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Computation of Resistive Instabilities

by Matched Asymptotic Expansions
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Z. R. Wang and J.-K. Park
Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, NJ 08540

(Dated: September 12, 2016)

We present a method for determining the linear resistive magnetohydrodynamic (MHD) stability
of an axisymmetric toroidal plasma, based on the method of matched asymptotic expansions. The
plasma is partitioned into a set of ideal MHD outer regions, connected through resistive MHD inner
regions about singular layers where q = m/n, with m and n toroidal mode numbers, respectively,
and q the safety factor. The outer regions satisfy the ideal MHD equations with zero-frequency,
which are identical to the Euler-Lagrange equations for minimizing the potential energy δW . The
solutions to these equations go to infinity at the singular surfaces. The inner regions satisfy the
equations of motion of resistive MHD with finite eigenvalue, resolving the singularity. Both outer
and inner regions are solved numerically by newly developed singular Galerkin methods, using
specialized basis functions. These solutions are matched asymptotically, providing a complex dis-
persion relation which is solved for global eigenvalues and eigenfunctions in full toroidal geometry.
The dispersion relation may have multiple complex unstable roots, which are found by advanced
root-finding methods. These methods are much faster and more robust than previous numerical
methods. The new methods are applicable to more challenging high-pressure and strongly-shaped
plasma equilibria and generalizable to more realistic inner region dynamics. In the thermonuclear
regime, where the outer and inner regions overlap, they are also much faster and more accurate than
straight-through methods, which treat the resistive MHD equations in the whole plasma volume.

PACS numbers: 52.30.Cv, 52.55.Fa

I. INTRODUCTION

The purpose of this paper is to describe numerical
methods for fast and accurate determination of the re-
sistive stability of axisymmetric toroidal plasmas by the
method of matched asymptotic expansions.

In assessing the quality of a magnetically confined
plasma equilibrium for magnetic fusion energy, the first
criterion is to determine whether it is stable to macro-
copic ideal magnetohydrodynamic (MHD) modes, since
they can have high growth rates, on the order of the in-
verse of the Alfvén time τA, and can cause the plasma
to rapidly degrade or disrupt. A recent paper presents a
very efficient method for testing this.[1]

In ideal MHD, the field and the fluid are constrained
to move together. If the equilibrium is stable to ideal
modes, then in the presence of a small but finite resis-
tivity, that constraint is relaxed, allowing the field and
the fluid to slip through each other, introducing a new
class of instabilities, the resistive modes, such as tearing
and resistive interchange.[2–6] The main effects of resis-
tivity and inertia are localized to the neighborhood of
the singular surfaces, where m = nq, with m and n the
poloidal and toroidal mode numbers, respectively, and q
the safety factor, or winding number, of the equilibrium
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magnetic field. Ideal perturbations become singular at
these surfaces. The singularity is resolved by allowing for
finite resistivity and inertia in an inner region around the
singular surface. For sufficiently high Lundquist num-
ber S ≡ τR/τA ≫ 1, with τR the much longer resistive
diffusion time, the width of the inner region is of order
S−1/3 ≪ 1 compared to equilibrium scale lengths, and
the modes grow on a time scale of order τAS

1/3, slower
than ideal modes but fast compared to τR. This can
cause rapid loss of particles and heat, as well as violent
disruptions. Typical values of S in the thermonuclear
regime are 106 − 109.
This discrepancy of length and time scales is the basis

for the method of matched asymptotic expansions, first
introduced in Ref. [2]. The plasma domain is partitioned
into a sequence of ideal MHD outer regions and resis-
tive MHD inner regions. The outer regions are simplified
by the neglect of resistivity and inertia. The inner re-
gions are simplified by the dominance of one resonant
harmonic, which reduces the dimensionality from 2 to 1
by helical symmetry. They match onto each other in a
region of overlap where both approximations are well-
satisfied. Coupling to a vacuum region surrounding the
plasma is easily included. Matching conditions provide
a dispersion relation which can be solved numerically for
multiple complex eigenvalues and eigenfunctions. Com-
putations of the inner region solutions and matching con-
ditions are much faster than the outer region solutions
and can be scanned over the parameters of the inner re-
gion at practically no cost. It is also straightforward to
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extend the inner region treatment to more realistic dy-
namics in both fluid and kinetic regimes.
The remainder of this paper is organized as follows.

Section II describes the equations governing the outer
ideal regions and an efficient numerical solution proce-
dure based on an improved implementation of the singu-
lar Galerkin method introduced in Refs. [5, 6]. Section III
describes the inner resistive region equations [3, 4] and an
efficient new solution procedure based on another singu-
lar Galerkin method. Section IV discusses the matching
conditions and dispersion relation and presents advanced
methods for finding roots of the dispersion in the complex
plane. Section V summarizes the results and discusses
future directions. The Appendix presents dimensionless
variables, scale factors, and dependent variables used in
the inner region.

II. OUTER IDEAL REGIONS

In this section we describe the equations governing the
outer regions and a numerical procedure for solving them
to extract matching data to couple them to the inner
regions.
The equations governing the outer region are the zero-

frequency ideal MHD equations of motion, which are
identical to the Euler-Lagrange equations for minimizing
the perturbed potential energy δW . These are derived in
Ref. [1] and given in Eq. (21) of that paper as

LΞ(ψ) ≡ −
(

FΞ
′ +KΞ

)′
+
(

K
†
Ξ

′ + GΞ
)

= 0, (1)

where ψ ∈ (0, 1) is the radial independent variable label-
ing flux surfaces; Ξ(ψ) is an unknown complex M -vector
of Fourier amplitudes of the perturbed radial displace-
ments; primes denote derivatives with respect to ψ; F(ψ),
K(ψ), and G(ψ) are known complexM×M matrices that
couple Fourier components and depend on equilibrium
quantities; and F and G are Hermitian. Detailed expres-
sions for F, K, and G are given in terms of equilibrium
quantities in the Appendix to Ref. [1]. Equation (1) has
singular points where m = nq, with m and n poloidal
and toroidal mode numbers, respectively, and q(ψ) the
safety factor, or winding numer, of the equilibrium mag-
netic field. Power series solutions are derived in Section
III of Ref. [1] for large and small resonant solutions.
In Ref. [1], devoted to ideal MHD stability, Eq. (1)

is treated as a complex 2Mth-order system of ordinary
differential equations in ψ, initializing Ξ to regular solu-
tions at the magnetic axis and integrating it outward to
the plasma-vacuum interface, using an adaptive ordinary
differential equation (ODE) solver,[7] and using bound-
ary conditions to cross the singular surfaces, derived from
the condition that |δW | < ∞. Mathematically, this has
the form of an initial value problem, even though the in-
dependent variable is ψ rather than time. Ideal stability
criteria are derived from the solutions to these equations.
The method is fast, accurate, and robust.

Unfortunately, attempts to adapt this numerical
method to the extraction of outer region matching data
for the method of matched asymptotic expansions have
proven unsuccessful. The matching requirements convert
the method from an initial value problem to a 2-point
boundary value problem, solved by a form of shooting
method, which is well-known to be numerically unstable.
To avoid this, we use a different numerical method to
solve Eq. (1), an improvement on the singular Galerkin
method introduced in Refs. [5, 6]. Whereas the large res-
onant solutions must be excluded in the ideal case in or-
der to make δW finite, it must be retained in the resistive
case in order to match to the inner regions. The vector
space of solutions is partitioned into a subspace for which
δW is finite and a complementary subspace containing
the large resonant solutions. The large resonant solu-
tions are treated as inhomogeneities driving responses in
the finite subspace. The finite subspace is expanded in
a set of basis functions, converting the problem to an
inhomogeneous matrix problem; see Eq. (4) beloow.
For any choice of Galerkin basis functions αi(ψ), i =

1, . . . , n, the unknown complex vector function u(ψ) in
the finite subspace is expanded as

u(ψ) =
n
∑

i=1

uiαi(ψ), (2)

where the ui are unknown amplitudes. We define the
scalar product

(u,v) ≡
∫ b

a

u
†
vdψ, (3)

where u
† is the Hermitian conjugate of u and a and b

are the end-points of the ψ interval. The L operator is
Hermitian with respect to this scalar product. To obtain
the Galerkin discretization of Eq. (1), we take its scalar
product with each of the basis functions αi(ψ) to obtain

Lijuj ≡
n
∑

j=1

[

(α′
i,Fα

′
j) + (α′

i,Kαj)

+(αi,K
†α′
j) + (αi,Gαj)

]

uj

=− (αi,Lv), i = 1, . . . , n,

(4)

where v(ψ) is an element of the complementary large res-
onant subspace. We have integrated the first two terms
by parts and taken the boundary contributions to vanish
for the case of fixed-boundary modes; see Eqs. (6) and
(7) below for free-boundary modes. Each component of
Lij is a constant M ×M complex matrix. If the basis
functions αi(ψ) have bounded support, then Eq. (4) is a
complex Hermitian banded matrix equation, which can
be solved efficiently with LAPACK routines ZPBTRF
and ZPBTRS.[8]
The implementation of this method in the PEST III

code[6] leaves room for improvement. For basis functions
αi(ψ), it uses linear finite elements (“tent functions”)
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on a noniform grid, packed to concentrate grid points in
the neighborhood of the singular surfaces while leaving
enough grid points to resolve the region between singular
surfaces. This choice of basis functions is motivated by
simplicity and completeness, which does not imply rapid
convergence. The grid packing scheme is difficult to con-
trol for adequate resolution everywhere. Finally, an ade-
quate treatment of the large resonant solutions requires
evaluation of the power series in Ref. [1], Eq. (47), to high
enough order to resolve the small resonant solution. The
treatment of equilibrium quantities by linear interpola-
tion does not allow for derivatives higher than first, lim-
iting their treatment to a Mercier index µ =

√
−DI ≤ 1,

which can be violated by equilibria with high β and low
shear q′. We have found three ways to improve on these
choices, all involving better selection of basis functions.

First, we replace linear finite elements with C1 Her-
mite cubics. This has two important effects: it replaces
2nd-order with 4th-order convergence; and it imposes C1

continuity on the nonresonant harmonics, required across
the singular surface to minimize the perturbed potential
energy. Careful graphical examination confirms that the
solutions have this property with Hermite cubics but not
with linear finite elements. The role of the Hermite cu-
bics is thus to improve the resolution of the nonresonant
solutions.

Second, we improve the convergence of the outer region
solutions by introducing the small resonant solution as an
extra basis function in the resonant grid cells, adjacent to
each singular surface. The Weierstrass convergence the-
orem states that polynomial approximation is uniformly
convergent for functions analytic on an interval. But in
the grid cells adjacent to the singular surfaces, the small
and large resonant solutions vary as fractional powers
of the distance from the singular surface, which are non-
analytic. To deal with this, we introduce special resonant
basis functions derived from the Frobenius power series
solutions. Furthermore, while all other scalar products
are evaluated by Gauss-Legendre quadrature, those in-
volving resonant basis functions are performed by adap-
tive integration.[7] In the solution of Eq. (4), the coeffi-
cients of the small resonant basis functions directly pro-
vide the matching data.

The layout of the grid cells in the neighborhood of a
singular surface ψR is illustrated in Fig. 1. The Nor-
mal grid cells contain 4 Hermite cubic polynomials. The
Resonant grid cells contain an additional basis func-
tion derived from the small resonant power series ex-
pansion. In the Extension grid cells, the function val-
ues and first derivatives of the small resonant basis func-
tions are matched to the two Hermite cubic polynomials
which vanish smoothly when connecting to the normal
cells. The use of extra basis functions in the Resonant
and Extension grid cells implies that the band width of
the matrices is nonuniform, which must be taken into
account in using the LAPACK routines.

Third, we use a better-controlled grid packing algo-

rithm,

x(ξ, λ) =
tanh aξ

λ
, a(λ) = ln

(

1 + λ

1− λ

)

, (5)

with x ∈ (−1, 1) the physical position of the grid cell at
logical position ξ ∈ (−1, 1) and λ ∈ (0, 1) an adjustable
parameter. The ratio of the grid density dx/dξ at x = ±1
to that at x = 0 is then P (λ) = 1 − λ2. We control
the packing algorithm by choosing P ∈ (0, 1), with λ =
(1 − P )1/2. P = 0 gives a uniform grid, while P →
1 gives a highly nonuniform grid, packed at ±1. Then
the interval (−1, 1) is linearly mapped onto the interval
between singular surfaces. A suitable choice of P allows
the grid to concentate near the singular surfaces while
still resolving the rest of the interval. There are two
extra grid cells adjacent to each side of each singular
layer, called resonant and extra, whose width is adjusted
separately, for the extra elements discussed above.
We note that the DCON code described in Section

VI of Ref. [1] is well-suited for this problem. Equilib-
rium data are represented as bicubic splines in straight-
fieldline coordinates ψ and θ. Their higher derivatives
therefore terminate after the third one. The resonant
power series solutions can be evaluated to arbitrarily high
order. All of the infrastructure developed in that code
is reused except one module, adaptive integration of the
ideal equations, which is supplemented by the Galerkin
method discussed here for resistive modes.
For fixed-boundary modes, we impose a boundary con-

dition Ξ(1) = 0. For free-boundary modes, the boundary
moves and perturbs the vacuum magnetic field. As in
the ideal case,[1] we use the VACUUM code to compute
a vacuum response matrix WV .[9, 10] The total energy
can then be expressed as a sum of plasma and vacuum
contributions,

δW =δWP + δWV

=
1

2

∫ 1

0

dψ
[

Ξ′†
ψFΞ

′
ψ + Ξ′†

ψKΞψ

+Ξ†
ψK

†Ξ′
ψ + Ξ†

ψGΞψ

]

+
1

2
Ξ(1)†WV Ξ(1)

(6)

Then the effect of the vacuum region is to add a term to
the outermost grid cell

Li,j → Li,j + (αi,WV δ(ψ − 1)αj) (7)

This can be interpreted as an extra weight which must
be moved in order to vary the boundary value of the
displacement.
The discretized outer region operator Li,j on the left-

hand side of Eq. (4), with or without the free-boundary
vacuum contributions in Eq. (7), is positive-definite if
and only if the equilibrium is stable to ideal MHD
modes. Evaluation of its lowest eigenvalues by the Lanc-
zos method could provide an alternative to the general-
ized Newcomb criterion described in Ref. [1].
Since the left-hand side of Eq. (4) is positive-definite

if the equilibrium is stable to ideal modes, it has no null
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Normal NormalResonant

ψ
R

Extension Extension

FIG. 1: Layout of Resonant, Extension, and Normal grid cells in the neighborhood of a singular surface ψR.

space and its inhomogeneous solutions are unique. On
the right-hand side (RHS) of this equation, theM -vector
v can be any element of the complementary subspace of
large resonant solutions. To span this space, we choose
a basis in which the amplitudes of all the large resonant
solutions on each side of each singular surface vanish ex-
cept one, whose amplitude is set to 1. Each of these basis
functions drives a response in all of the small resonant
solutions. By comparison, the basis chosen in Ref. [6] is
formed from linear combinations of our basis functions
which are even or odd about each singular surface. The
scalar product on the RHS is evaluated by applying the
operator L, Eq. (1), to the large resonant power series
solution derived in Section III of Ref. [1] and integrating
over the resonant and extra intervals. Each inhomogene-
ity drives responses in all of the small resonant ampli-
tudes on both sides of each singular surface, producing
a matrix of matching data. Figure 2 illustrates the basis
functions driven by large solutions to the left and right
of each singular surface.
The results of this procedure can be summarized as

follows. We define a set of outer region basis functions,

ui,k(ψ) ≡
n
∑

j=1

R
∑

l=L

[

δi,jδk,lu
−
j,l(ψ) + ∆′

i,k;j,lu
+
j,l(ψ)

]

. (8)

where i, j ∈ (1, n) label the singular surfaces, and k, l ∈
{L,R} label the left and right of each singular surface,
and superscript on u

± denotes the sign of the power given
in Eq. (48) of Ref. [1]. Each basis function contains one
large resonant solution u

−
j,l(ψ), as indicated by the Kro-

necker symbols δi,j and δk,l. Each large resonant solution
drives all of the small resonant solutions u+

j,l(ψ), as indi-

cated by the the complex coefficient matrix ∆′
i,k;j,l, the

results of the Galerkin solution. The global outer region
solution is expressed as a linear combination of these ba-
sis functions,

u(ψ) =

n
∑

i=1

R
∑

k=L

ci,kui,k(ψ) (9)

where the coefficients ci,k are determined by matching
conditions to the inner region solutions, as discussed in
Sections III and IV.
To verify our region singular Galerkin method, we

present a ∆′ benchmark between DCON code and
MARS-F code [11, 12] for a tokamak with circular cross

FIG. 2: Schematic drawing of the basis functions used to span
the complementary subspace of large resonant solutions u−

R

(a) and u−

L
(b). Each large solution u− drives responses in

all of the small solutions u+.

section and varying aspect ratio A and the βN value.
MARS-F solves the same resistive MHD equations as
DCON by a straight-through method, using the same
equations everywhere without partitioning the domain.
Since there is no separation between the outer and in-
ner regions when MARS-F solves tearing instability as
the eigenvalue problem, strong grid packing is required
to resolve the resistive layer and to obtain a converged
solution. In this benchmark, the equilibria includes only
the q = 2 singular surface. The ∆′ defined in Ref. [4–6]
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is compared between DCON and MARS-F at q = 2 sur-
face. The matrix ∆′

i,k;j,l defined in Eq. (8) can be use to

express the scalar quantity ∆′ as

∆′ = ∆′
1,R;1,R −∆′

1,L;1,R −∆′
1,R;1,L +∆′

1,L;1,L (10)

For the straight-through method used in MARS-F, ∆′

can be inferred from the separately developed inner layer
model [13, 14] using the converged eigenvalue solved by
MARS-F as the input. Figure 3 compares the values of
∆′ solved by DCON and MARS-F, where the vacuum
without the wall is included in the simulation. The com-
parison shows excellent agreement between the two codes
over a range of values of βN and A. We note a slight dif-
ference in the ∆′ values for the case A = 5 because the
inner layer model used by MARS-F has a large aspect
ratio assumption. This does not affect the global accu-
racy of MARS-F because its inner region estimate is used
only for comparison to DCON. The ∆′ value obtained by
DCON is more reliable because there is no large aspect
ratio assumption.

0.05 0.1 0.15 0.2 0.25 0.3
8

10

12

14

16

18

20

β
N

Δ
ʹ

 

 

DCON

MARS−F

A=20

A=15

A=10

A=5

FIG. 3: Benchmark of ∆′ between DCON (⋄) and MARS-F
(o) at q=2 surface. A sequence of tokamak equilibria with
circular cross section is used in n=1 mode simulation.

III. INNER RESISTIVE REGIONS

In this section we present a procedure for computing
the inner region matching data for the resistive region
equations derived in Ref. [3] from resistive MHD, using
scale factors, dimensionless parameters, and dependent

variables defined in the Appendix.

Ψxx −HΥX −Q(Ψ−XΞ) = 0,

Q2Ξxx −QX2Ξ +QXΨ+ (E + F )Υ +HΨX = 0,

QΥxx −X2Υ+XΨ

+Q2 [G (Ξ−Υ)−K (EΞ + FΥ+HΨX)] = 0,
(11)

with independent variable X ∈ (−∞,∞), the scaled dis-
tance from the singular surface; and eigenvalue Q, the
scaled complex growth rate. The quantities E, F , G,
H, and K are real, constant, dimensionless parameters
characterizing the equilibrium in the neighborhood of the
singular surface. The scaled dependent variable Ψ can be
interpreted as either the normal component of the per-
turbed magnetic field or the perturbed parallel vector
potential. The scaled dependent variable Ξ can be inter-
preted as either the normal component of the plasma dis-
placement or the perturbed electrostatic potential. The
scaled dependent variable Υ can be interpreted as either
the perturbed plasma pressure or the perturbed parallel
magnetic field. The first equation is the parallel com-
ponent of Ohm’s law, the second is the quasineutrality
equation, and the third is the adiabatic pressure law.
The equations are derived in Ref. [3] by a formal small
parameter expansion in the resistive layer width. These
dependent variables are only the resonant components,
with m = nq at the singular surfaces; the nonresonant
components are small and ignored in the inner region.
We use these equations as an example of a consistent in-
ner region model to illustrate the method of computing
inner region matching data. Later manuscripts will use
the same method for more general and realistic physical
models.
In Ref. [3], Eqs. (11) are solved analytically, using a

subsidiary small parameter expansion with scaled growth
rate |Q| ≪ 1. In Ref. [4, 15], they are solved numerically
by four different methods without a subsidiary expansion,
allowingQ ∼ 1. All of these methods fail in the limit asQ
gets large, for reasons explained below. Here we derive a
method which remains valid for larger values of Q, which
we find to be required for realistic equilibrium conditions.
As in Ref. [4], we express these equations in matrix

form,

AΨ
′′ + BΨ

′ + CΨ = 0, (12)

with dependent variable 3-vector

Ψ ≡





Ψ
Ξ
Υ



 , (13)

and complex 3× 3 matrices

A =





1 0 0
0 Q2 0
0 0 Q



 , B =





0 0 −H
H 0 0

−KHQ2 0 0



 , (14)
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C =





−Q QX 0
QX −Qx2 E + F
X (G−KE)Q2 −X2 − (G+KF )Q2



 .

(15)
In Appendices A and B of Ref. [4], analytical expres-

sions are derived for the large-X behavior of the solutions
of their Eq. (1), equivalent to our Eq. (12). There are two
power-like solutions, which match onto the corresponding
outer region solutions discussed in Section II; two expo-
nentially large solutions, which are excluded by boundary
conditions; and two exponentially small solutions, which
are ignored. We present an equivalent but more compact
derivation of the power-like solutions, which elucidates
the nature of these solutions. The transformation matri-
ces R and S defined below are equivalent to component-
wise tranformations used in Appendix A of Ref. [4]. Then
we present a new numerical procedure for solving Eq. (12)
for the inner region matching conditions which requires
detailed knowledge of only the power series solutions.
Before seeking a power-series solution, we balance

Eq. (12) with a generalization of the shearing transforma-
tion used in Refs. [1, 4, 16], constituting a formal change
of dependent variables,

Ψ = Ru, R ≡





X 0 0
0 1 0
0 0 1



 . (16)

followed by multiplication of Eq. 12 by a second matrix,

S ≡





1/X 0 0
X 1 0
0 0 1/X



 , (17)

transforming it to

Lu ≡ Āu
′′ + B̄u

′ + C̄u = 0, (18)

with

Ā = SAR =





1 0 0
X2 Q2 0
0 0 Q/X2



 , B̄ = S(2AR′ + BR) =





2/X 0 −H/X
(2 +H)X 0 −HX
−HKQ2/X 0 0



 , (19)

C̄ = S(AR′′ + BR
′ + CR) =





−Q Q 0
H 0 E + F

1−KHQ2/X2 (G−KE)Q2/X2 −1− (G+KF )Q2/X2



 . (20)

At large X, the coefficient matrices can be expanded as

Ā = X2
(

Ā0 + Ā1X
−2 + Ā2X

−4
)

, B̄ = X
(

B̄0 + B̄1X
−2
)

, C̄ = C̄0 + C̄1X
−2. (21)

We now seek descending power series solutions of the form

u = Xµ
∞
∑

j=0

X−2j
uj , u

′ = Xµ−1
∞
∑

j=0

X−2j(µ− 2j)uj , u
′′ = Xµ−2

∞
∑

j=0

X−2j(µ− 2j)(µ− 2j − 1)uj . (22)

Substituting Eqs. (21) and (22) into Eq. (18), we obtain

X−µ
Lu ≡

∞
∑

j=0

X−2j
{[

(µ− 2j)(µ− 2j − 1)Ā0 + (µ− 2j)B̄0 + C̄0

]

uj

+
[

(µ− 2j + 2)(µ− 2j + 1)Ā1 + (µ− 2j + 2)B̄1 + C̄1

]

uj−1

+ (µ− 2j + 4)(µ− 2j + 3)Ā2uj−2

}

= 0.

(23)

This equation is solved order by order.

At zeroth order we obtain a matrix eigenvalue equa-
tion,

L0 ≡ µ(µ− 1)Ā0 + µB̄0 + C̄0, L0u0 = 0. (24)

The condition for the existence of a nontrivial solution is

detL0 = Q
(

µ2 + µ+ E + F +H
)

= 0. (25)

This is the indicial equation for the power µ,

µ = −1

2
±
√

−DI , DI = E + F +H − 1

4
, (26)
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showing that the large-X behavior of the inner region
solutions matches onto the small-x behavior of the power-
like outer region solutions given in Ref. [1], Eq. (48).
The eigenvector corresponding to both values of µ, the

solution to Eq. (24), is

u0 =





1
1
1



 . (27)

The degeneracy between the two solutions is resolved at
first order. Two large and two small exponential solu-
tions could be found by multiplying Eq. (22) by expo-
nential factors, but we do not need them.
The first-order terms in Eq. (23) give

[

(µ− 2)(µ− 3)Ā0 + (µ− 2)B̄0 + C̄0

]

u1

= −
[

µ(µ− 1)Ā1 + µB̄1 + C̄1

]

u0.
(28)

The properties of this equation account for a limit on
the finite difference method described in Section IV of
Ref. [4]. The matrix C̄1 on the right-hand side of Eq. (28)
contains the equilibrium parameters G and K multiply-
ing the scaled growth rate factor Q2. The small param-
eter ordering used in Ref. [3] treats β ≡ 2µ0P/B

2 of
order unity. G and K scale as 1/β, getting large at low
β, which is further enhanced by Q2 ≫ 1. In order to
impose the large-X boundary conditions, excluding the
exponentially large solutions and computing the inner re-
gion matching data, it is necessary to extend the numeri-
cal domain to a sufficiently large X that the zeroth order
terms in Eq. (22) are larger than the first-order terms.
For low β and largeQ, this value ofX can cause the expo-
nentially large factor to overflow the floating point limit
of IEEE double-precision arithmetic. The other methods
of solution presented in Refs. [4, 15] suffer from different
manifestations of the same problem.
Furthermore, these large first-order terms can broaden

the inner region enough to cause a failure of overlap be-
tween the inner and outer region solutions, a prerequisite
for the validity of the method of matched asymptotic ex-
pansions. While the scaling of the inner region variable
X ∼ S−1/3 ensures that overlap can be achieved at suf-
ficiently high Lundquist number S, that value of S may
exceed the realistic range of S found even at thermonu-
clear conditions. This issue is discussed further in the
next section.
We address these issues in two ways. First, we avoid

the need to compute the exponential solutions by re-
placing the finite difference method by a finite element
method, using special power-like resonant elements in the
outermost grid cells, similar to our treatment of the outer
region in Section II. This method remains valid to larger
values of G, K, and Q than previous methods, although
it eventually fails for similar reasons. Second, we monitor
the overlap and exclude equilibria with sufficiently low β
to cause of a failure of overlap. For such equilibria, a
different inner region ordering is appropriate. Since our

goal in this paper is to illustrate methods, we leave that
for another effort.
For j ≥ 2, the higher-order terms of Eq. (23) take the

form of a 3-term recursion relation,

[

(µ− 2j)(µ− 2j − 1)Ā0 + (µ− 2j)B̄0 + C̄0

]

uj

= −
[

(µ− 2j + 2)(µ− 2j + 1)Ā1

+ (µ− 2j + 2)B̄1 + C̄1

]

uj−1

− (µ− 2j + 4)(µ− 2j + 3)Ā2uj−2,

(29)

suitable for coding up to arbitrarily high order. The de-
scending power series solutions in Eq. (22) are asymptotic
rather than convergent; there is an optimum order, in-
creasing with X, at which to truncate the series before
the error increases with j.

The boundary conditions on Eq. (12) are that the large
exponential solutions vanish for X → ±∞. The equation
has reflectional symmetry about X = 0. There are two
independent solutions, one with even Ξ and Υ and odd
Ψ, the other with odd Ξ and Υ and even Ψ. Each of these
solutions contributes a quantity ∆′ for matching to the
outer region, as discussed in the next section. We solve
for each ∆′ on the half-domain 0 ≤ X < ∞, imposing
even and odd boundary conditions at X = 0. Then we
must exclude the two large exponential solutions as X →
∞.
To accomplish this, we develop a variant on the sin-

gular Galerkin method used in Section II. We define a
space of solutions with finite L2 norm,

∫ ∞

−∞

dX|Ξ(X)|2 <∞. (30)

This is satisfied by any Ξ(X) excluding the exponentially
large solutions and the large power-like solution, with the
plus sign in Eq. (26). We expand the elements of this
space in a set of basis functions,

Ψ(X) =

n
∑

j=0

Ψjαj(X), (31)

then take the scalar product of Eq. (12) with each basis
function to obtain

n
∑

j=0

[

−(α′
i,Aα

′
j) + (αi,Bjα

′
j) + (αi,Cαj)

]

Ψj

= −(αi,Av
′′ + Bv

′ + Cv)

(32)

where we have integrated by parts on the first term, as-
suming the boundary terms vanish, and making use of
the fact that A is independent of X. The right-hand side
contains any element v of the complementary subspace
containing the large resonant solution, with the plus sign
in Eq. (26).
The basis functions αi(X) are chosen as follows. We

start with a set of C1 Hermite cubic basis functions on
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a packed grid with 0 ≤ X ≤ Xmax. The grid packing
algorithm for the inner region is defined by

X(ξ, λ) = ln

(

1 + λξ

1− λξ

)/

ln

(

1 + λ

1− λ

)

(33)

which gives a ratio of grid density at the center to that at
the edge P (λ) = 1− λ2. Whereas the packing algorithm
defined in Eq. (5) creates a denser grid at x = ±1, this
one creates a denser grid at X = 0. P and Xmax are
treated as adjustable parameters in a convergence study.
Boundary conditions at X = 0 are imposed by excluding
either the even or the odd basis functions in the first
interval. As in the 4th-order finite difference method of
Ref. [4], the Hermite cubics give 4th-order convergence.
In the last grid cell, bounded by Xmax, we replace the

Hermite basis functions by the small resonant power se-
ries solution in Eq. (22), with the minus sign in Eq. (26).
The large resonant solution, with the plus sign, is used
to evaluate v on the right-hand side of Eq. (32). In the
next to last grid cell, these resonant solutions are con-
nected to Hermite cubics, which brings them smoothly
to zero. The coefficients of the small resonant solution
provide the inner region matching data.
Most of the scalar products on the left-hand side of

Eq. (32) are evaluated by Gauss-Legendre quadrature.
Those involving the descending power series solutions are
non-analytic and therefore require adaptive integration
with LSODE.[7]. The complex banded linear system in
Eq. (32) is solved with LAPACK routines ZGBTRF and
ZGBTRS.[8]
The finite-norm subspace defined by Eq. (30) contains

the power-like solution with the minus sign in Eq. (26),
appearing on the left-hand side of Eq. (32), while the
inhomogeneity containing v in the complementary large
subspace, is proportional to the power with the plus sign.
Once this equation is discretized, we can reverse the roles
of the two solutions and use the small resonant solution
with the minus sign to drive a response in the large reso-
nant solution with the plus sign. This is useful for match-
ing to the outer region, where the plus sign denotes the
small solution and the minus sign denotes to big solution,
as in Eq. (8). It allows us to construct an inner region
basis that more easily matches onto the outer region ba-
sis.
Figure 4 shows solutions for odd and even matching

data ∆± vs. scaled growth rate Q. This corresponds to
Figure 2 of Ref. [4], but with more realistic parameters.
The numerical method presented here remains accurate
to Q = 3× 103, as compared to Q < 10 for the methods
described in Ref. [4], for the reasons explained in the
discussion of Eq. (28).
As for the outer region solutions we conclude this sec-

tion with a general form for the inner region solutions.
We define even and odd basis functions

vi,±(x) ≡ v
−
i,±(x) + ∆i,±(s)v

+
i,±(x) = ±vi,±(−x) (34)

and construct the full inner region solution as a linear

-4 -3 -2 -1 0 1 2 3

-1
.5

-1
.0

-0
.5

0
.0

0
.5

1
.0

1
.5

log10 Q

Δ
-

-4 -3 -2 -1 0 1 2 3

-6
-4

-2
0

2

log10 Q

lo
g

1
0
 |Δ

+
|

FIG. 4: Solutions for odd (top) and even (bottom) matching
data ∆±, using parameters for the q = 3 surface of a D-IIID
tokamak equilibrium vs. scaled growth rate Q, varying DR

from -0.1 (light green) to 0.1 (red). This is for realistic values
for a D-IIID equilibrium: F = 1.074×10−6, H = 1.801×10−4,
M = 15.198, G = 143.9, K = 5.191× 105.

combination of these basis functions,

vi(x) = di,+vi,+(x) + di,−vi,−(x) (35)

with the expansion coefficients di,± determined by
matching to the outer region solutions, as described in
the next section.
Note that we express the basis functions and linear

combination in terms of the outer region displacement
x and global complex growth rate s, while the inner re-
gion equations discussed above depend on the scaled dis-
placement X and scaled growth Q, related to the global
quantities through the scale factors X0 and Q0 defined
in Eqs. (A.14) and Eqs. (A.15). The inner region solu-
tions are computed for each singular surface by a code
DELTAC, which takes global quantities and local scale
factors as input, transforms them to scaled local quanti-
ties, then returns output rescaled to global values. There
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may be multiple singular surfaces, each with its own scale
factors. Only the global quantities can be matched, as
discussed in the next section.
The computation time required for the inner region

equations is much less than for the outer region, by a
factor of order 100. A key advantage of the asymptotic
matching method is that the parameters of the inner re-
gion solution can be scanned over many values, for root-
finding and varying physical conditions, without recom-
puting the outer region solution.

IV. MATCHING CONDITIONS

In Section II, we describe a procedure for accurately
computing the outer region matching data, culminating
in Eqs. (8) and (9). In Section III, we present a proce-
dure for accurately computing the inner region matching
data, culminating in Eqs. (34) and (35). In this section,
we show how to use these matching data to assemble a
global solution, we derive a dispersion relation for the
global complex growth rate, and we describe numerical
procedures for finding roots of this dispersion relation.
On each side of each singular surface, the plus and mi-

nus inner and outer region solutions must match onto
each other. The matching conditions for the minus so-
lutions on the left and right of the jth singular surface
are

cj,L = dj,+ − dj,−, cj,R = dj,+ + dj,− (36)

while the matching conditions for plus solutions on the
left and the right are

n
∑

i=1

R
∑

k=L

ci,k∆
′
i,k;j,L =dj,+∆j,+(s)− dj,−∆j,−(s)

n
∑

i=1

R
∑

k=L

ci,k∆
′
i,k;j,R =dj,+∆j,+(s) + dj,−∆j,−(s),

(37)

where we note that the inner region quantities depend
upon the global complex growth rate while the outer re-
gion quantities do not.
These matching conditions can be expressed in matrix

form. We define a column 2n-vector c of all the unknown
expansion coefficients,

c ≡ (c1L, d1+, d1−, c1R, · · · , cnL, dn+, dn−, cnR)T . (38)

Then the matching conditions, Eqs. (36) and (37) can be
combined into a homogeneous matrix equation,

M(s)c = 0. (39)

The condition for the existence of a nontrivial solution is
then the global dispersion relation

detM(s) = 0, (40)

where s is the complex growth rate.

There is an important point to note about require-
ments for overlap of the inner and outer region solutions,
as discussed in the previous section. Both the outer re-
gion power series, given in Ref. [1], Section III, and the
inner region power series, given in Eq. (22) et seq. of this
paper, can be carried to high order, which accelerates
convergence of the matching data. But the higher-order
terms in the two power series represent different physics.
The outer region equations contain only ideal MHD, but
more complex geometry, including nonresonant terms.
The inner region equations treat only the resonant terms
but include inertial and resistive effects as well as ideal
MHD. Matching occurs only for the zeroth-order terms
of both power series, which vary with the same powers of
the distance x from the singular surface. In order for the
matching method to be valid, there must be a region of
overlap where both the inner and outer region solutions
are well-represented by the zeroth-order terms in their
respective power series. Because the inner region scale
factor X0, Eq. (A.15), scales as S

−1/3, there is always a
regime of adequate overlap for large enough S, but this
can require values of S even larger than in thermonuclear
plasmas. It is important to monitor the overlap in order
to know when it is sufficient.

Equation (40) requires that we find the complex roots
of a complex function. Roots in the complex half-plane
ℜs > 0 represent instabilities. Once a root has been
found, the corresponding eigenfunction can be computed
as a solution to Eq. (39). There may be multiple roots
with different growth rates and eigenfunctions. It is im-
portant to find all unstable roots. While the most un-
stable root, with the largest growth rate ℜs, may be the
most important, other roots with smaller growth rates
may also play a role in the nonlinear evolution of the
plasma, which is beyond the scope of this paper. It
should be noted that this procedure is also capable of
finding stable roots.

We use two numerical methods to locate roots. If we
can find a good initial iterate s0, sufficiently close to a
root, then we can use a complex secant method to locate
the root. Once a root s0 has been found, then we can
search for other roots by using deflation. The dispersion
function detM(s) is divided by s− s0, effectively remov-
ing that root and allowing the secant iteration to search
elsewhere.

A second method uses a generalization of the Nyquist
method described in Ref. [3]. A contour in the complex s
plane is defined which encircles the unstable half plane,
avoiding poles at 0 and ∞. The image of this contour is
then plotted in the complex detM plane. The number of
times the image contour encircles the origin is the number
of zeroes minus the number of poles. The generalization
is that the innermost and outermost semicircles of the s
contour may be varied over a range of values, allowing
better localization of the roots and poles. The results of
this procedure can then be used as initial iterates for the
first procedure.

The solutions in the outer and inner regions are
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matched with the matching matrix M. Figure 5 illus-
trates how the resonant harmonic of the perturbed ra-
dial displacement matches between the outer and inner
regions at the q = 2 surface. The equilibrium used in
this simulation has q0 = 1.05, qa = 2.31, βN = 0.77, and
A = 2.73, with the q = 2 surface located at ψ = 0.94766.
Figure 5 shows good overlap between the inner and outer
region solutions where both solutions are valid.

FIG. 5: Schematic of solution overlap between the outer and
inner regions. The resonant harmonic of perturbed radial
displacement u is plotted for both outer and inner regions
respectively.

A comparison of growth rate γ between DCON and
MARS-F for the n = 1 tearing mode is shown in figure 6.
The equilibrium used in this comparison is the same as
in figure 5. This shows a very good quantitative agree-
ment of growth rate for both real and imaginary parts.
With increasing Lundquist number S, both codes indi-
cate that the mode approaches marginal stability. Note
that the narrower resistive layer at high S is more dif-
ficult to resolve in MARS-F, which solves the resistive
MHD equation in whole plasma volume and relies on grid
packing for resolution. Since DCON only needs to solve
the outer region once and the inner layer computation is
much faster, this greatly reduces the computational effort
required for DCON, allowing for very efficient parameter
scans with fine resolution, as shown in figure 6. There-
fore, DCON is very useful to explore parameter space for
the tearing instability. This is indicated in the figure by
the much larger number of points for DCON than for
MARS-F.

A forthcoming manuscript will present more extensive
verification against the MARS-F code for a wider variety
of equilibria.
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FIG. 6: Comparison of growth rates between DCON and
MARS-F (’o’). The real and imaginary parts of growth rate
are presented by the solid line and the doted line respectively,
where the equilibrium with q0 = 1.05, qa = 2.31, βN = 0.77
and A = 2.73 is used in the simulation.

V. DISCUSSION AND CONCLUSIONS

We have presented a procedure based on the method
of matched asymptotic expansions for determining the
resistive stability of axisymmetric toroidal plasmas. A
singular Galerkin method is developed for solution of the
ideal MHDmarginal equations, the Euler-Lagrange equa-
tions for minimizing the energy δW , provides outer re-
gion matching data. Another singular Galerkin method
applied to the inner region equations of Ref. [3] provides
inner matching data for each of the singular surfaces in
the plasma. The inner and outer matching data are com-
bined into a dispersion relation, which is solved by com-
plex root-finding methods. This method provides very
fast and accurate solutions for realistic equilibria in the
regime of large Lundquist number S.

It is essential to verify the results of this procedure
against results obtained by straight-through methods,
such as the MARS code. [17] This will be the subject
of another manuscript.

Two publications [15, 18] solve the outer and inner
region problems, respectively, by extracting the leading-
order power of the large resonant solution from the res-
onant displacement prior to solving for the remaining
factors numerically. This method is related to the sin-
gular Galerkin method used here, but with important
differences. We use both the large and small resonant
solutions to high order as extra Galerkin basis functions,
rather than extracting the leading-order power as a fac-
tor. For Mercier index µ > 1, higher-order terms in
the large resonant power series are required to accurately
compute the small resonant solution. Furthermore, even
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after extraction of the leading fractional power, the re-
maining functions are non-analytic in the neighborhood
of the singular point, and therefore subject to the Weier-
strass approximation theorem discussed in section II. A
detailed comparison between our methods and those of
Refs. [15, 18] is beyond the scope of this paper.
The methods presented here use simple resistive MHD

to model the inner region. A more complete fluid model
of the inner region can include many additional terms
in the Braginskii fluid equations,[19] such as anisotropic
viscosity, thermal conductivity, electrical conductivity,
and sheared equilibrium rotation, appropriate for the
regime of short mean free path. In the regime of long
mean free path, equations for linear neoclassical tearing
modes have been derived.[20] All of these treatments are
amenable to the inner region singular Galerkin method
developed in Section III. They will be the subjects of
future manuscripts.
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Appendix: Dimensionless Parameters, Scale Factors,

and Dependent Variables

In this appendix we give expressions for inner region
dimensionless parameters, scale factors, and dependent
variables local to each singular layer. These expressions
are equivalent to those defined in Ref. [3], but are given
here in terms of more current notation and for arbitrary
straight-fieldline coordinate systems.
The equilibrium magnetic field is given in two forms,

in standard axisymmetric form,

B = f∇φ+ χ′(ψ)∇φ×∇ψ, (A.1)

where φ is the polar angle about the axis of symmetry,
and in terms of straight-fieldline coordinates

B = χ′(ψ)[∇ζ − q(ψ)∇θ]×∇ψ, (A.2)

where the specification that q is a function of ψ only is the
defining feature of straight-fieldline coordinates ψ, θ, ζ,
where θ and ζ increase by 2π in going around the short
way and the long way, respectively, with the radial vari-
able ψ labeling flux surfaces and normalized to go from
0 at the magnetic axis to 1 at the plasma-vacuum inter-
face. Primes denote derivatives with respect to ψ. The
Jacobian of the coordinate system is given by

J (ψ, θ) ≡ (∇ψ ×∇θ · ∇ζ)−1. (A.3)

The integral of J over a flux surface is given by

∮

dθ

∮

dζJ (ψ, θ) = V ′(ψ), (A.4)

where V (ψ) is the volume enclosed within a flux surface.
The equilibrium pressure P (ψ) is isotropic and constant
along the magnetic field. The equilibrium current satis-
fies µ0J = ∇ × B and J × B = ∇P , which yields the
Grad-Shafranov equation,

∆∗χ ≡ R2∇ ·
(

1

R2
∇χ
)

= −4π2

χ′
(ff ′ + µ0R

2P ′) (A.5)

A singular surface at ψ = ψ0 satisfies the truncated
Taylor expansion

q(ψ) = q0 + q′0(ψ − ψ0) + · · · , (A.6)

with q0 = m/n, m and n integers, and q′0 6= 0. The
fieldline average of any function F(ψ, θ) over the singular
surface is defined by

〈F〉 ≡
∮

F(ψ, θ)J (ψ, θ)dθ
∮

J (ψ, θ)dθ
. (A.7)

The following dimensionless parameters are used in
Eq. (11) and elsewhere:

E ≡ P ′V ′

(4π2χ′2q′0)
2

〈

B2

|∇ψ|2
〉(

4π2χ′q′0f

〈B2〉 +
χ′′V ′ − V ′′χ′

χ′

)

,

F ≡
(

P ′V ′2

4π2χ′2q′0

)2〈
B2

|∇ψ|2
〉

×
[

〈

1

B2

〉

+

(

f

χ′

)2
(

〈

1

B2|∇ψ|2
〉

−
〈

1/|∇ψ|2
〉2

〈B2/|∇ψ|2〉

)]

,

H ≡ P ′V ′f

4π2χ′3q′0

〈

B2

|∇ψ|2
〉

(

〈

1/|∇ψ|2
〉

〈B2/|∇ψ|2〉 −
1

〈B2〉

)

,

M ≡
〈

B2

|∇ψ|2
〉

[

〈 |∇ψ|2
B2

〉

+

(

f

χ′

)2(〈
1

B2

〉

− 1

〈B2〉

)

]

,

G ≡
〈

B2
〉

MγP
, K ≡

(

4π2χ′2q′0
P ′V ′

)2 〈

B2
〉

M 〈B2/|∇ψ|2〉 ,
(A.8)

with F , G, K, and M positive-definite. There are two
important quantities derived from these parameters:

DI ≡ E + F +H − 1/4, (A.9)

which occurs in the power-like behavior defined in
Eq. (26) and indicates local ideal Mercier interchange
instability for DI > 0;[1] and

DR ≡ E + F +H2 = DI + (H − 1/2)
2
, (A.10)

which indicates local resistive interchange instability for
DR > 0.[3]
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To express the inner region equations in dimensionless
form, we define scale factors X0 for displacement and Q0

for growth rate. Let x ≡ ψ−ψ0 be the displacement from
the singular surface in the radial flux coordinate and let
s be the complex growth rate. Then we define

x = X0X, s = Q0Q (A.11)

with X the dimensionless scaled distance from the sin-
gular surface and Q a dimensionless growth rate, both
scaled to the behavior of the resistive interchange. The
scale factors satisfy two equations characterizing the
mode: a diffusive scaling law

Q0X
2
0 =

η
〈

B2
〉

〈B2/|∇ψ|2〉 ≡ 1

τR
; (A.12)

with ρ the plasma mass density, and an inertial scaling
law

Q2
0

X2
0

=
1

ρM

(

4π2nχ′q′0
V ′

)2

≡ 1

τ2A
. (A.13)

with η the plasma resistivity. From these we obtain the
following expressions,

Q0 =

(

η
〈

B2
〉

〈B2/|∇ψ|2〉

)1/3 [

1

ρM

(

4π2nχ′q′

V ′

)2
]1/3

,

(A.14)

X0 =

(

η
〈

B2
〉

〈B2/|∇ψ|2〉

)1/3 [

1

ρM

(

4π2nχ′q′

V ′

)2
]−1/6

.

(A.15)
Then we define the local Lundquist number

S ≡ τR
τA

≫ 1, Q0τA = X0 = S−1/3 ≪ 1. (A.16)

Finally, we define the three dimensionless dependent
variables used in Eq. (11), in two equivalent ways, the
first corresponding to the definitions in Ref. [3], the sec-
ond in a representation that uses electrostatic potential
ϕ and vector potential A,

Ψ ≡ V ′

4π2inχ′q′0X0
〈b · ∇ψ〉(1)

=− V ′

4π2χ′q′0X0
〈A · (∇ζ − q0∇θ)×∇ψ〉(1) ,

Ξ ≡〈ξ · ∇ψ〉(0) = − in

sχ′
ϕ(1),

Υ ≡〈b ·B〉(0)
P ′

= −p
(0)

P ′
.

(A.17)
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