this very unusual, but possibly extremely useful, alpha-channeling effect. Moreover,

the demonstration of the role played by these modes, together with their theoretical descrip-

tion, carries significant implications for how this effect might be extrapolated with confidence

to achieve significant improvements in the tokamak reactor concept. Since this mechanism

could mean a big reduction in the cost of electricity produced by fusion, the newly inspired

confidence in extrapolating these results may lead to important follow up experiments.

Finally the coupling of CAEs to KAW [37] accounts for anomalous electron thermal

transport observed in NSTX [71]. The deficit of heating thermal electrons could account for

up to 30−40% of the total NSTX electron transport. In the core of Ref.[37] explanation is the

heating power channeling by means of CAE/KAW coupling of thermal electrons. The short

wavelength KAW is prone to have a strong parallel electric field and thus very effectively

heat thermal electrons. The KAW was found by the HYM code to be localized poloidally

on HFS and is in local resonance with CAEs. The radial width of the KAW is comparable

to the beam ion Larmor radius. Although the coupling of CAEs and KAWs is demonstrated

there is no theoretical explanation of this effect beyond the heuristic consideration offered

in our review in Sec. (III).
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