PPPL-5295

High Performance Superconductors for Fusion Nuclear Science Facility

Y. Zhai, C. Kessel, C. Barth and C. Senatore

September 2016

Prepared for the U.S.Department of Energy under Contract DE-AC02-09CH11466.

Princeton Plasma Physics Laboratory Report Disclaimers

Full Legal Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party's use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Trademark Disclaimer

Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors.

PPPL Report Availability

Princeton Plasma Physics Laboratory:

http://www.pppl.gov/techreports.cfm

Office of Scientific and Technical Information (OSTI):

http://www.osti.gov/scitech/

Related Links:

U.S. Department of Energy

U.S. Department of Energy Office of Science

U.S. Department of Energy Office of Fusion Energy Sciences

High Performance Superconductors for Fusion Nuclear Science Facility

Y. Zhai, C. Kessel, C. Barth and C. Senatore

Abstract—High performance superconducting magnets play an important role in the design of the next step large-scale, highfield fusion reactors such as the Fusion Nuclear Science Facility (FNSF) and the Spherical Tokamak (ST) pilot plant beyond ITER, which is under construction in the South of France. Princeton Plasma Physics Laboratory (PPPL) is currently leading the design study of FNSF and the ST pilot plant study. ITER utilizes present-day state-of-the-art low temperature superconducting (LTS) magnet technology based on the cable-inconduit conductor design where over a thousand muitl-filament Nb₃Sn superconducting strands are twisted together to form a high current-carrying cable inserted into a steel jacket for coil windings. We present design options of the high performance superconductors in the winding pack for the FNSF toroidal field magnet system based on the toroidal field radial built from the system code. For the low temperature superconductor options, the advanced J_c Nb₃Sn RRP strands ($J_c > 1000$ A/mm² at 16 T, 4 K) from Oxford Superconducting Technology (OST) are under consideration. For the high temperature superconductor options, the rectangular shaped high current HTS cable made of stacked YBCO tapes will be considered to validate feasibility of TF coil winding pack design for the ST-FNSF magnets.

Index Terms—next-step fusion reactors, superconducting fusion magnet design, cable-in-conduit conductors, material radiation limits.

I. INTRODUCTION

 $T_{
m fusion}^{
m HE}$ Fusion Nuclear Science Facility (FNSF) is a nuclear fusion device to provide integrated fusion environment with reactor components [1-4]. The FNSF is the stepping stone to bridge the technical gaps between the International Thermonuclear Experimental Reactor (ITER), currently under construction in the south of France, and the demonstration power plant (DEMO) [5-9]. For the next-step fusion devices designed for long pulse or steady state plasma operation, copper magnets cannot be a long-term option due to cost of electricity. Previous ARIES studies [10-11] assumed the full material availability of the most promising low-temperature superconductor (LTS) and high-temperature superconductor (HTS): the advanced high critical current Nb₃Sn wires and the YBCO tapes. More optimistic radiation limits of the LTS and HTS conductors and the organic electrical insulations in coil winding packs were also assumed. To this end, the ARIES-RS [10] and ARIES-AT [11] studies are based on some ideal situations that are not practical choices for the FNSF magnets.

We present magnet design parameters for the FNSF missions and focus on the capability of high performance superconducting wires for the toroidal field (TF) coil winding pack design. We investigate influence of voids in the ITER-grade Bronze Nb₃Sn wires on local stress intensity and the wire irreversible strain limit. The material radiation limits in the unique plasma operating environment for FNSF magnets are considered in the design. We also present a HTS conductor design option for the FNSF-ST TF magnets.

Figure 1 presents a sector of the FNSF with TF inner and outer leg radial built from the system code. The design presented here is focused on the challenging toroidal field (TF) magnet system and the TF winding pack details. Figure 2 presents the pathway toward the commercial fusion power.

Fig. 1. A sector of the FNSF and its radial built from system code.

	FNSF	DEMO		Power Plant
Burning plasma	Pasma + nudear environment	Fusion pov	ver	Commercial

Fig. 2. Pathway toward the commercial fusion power.

II. FNSF MAGNET SYSTEM

A. Fusion power and magnet system

The fusion power scaling law, known to be $P_F \sim \beta^2 B^4$, where β is the plasma pressure to magnetic pressure ratio and B is the magnetic field at the plasma major radius, implies that for any economic fusion power, either improved plasma performance or increased toroidal magnetic field is required. For large-scale fusion magnet design, high current cables are

This work was supported in part by the U.S. Department of Energy under Grant No. DE-AC02-09CH11466. (Corresponding author: Y. Zhai.)

Y. Zhai and C. Kessel are with the Princeton Plasma Physics Laboratory, Princeton, NJ 08540 USA (e-mail: yzhai@pppl.gov).

C. Barth and C. Senatore are with the Department of Condensed Matter Physics, University of Geneva, Switzerland (e-mail: christian.barth@unige.ch).

necessary to limit large coil inductance and control terminal and ground voltages during safety discharges of magnets with high stored energy. The high peak magnetic field and tighter space for the coil winding pack requires high performance (advanced J_c) Nb₃Sn wires in the high current carrying cablein-conduit conductor (CICC) or the high temperature superconductors (HTS) as the magnet design options.

B. FNSF Design Parameters

The FNSF magnet design parameters are listed in Table 1 together with ITER and DEMO design parameters. FNSF is smaller than ITER as it is not focused on the fusion energy or power generated but more on the fusion nuclear environment needed for DEMO or pilot plant. Higher magnetic fields using high performance Nb₃Sn strands are used for the long-pulse near steady state operating requirements. In comparison, both the K-DEMO – more aggressive in high field (B) [5-6], and E-DEMO - more expensive in size [7-9] is larger than ITER.

C. Magnet Design Consideration

Large outboard TF legs are required for the horizontal maintenance of the FNSF. Compare to high field accelerator magnets in high energy physics, fusion magnet is inefficient in utilizing its winding pack space as a significant amount of structure support is required to ensure structural integrity of the TF coil [12]. The ratio between the maximum magnetic field on the TF inner leg and the plasma center field is factors of 2-3 higher than that in high field solenoids or dipole magnet of a few centimeters bore size. As a result, current density in state-of-the-art fusion TF coils such as that in ITER TF coil cross-section is only 15-17 A/mm² as compared to ~50 A/mm² winding pack current density in the series-connected hybrid solenoid magnet using cable-in-conduit conductors (CICCs). Improving winding pack current density via better conductor design and more optimized structural support will be a significant part of the magnet design for the next step fusion devices.

Magnet radiation shielding requirements were developed to minimize material radiation damage to the inboard TF magnet for its radial built to achieve protection by minimizing the peak dose to insulators and the peak fast neutron fluence to

TABLE I COMPARISON OF BASIC DESIGN PARAMETERS

Symbol	FNSF	ITER	K- DEMO	E- DEMO
major radius (m)	4.8	6.2	6.8	9
minor radius (m)	1.2	2	2.1	2.25
plasma current (MA)	8	15	12	14
plasma center $B_0(T)$	7.5	5.3	7.4	6.8
TF operating current (kA)	70	68	65.5	80-85
TF max field (T)	15.5	11.8	16	13.45
TF current density (A/mm ²)	27	17	25	15
TF Ampere-turns (MA)	12.5	9.11	15.72	19.8
No. of turns	179	134	240	232
No. of TF coils	16	18	16	16
Half of vertical force (MN)	355	206		
Centering force (MN)	920	403		1220
TF coil inductance (H)		18		51
TF discharge time constant		11-14		23
Fusion power (MW)	450	500	3,000	500

TABLE II Toroidal Field Radial Built			
Fusion Device	Radial built (Δ_{int}) (m)		
ITER	0.91		
FNSF	1.35		
K-DEMO	1.48		
E-DEMO	1.6		

superconductors [13]. Figure 3 presents the inboard and outboard radial built for FNSF. As shown in Table II, a total inboard sector toroidal width of \sim 1.35 m is needed for shielding the TF inner leg in long pulse, high neutron fluence operation.

III. TF WINDING PACK

Similar to ITER, the FNSF TF coil composition includes 65% cross-sectional area of the case support structure with a thickness of 7-8 cm in plasma side, and 35% cross-sectional area of coil winding pack, including 2% superconductor in 750 Nb₃Sn strands, 15% copper, 10% steel jacket, 3% insulator and 5% helium. The low activation jacket steel materials similar to JK2LB shall be selected. Jacket and liquid helium cooling is 29% and 14% of the winding pack area respectively. The TF winding pack design has roughly similar space allocated but more compact and efficient in using wire current carrying capacity by utilizing the high performance of advanced J_c strands. Table III presents Nb₃Sn and copper strand distribution and cabling pattern for the TF conductor. TF conductor is design at 37.5% of the wire J_c , where ITER uses 33% of the wire J_c Tables IV-V listed the composition of TF cross section and TF winding pack composition. Compared to ITER, lower fraction of Nb₃Sn is used as result of higher performance of the advanced J_c wires. Figures 4-5 present the winding pack composition of a slice through the inboard and outboard TF legs.

Fig. 4. Dimension of FNSF TF outer leg and the coil support structure.

Fig. 5. Dimension of TF inner leg winding pack and coil structure.

TABLE III TF Coil Winding Pack and Cabling Parameter

		FNSF		ITER
Op. current (kA))	70		68
No. of s/c strai	nds	750		900
No. of Cu strat	nds	405		522
Cabling pattern	((2+1cu)	x3x5x5+3cux2)x	5	((2+1cu)x3x5x5+3cux4)x6
Current/std (A)	93	$.3(37.5\% I_c)$		75.5 (33% I _c)
Op. field (T)		16.5		12

TABLE IV WINDING PACK COMPOSITION

WP composition	FNSF (%)	ITER (%)
s/c (Nb ₃ Sn)	6	17
copper	43	37
steel jacket	29	20
insulator	8	6
helium	14	20

TABLE V			
COMPOSITION OF TF CROSS SECTION			

TF composition	FNSF (%)	ITER (%)
s/c (Nb ₃ Sn)	2	6
copper	15	13
steel jacket	10	7
insulator	3	2
helium	5	7
Case support	65	65

A. Wire Selection

Steady improvement in J_c and mechanical performance has been achieved in past decades in Nb₃Sn wire development for accelerator magnet design in high energy physics [14-15]. It is thus advantageous to use high performance Nb₃Sn wires such as the Restack Rod Process (RRP) wires developed at Oxford Superconducting Technology (OST). Figure 6 presents the RRP wire cross section and 40 mm diameter CICC with jacket thickness of 3-5 mm for TF coils where Table VI listed wire functional specification for the conductor design.

B. Cable Design Consideration

For TF operation, high current cables are used to lower inductance for coil protection during fast discharges. The 70 kA CICC with 179 turns will provide Ampere-turns of 12.5 MA needed for TF fields. Significantly larger centering force compared to ITER TF coils, is mainly due to a higher field and closer to central axis of the TF inner leg.

Fig. 6. High performance advanced J_c wires and CICC for FNSF TF coils.

TABLE VI Function Specification for TF Strands

Process	Ti-Ternary RRP	Specification
Strand diam. (mm)	0.85	0.8-1
<i>I</i> _c (16 T, 4.2 K), A	>250	$J_{c} (16T, 4.2K) > 1000 A/mm^{2}$
N-value	>30	
Ds, um (sub-element diam.	<50	108/127 sub-elem.
Cu: non-cu ratio	1.2 +/-0.1	
RRR	>150	Residual resistivity ratio
Twist pitch, mm	19	

IV. CONDUCTOR RADIATION LIMITS

FNSF generates a high radiation environment identifying necessary steps to advance fusion nuclear science for DEMO or pilot power plants. Therefore, nuclear assessment including radiation limits of magnet materials is a critical aspect to ensure FNSF mission success. Recent radiation test in LTS and HTS conductors [18-22] indicates that YBCO is no better than binary Nb₃Sn but can be better (<40 K operation) than the ternary Nb₃Sn conductor. REBCO at $3x10^{22}$ n/m² radiation has over 50% I_c degradation for 64 K operation and at $2x10^{22}$ n/m² radiation, it has ~30% I_c degradation for 40 K operation and below 40 K operation is possible at $3x10^{22}$ n/m² level of neutron radiation. Table VII listed radiation limits for magnet materials for the winding pack design. The organic/inorganic hybrid insulation has the potential for higher neutron radiations.

MATERIAL RADIATION LIMITS				
materials Fast neutron fluence unit				
Nb ₃ Sn	5x10 ²²	n/m ³		
YBCO	$3x10^{22}$	n/m ³		
copper	$2x10^{21}$	n/m ³		
epoxy	10^{6}	Gy		
Polyimide/Kapton 10 ⁷ Gy				
CE/epoxy	$2x10^{8}$	Gy		
org/inorganic hybrid	5x10 ⁸	Gy		
Mgo	1011	Gy		

V. FINITE ELEMENT WIRE MODELING

Finite element (FE) modeling of Nb₃Sn wires were developed to understand correlation of stress intension factor as the result of initial voids after wire heat treatment and its measured mechanical property. Bronze wire FE model (with randomly distributed voids) under an axial loading is developed to quantify impact of the void shape and size to wire irreversible strain limit. Local stress concentration around the initial void tip as result of cool down is expected as shown in Fig. 8-9. The first principal stress shows the local tensile stress concentration around the void tips. The stress intensity factor is 0.5 MPa m^{0.5} for 45 degree angle voids. Existing Nb₃Sn fracture toughness measurement [16] indicates this brittle material has a fracture toughness of 1.1 MPa m^{0.5}.The level of stress intensity factors at void tips suggests that cracks

Fig. 8. Stress concertation around the voids inside filament bundles

 1^{st} principal stress after axial loading (>0.3% axial strain) Intensity factor may exceed threshold limit K_{th} - clear stress concentration

Fig. 9. Stress concertation around the voids inside filament bundles

may initiate at a relatively low level if wire in the coils is

under an applied axial mechanical strain. Voids parallel to the longitudinal axis have a significantly less impact on stress intensity since they are less likely to activate cracks. Table VI presents the likelihood correlation between the void tip stress concentration and the wire irreversible strain limit for the two types of ITER-type Bronze wires studied.

TABLE VI Potential Correlation - Void Tip Stress and Irreversible Limit					
Irreversible Average % of voids limit (%) size (mm) stress intensity					
Bruker EAS	0.86	2	low		
Bochvar & ChMP	0.8	3	low		
PIT (EAS #29992)	0.4	10000	high		

VI. HTS CONSIDERATION

Although FNSF is targeting a non-inductive plasma startup operation, a relatively small CS coil is still needed [1-3]. In addition to the Advanced Tokamak (AT) FNSF, an extension study of the Spherical Tokamak (ST) version of the FNSF has also been ongoing. Space for the TF coil winding pack is very much limited and improving winding pack current density is necessary. A concept of high current square shape HTS conductors of 25 layer YBCO tapes as shown in Figure 10 is proposed for design evaluation.

Fig. 10. High current HTS conductor of 25 layer YBCO tapes for FNSF

VII. CONCLUSION

FNSF is the stepping stone on the pathway to the next step fusion reactor such as DEMO and the pilot plant. It integrates fusion plasma environment with reactor components. Design of FNSF magnet system has unique challenge of high field in high nuclear radiation environment. TF magnet winding pack compositions, material radiation limits and global structural analysis based on a radial built for horizontal maintenance of FNSF are presented.

High temperature superconducting magnet is costly but offer higher field options for the need of small OH coils for FNSF. Research and development needs for FNSF magnets include wire and cable design option, joint for TF coils and better structural materials. The YBCO irradiation resistance is better than the high J_c ternary Nb₃Sn but less tolerant than the binary Nb₃Sn.

REFERENCES

- C. E. Kessel et al, "The Fusion Nuclear Science Facility (FNSF), the Critical Step in the Pathway to Fusion Energy", *Fusion Science and Technology*, vol.68, pp. 225-236, Sep. 2015.
- [2] J. E. Menard et al, "Fusion nuclear science facilities and pilot plants based on the spherical tokamak", *Nucl. Fusion*, 56, 106023, 2016.
- [3] R. D. Stambaugh et al, "Fusion Nuclear Science Facility Candidates", *Fusion Sci. Technol.*, 59, Feb., 2011.
- [4] Y. Zhai et al, "Magnet Design Considerations for Fusion Nuclear Science Facility", *IEEE Trans. Appl. Supercond.*, vol. 26, no.4, June 2016.
- [5] K. Kim et al, "Conceptual design study of the K-DEMO magnet system", *Fusion Eng. Des.*, 96-97, 281-285, 2015.
- [6] K. Kim et al, "Design concept of K-DEMO for near-term implementation", *Nucl. Fusion*, 55, 053027, 2015.
 [7] P. Bruzzone, "Pre-conceptual studies and R&D for DEMO
- [7] P. Bruzzone, "Pre-conceptual studies and R&D for DEMO superconducting magnets", *Fusion Eng. Des.*, 89, 1775-1778, 2014.
- [8] P. Bruzzone et al, "High current superconductors for DEMO", Fusion Eng. Des., 88, 1564-1568, 2013.
- [9] P. Bruzzone et al, "LTS and HTS high current conductor development for DEMO", *Fusion Eng. Des.*, 96-97, 77-82, 2015.
- [10] L. Bromberg et al, "ARIES-RS Magnet Systems", Fusion Eng. Des., 38, 159-188, 1997.
- [11] F. Dahlgren et al, "ARIES-AT Magnet Systems", *Fusion Eng. Des.*, 80, 139-160, 2006.
- [12] J.-L. Duchateau et al, "Conceptual integrated approach for the magnet system of a tokamak", *Fusion Eng. Des.*, 89, 2606-2620, 2014.
- [13] B. M. Madani and L. El-Guebaly, "Shielding and activation analysis for inboard region of Fess-FNSF design", University of Wisconsin Fusion Technology Institute Report, UWFDM-1423, November, 2015.
- [14] A. Ballarino and L. Bottura, "Targets for R&D on Nb₃Sn conductor for high energy physics", *IEEE Trans. Appl. Supercond.*, vol. 25, no.3, June 2015.
- [15] N. Cheggour et al, "Influence of Ti and Ta doping on the irreversible strain limit of ternary Nb₃Sn superconducting wires made by the restacked-rod process", *Supercond. Sci. Technol.*, vol.23, 052002, 2010.
- [16] L. Muzzi et al, "Cable-in-conduit conductors: lessons from the recent past for future developments with low and high temperature superconductors", *Supercond. Sci. Technol*, vol 28, 053001, 2015.
- [17] M.C. Jewell, "The effect of strand architecture on the fracture property of Nb3Sn composite wires", PhD Thesis, University of Wisconsin-Madison, 2008.
- [18] S. Hahn et al, "No-insulation multi-width winding technique for high temperature superconducting magnet", *Appl. Phys. Lett.*, 103, 173511, 2013.
- [19] T. Baumgartner et al, "Performance boost in industrial multi-filamentary Nb₃Sn wires due to radiation induced pinning centers", *Sci. Rep.* 5, 10236, 2015.
- [20] R. Prokopec et al, "Suitability of coated conductors for fusion magnets in view of their radiation response", *Supercond. Sci. Technol*, vol 29, 014005, 2015.
- [21] H. W. Weber, "private communication", Oct. 2015.
- [22] D. X. Fischer et al, "Effects of faster neutron irradiation on the critical currents in GdBCO coated conductor tapes", *HTS4Fusion Conductor Workshop*, Sep. 12, 2015.
- [23] K. Bittner-Rohrhofer et al, "Characterization of reactor irradiated organic and inorganic hybrid insulation systems for fusion magnets", *Advances in Cryogenic Engineering, Proceedings of the International Cryogenic Materials Conference – ICMC*, vol. 48, pp. 261-268, 2002.

Princeton Plasma Physics Laboratory Office of Reports and Publications

Managed by Princeton University

under contract with the U.S. Department of Energy (DE-AC02-09CH11466)

P.O. Box 451, Princeton, NJ 08543 Phone: 609-243-2245 Fax: 609-243-2751 E-mail: publications@pppl.gov Website: http://www.pppl.gov