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Abstract.

The adjoint method for the study of runaway electron dynamics in momentum

space [C. Liu, D.P. Brennan, A. Bhattacharjee, and A.H. Boozer, Phys. Plasmas

23, 010702 (2016).] is rederived using the Green’s function method, for both the

runaway probability function (RPF) and the expected loss time (ELT). The RPF and

ELT obtained using the adjoint method are presented, both with and without the

synchrotron radiation reaction force. The adjoint method is then applied to study the

runaway electron avalanche. Both the critical electric field and the growth rate for the

avalanche are calculated using this fast and novel approach.
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1. Introduction

In plasma, a strong electric field can accelerate electrons to extremely high energy

and form a “runaway” electron beam, due to the fact that the collisional friction

force on an electron in the plasma decreases with the electron’s velocity. Runaway

electrons (REs) can be formed in various scenarios including solar flares [1], lighting

in thunderstorms [2, 3], and magnetic confinement experiments like tokamaks [4–8]

and reversed field pinches [9]. In tokamaks with large equilibrium current, runaway

electrons can be produced in disruptions, due to the strong electric field formed in

the thermal quench of the plasma. It is predicted that in a large tokamak device like

the International Thermonuclear Experimental Reactor (ITER), a large population of

REs can be produced and a large fraction of the plasma current will be transferred to

be carried by the RE beam. The potential damage caused by these highly energetic

electrons to the device poses a significant challenge for ITER to achieve its mission.

It is therefore extremely important to have a profound understanding of the physics

of runaway electrons, including their generation, acceleration and energy damping,

and their interaction with various plasma modes in tokamaks, which can help inspire

strategies for the prevention and mitigation of RE beams in disruptions.

The phenomena of “runaway” and the formed high energy tail distribution of

electrons in momentum space has been well studied in both the unrelativistic case

[10, 11] and the relativistic case [12]. Among the reported results, a very important

finding is the so-called secondary runaway electron generation, or “runaway electron

avalanche”, which comes from a large angle scattering collision between an energetic

runaway electron and a relatively low energy thermal electron. Although the large angle

scattering event is rather rare, the growth caused by secondary generation is exponential

and can become the dominant RE generation mechanism when a large population of REs

has been generated. The physics model of secondary RE generation has recently been

improved [13] to include the energy and pitch angle distribution of the seed runaway

electrons. It has also been found that the pitch angle scattering effect and the trapping

effect brought by the toroidicity can strongly affect the avalanche growth rate [14]. In

addition, for highly relativistic runaway electrons the radiation reaction force becomes

substantial and even comparable to the electric field force. The radiation of relativistic

runaway electrons include synchrotron radiation [15–17], bremsstrahlung radiation [18–

20], and Cerenkov radiation, all of which can affect electron dynamics in momentum

space. As for the runaway electron avalanche, the radiation force can increase the critical

electric field for avalanche to occur [21], and change the avalanche growth rate [22]. In

addition, the stopping power can help form an “attractor” in the electron momentum

space [15], which can lead to a bump-on-tail distribution [23].

To better understand these effects and the momentum-space structure of runaway

electrons, we have developed an adjoint method [24], as reported in Ref. [25], to

calculate two important functions in momentum space, the runaway probability function

(RPF) and the expected loss time (ELT). In this paper, we show the application of the



Adjoint method and runaway electron avalanche 3

adjoint method in RE avalanche calculation, and focus on runaway electron dynamics

in momentum space. By adding the secondary generation source term into the kinetic

equation and the adjoint equation, we can use the ELT and the RPF to calculate

the critical electric field and the growth rate for the RE avalanche respectively. The

adjoint method can be regarded as a “backward” method since the equation is similar

to the kinetic equation of RE distribution function after a time-reversal transform.

The adjoint method overcomes some shortcomings of the previous theoretical models

such as the unphysical truncation of the diffusion term, and the calculation is much

more efficient than the forward method such as directly solving the kinetic equation or

Monte-Carlo simulation in obtaining the RPF and ELT. An adjoint kinetic equation

can be derived in a few different ways, and one derivation appears in the Appendix

of Ref. [25]. In the present paper, we present an alternative derivation of the adjoint

method (denoted by “Green’s function method”) by using the Green’s function of the

kinetic equation to show the physical meaning of the adjoint kinetic equation solution,

instead of the derivation in Ref. [25] (denoted by “SDE method”) that is based on the

relation between the stochastic differential equation (SDE) and the PDE through the

Kolmogorov backwards equation. The two derivations are fundamentally equivalent.

This paper is organized as follows. In the Sec. 2 we introduce the homogeneous

adjoint kinetic equation and its outcome, the runaway probability function, in both a

general dynamical system and runaway electron momentum space. In the Sec. 3 we

introduce the nonhomogeneous adjoint equation and the expected loss time, and use

them to study the kinetics of runaway electrons affected by the synchrotron radiation

reaction force. In Sec. 4 we discuss the application of the adjoint method to the RE

avalanche, including how to calculate the critical electric field and the growth rate.

2. Homogeneous adjoint kinetic equation and the runaway probability

function

2.1. Introduction to the runaway probability function

In this section we introduce the concept of the runaway probability function (RPF) in

a general multi-dimensional stochastic dynamical system. We then prove that the RPF

can be obtained as a solution of the homogeneous adjoint kinetic equation in the system,

using the Green’s function method instead of the SDE method in Ref. [25].

Consider a dynamical system where particles are moving in the phase space region

Σ with boundary ∂Σ and coordinates x (x may refer to both the particle’s location

in real space and its momentum). We can artificially split the boundary ∂Σ into two

parts, the runaway boundary ∂Σ1 ⊂ ∂Σ, and the non-runaway boundary (or slowing-

down boundary) ∂Σ2 = ∂Σ − ∂Σ1. The runaway probability function P (x) is defined

as a scalar function on Σ, which is the probability for a particle that initially lies at

the location x to eventually leave the region Σ through the boundary ∂Σ1. For a

deterministic system P will be either zero or one, but for a stochastic system due to the
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randomness of the particle’s trajectory, P can have a value between zero and one.

The kinetic equation of the dynamical system, which describes the evolution of the

particle distribution function f in Σ, can be written as

∂f

∂t
= −∇ ·U + σ(x), (1)

where σ(x) is the particle source, and U is the particle flow in phase space,

U = vf −∇ · (Df) . (2)

The two terms on the right hand side of Eq. (2) correspond to the advection and diffusion

effects, respectively. Eq. (1) without the source term is also called the Fokker-Planck

equation. We can further define the kinetic operator based on Eq. (1),

L̂[f ] = ∇ ·U = ∇ · (vf)−∇∇ : (Df) , (3)

the Green’s function F of the kinetic operator L̂, which satisfies

L̂[F (x;x0)] = δ(x− x0), (4)

and the homogeneous boundary condition (F (x ∈ ∂Σ;x0) = 0). Note that F is a

function independent of time. The physical meaning of F is a steady-state distribution

function formed by a unit particle source at x = x0 and particles are allowed to leave

the system at the boundaries.

We now define the adjoint operator. For any given functional operator L̂, its adjoint

operator L̂† fulfills,∫
gL̂[f ]dx =

∫
fL̂†[g]dx, (5)

where f and g are two arbitrary functions. Note that the integral is calculated over the

whole phase space rather than being limited to Σ. For the kinetic operator L̂ in Eq.

(3), the corresponding adjoint operator L̂† is

L̂†[g] = −v · ∇g − D : ∇∇g. (6)

Introduce another function G in Σ that satisfies the homogeneous adjoint kinetic

equation,

L̂†[G] = 0. (7)

Different from F , the boundary condition for G is a nonhomogeneous one given by the

runaway-slowing-down separation of the boundary,

G(x ∈ ∂Σ1) = 1, G(x ∈ ∂Σ2) = 0. (8)

We can now prove that G is equal to the RPF P . To do that, we can combine

the above equations that are satisfied by F (x;x0) and G together to find the relations

between them. Calculate the following integral,∫
Σ
GL̂[F ]dx =

∫
∂Σ

(GU + D · ∇GF ) · nda+
∫

Σ
FL̂†[G]dx, (9)



Adjoint method and runaway electron avalanche 5

where U is the phase space particle flow associated with F (x;x0),
∫
...da is the integral

on the boundary ∂Σ, and n is the unit vector normal to the boundary. Applying Eqs.

(4) (7) and the boundary conditions for F and G, we obtain

G(x = x0) =
∫
∂Σ1

U · nda. (10)

Thus G(x0) equals the total particle flow of F (x;x0) that comes out of the system at

boundary ∂Σ1. Note that
∫
∂Σ U · nda = 1 according to the conservation of particle

density, therefore G(x0) also represents the probability for a particle to run out of

the system at boundary ∂Σ1 rather than ∂Σ2, if it was initially injected at x = x0.

Comparing with the definition of RPF, we obtain G = P .

Note that in Ref. [25], we used the SDE method to show that the RPF satisfies

the homogeneous adjoint equation. In that proof we showed clearly that the adjoint

method is a “backwards” method, since it calculates the value of P at any location x

by summing P of all the possible next-step locations of x (An equivalent approach to

obtain the result is to solve the Backward Stochastic Differential Equation (BSDE) [26].

Because we already know the values of P at the boundaries, we can then calculate P in

the whole region Σ by tracing backwards in time, which turns out to be equivalent to

solving the adjoint equation.) On the other hand, for the “forward” methods including

solving Eq. (4) to calculate the Green’s function or doing Monte-Carlo simulation for

the forward SDE, to get the RPF in Σ one needs to do the calculation for every location

separately. Therefore, the adjoint method is a more efficient approach to obtain the

RPF.

2.2. Runaway probability function in electron momentum space

We now apply the adjoint method to runaway electrons. Consider relativistic runaway

electrons that are driven by a uniform and constant electric field, the kinetic equation

describing the electron distribution function evolution in momentum space can be

written as
∂f

∂t̂
+ E[f ] + C[f ] = 0, (11)

where

E[f ] =
1

p2

∂

∂p

[
p2Êf

]
+

∂

∂ξ

[
1− ξ2

p
Êf

]
, (12)

C[f ] = − 1

p2

∂

∂p

[(
1 + p2

)
f
]
− Z + 1

2

√
1 + p2

p3

∂

∂ξ

[
(1− ξ2)

∂f

∂ξ

]
, (13)

describe the electric field force and the collisional operator, respectively. Here p is

the electron momentum (normalized to mc, m is the electron mass and c is the

speed of light), ξ is the cosine of the pitch angle ξ = p‖/p, Z is the ion effective

charge, Ê = E/ECH where ECH is the Connor-Hastie critical electric field [12] ECH =

nee
3 ln Λ/ (4πε20mec

2) and ln Λ is the Coulomb logarithm, and t̂ = t/τ where τ is the

relativistic electron collision time τ = mec/ (eECH). Note that in the kinetic equation
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the phase angle φ is ignored and the momentum space is reduced to be 2D, assuming

that electrons are moving in a strong magnetic field and the phase angle dependence of

f can be averaged out. We also ignore the trapping effect brought by the toroidicity,

making the results relevant to REs that are close to the magnetic axis. For simplicity,

the radiation reaction force in ignored in this section, but will be addressed in the

following sections.

We now study the dynamics of an electron guided by the Eq. (11) in a chosen

region of momentum space, p ∈ (pmin, pmax), and ξ ∈ (−1, 1). pmin and pmax are two

boundaries in momentum space that are located far from the runaway-slowing-down

transition region (The solution is checked to be insensitive to the boundary locations).

We define p = pmax as the “runaway boundary”, and any electron that reaches this

boundary as a “runaway electron”. The p = pmin is then defined as the slowing-down

boundary. The runaway probability function, P (p0, ξ0), means the probability for an

electron initially at (p0, ξ0) to eventually reach pmax and leave the region. As discussed

before, P satisfies the homogeneous adjoint equation,

E [P ] + C [P ] = 0, (14)

where

E [P ] = −Ê
[
ξ
∂P

∂p
+

1− ξ2

p

∂P

∂ξ

]
, (15)

C [P ] =
1 + p2

p2

∂P

∂p
− Z + 1

2

√
1 + p2

p3

∂

∂ξ

[
(1− ξ2)

∂P

∂ξ

]
(16)

The boundary conditions of P are P (p = pmin, ξ) = 0, P (p = pmax, ξ) = 1.

We solve Eq. (14) numerically using a finite difference representation on p

and a Legendre polynomial representation on ξ, which is similar to the numerical

representation used in CODE [27], to obtain the RPF. The solution is calculated using

MATLAB sparse matrix solver. Fig. 1 shows two solutions of the RPF in the momentum

space, for both Z = 1 and Z = 7. The solution of P is separated into three regions.

For small momentum P is close to zero, which means particles will almost definitely

slow down and return the thermal electron population. For large momentum P is close

to one, which means electrons will have a high probability to run away. There is a

transition region between these two regions, which characterizes the critical runaway

momentum pcrit. Note that pcrit increases with the pitch angle θ. Comparing the two

cases with different Z, we can find that pcrit also increases with Z or the pitch angle

scattering effect. This is because in the model the electric field only accelerates an

electron in the direction parallel to the magnetic field, so an electron with larger initial

pitch angle or experiencing stronger pitch angle scattering is less likely to run away.

The runaway-slowing-down separatrix calculated using the test particle method in

Ref. [28] is also shown for reference. Note that the separatrix lies in the transition

region of P , which reflects the agreement of the two methods. However, the adjoint

method provides a smooth RPF that changes gradually from 0 to 1 rather than a step
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Figure 1. The profile of RPF for E = 6ECH, Z = 1 (left) and Z = 7 (right). θ is

the pitch angle. The red dashed line is the separatrix calculated using the test particle

method in Ref. [15].

function. The width of the transition region depends on the amplitude of the pitch

angle scattering term, which increases with Z. In addition, for the Z = 7 case we can

see clearly from Fig. 1 that the transition region is not symmetric at two sides of the

separatrix, which is wider on the high momentum side. All these traits of the transition

region are not captured in the test particle method, which ignores the diffusion effect in

the pitch angle scattering.

Fig. 2 shows the value of P as a function of p for ξ = 1 in the transition region. The

result is benchmarked with a Monte-Carlo simulation, which is achieved by sampling

a large number of electrons that start at one initial position and follow the stochastic

differential equation (SDE) that corresponds to Eq. (11). We then count the electrons

that hit the low and high energy boundaries after a certain time. The two results are

close. Note that unlike the Monte-Carlo method which takes significant computer time,

the adjoint method is fast and only requires solving the PDE once to obtain the RPF.
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0
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1
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Figure 2. P for Z = 1 and E = 6ECH at ξ = 1 near the transition region. The red

dots and error bars reflect the mean and the variation of the Monte-Carlo simulation

results. The black vertical line shows the crossing point of the separatrix calculated

using the test-particle method at ξ = 1 .

Apart from separating different regions in the RE momentum space and finding
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the value of pcrit, the RPF can also be useful for solving various RE problems. For

example, when combined with the secondary RE generation source term, the RPF can

help estimate the avalanche growth rate, which will be discussed in Sec. 4. In addition,

the RPF can be used to determine the number of seed runaway electrons produced

through the slide away of the thermal electron Maxwellian tail in the thermal quench,

which will strongly affect the number of RE avalanche e-folds and the conversion ratio

from plasma current to RE current in the current quench. This will be addressed in

future work.

3. Nonhomogeneous adjoint kinetic equation and the expected loss time

3.1. Introduction to the expected loss time

The adjoint method can also be used to study the stochastic dynamical system with an

attractor. Note the runaway probability function gives the information of a particle’s

final destination regardless of the time it takes to reach it. Considering that we are

studying a dynamical system including an attractor formed by the advection forces, e.

g. the runaway electron momentum space with a radiation reaction force [15] (including

both synchrotron radiation and bremsstrahlung radiation), then the attractor will affect

the particle’s trajectory and significantly increase the time for it to reach the boundary.

However, the RPF is not the best way to describe this change since it does not have

information about loss time. To overcome this issue, we introduce another function of

phase space, the expected loss time (ELT). We now show the derivation of the ELT

using the Green’s function method.

Following the definition of the Fokker-Planck operator L̂ and the adjoint operator

L̂†, we define function T to satisfy the nonhomogeneous adjoint equation,‡

L̂†[T ] = 1 (17)

with the homogeneous boundary condition T (x ∈ ∂Σ) = 0.

To show the connection between T and the Green’s function F (x;x0), we calculate

the following integral,∫
Σ
L̂[F ]Tdx =

∫
∂Σ

(TU + D · ∇TF ) · nda+
∫

Σ
FL̂†[T ]dx. (18)

Applying Eqs. (4) (17) and the boundary conditions for F (x;x0) and T , we obtain

T (x = x0) =
∫

Σ
Fdx. (19)

Thus T is equal to the integral of the Green’s function F in Σ, or the total number

of particles N in F (x;x0). Recall the F (x;x0) is the steady state distribution function

formed by the unit source δ(x − x0), the rate for each particle to leave the system is

then 1/N . Therefore we prove that T also represents the expected time for a particle

initially at x = x0 to leave the system at boundaries.

‡ In Ref. [25] we use −1 on the right hand side of the nonhomogeneous adjoint Fokker-Planck equation,

because the adjoint operator defined in Re. [25] is the opposite of the adjoint operator in this paper.
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Similar to the RPF, the ELT can also be obtained from the “forward” method by

calculating the Green’s function F (x;x0) or by doing Monte-Carlo simulation for every

location in Σ. But the adjoint method provides a much more efficient approach.

3.2. Synchrotron radiation reaction force and expected loss time for runaway electrons

With the help of the expected loss time, we can now study the dynamics of runaway

electrons in the presence of the radiation force. In this paper we will only focus on

the synchrotron radiation reaction force (SRRF), which is calculated by doing a gyro-

average of the Abraham-Lorentz-Dirac (ALD) force [29]. In tokamaks the SRRF can

come both from electrons’ gyro motion due to the magnetic field and electrons’ toroidal

motion following field lines. However, for electrons with energy below 20MeV, the SRRF

from from the gyro motion far exceeds that from the toroidal motion. Thus in this paper

we only consider the SRRF from gyro motion.

The kinetic equation including the SRRF is

∂f

∂t̂
+ E[f ] + C[f ] +R[f ] = 0, (20)

where

R[f ] =
1

τ̂r

{
− 1

p2

∂

∂p

[
p3γ(1− ξ2)f

]
+

∂

∂ξ

[
1

γ
ξ(1− ξ2)f

]}
, (21)

and τ̂r = τr/τ . τr is the timescale for the SRRF energy loss τr = 6πε0m
3
ec

3/ (e4B2).

Define T (p0, ξ0) as the expected time for an electron initially at (p0, ξ0) to reach

the low energy boundary pmin or the high energy boundary pmax. Note that 1/T =

1/Ts+1/Tr, where Ts is the expected slowing down time and Tr is the expected runaway

time. The ratio of the two terms is (1 − P )/P . As discussed before, T satisfies the

nonhomogeneous adjoint kinetic equation. The adjoint kinetic equations for P and T

including SRRF can be written as

E [P ] + C [P ] +R [P ] = 0, E [T ] + C [T ] +R [T ] = 1, (22)

where

R [P ] =
1

τ̂r

[
γp(1− ξ2)

∂P

∂p
− 1

γ
ξ(1− ξ2)

∂P

∂ξ

]
. (23)

The boundary condition for T is homogeneous, T (p = pmin, ξ) = T (p = pmax, ξ) = 0.

In the following discussion we will show how the SRRF affects the runaway electron

dynamics using the ELT in two different scenarios. We first focus on the case that

E � Ec, which means that the runaway process (electron leaves the region through the

pmax boundary) can still happen. We find that in this case after adding the SRRF, the

solution of RPF is not very different from the non-radiation case (An example is shown

in Ref. [25].). This means that in this scenario, unlike the pitch angle scattering, the

SRRF will not much affect the location or the width of the transition region in RPF.

Nevertheless, the SRRF can significantly increase the ELT in the high energy

regime. Fig. 3 shows the results of T for E = 3ECH and 3 different values of τ̂r. We
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can see that as the SRRF becomes stronger (τ̂r becomes smaller), the ELT in the region

beyond the separatrix increases. This is because in the high energy region the SRRF

can strongly dissipate electron energy, and thereby slow down the runaway process. In

addition, for the strong radiation case (τ̂ = 2), T becomes almost flat in the high energy

region. This indicates the existence of an attractor formed by the balance of the three

forces in Eq. (20), and all electrons in the high energy region will first accumulate near

the attractor, and thus have a similar value of ELT.
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τ
)

 

 
τ̂r = 2

τ̂r = 10

τ̂r = 50

Figure 3. The expected loss time at ξ = 1 for E = 3ECH, Z = 1 and 3 different

values of τ̂r in the E � Ec scenario.

We then look at the scenario with strong SRRF and E < Ec. In this case electrons

can no longer run away as the electric force is subdominant compared to the sum of the

collisional force and the SRRF in the whole momentum space. The RPF will be zero

in almost the whole momentum space except for a narrow region near pmax boundary,

thus Tr → ∞ and T ≈ Ts. In other words, the ELT now characterizes the expected

time for an existing high energy electron to lose its energy and slow down to the thermal

electron population.

Figure 4 shows the calculated T (p, ξ) at ξ = 1 for E = 1.5ECH and 3 different values

of τ̂r. We see that in this case T is a monotonically increasing function of p. Among these

results a very interesting example is τ̂r = 20, in which E is smaller than but very close

to Ec (the marginal case). In the marginal case, T has a prompt jump between the low

and high energy regions. This is because in the marginal case the sum of the collisional

force and the SRRF dominates the electric force in the whole momentum space except

for a region near pcrit, where all the forces reach a balance and the dynamics of electron

is dominated by diffusion. Thus electrons that reach this region will take a long time

to cross it through random walk, which is similar to a potential barrier in the electron

momentum dissipation path. If the SRRF is larger and E � Ec, this jump becomes

smaller or non-existent because the strong radiation force makes this region advection

dominant.

The ELT can be applied to estimate the runaway electron beam decay time

in experiments, and help explain the runaway electron population hysteresis and
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Figure 4. The expected loss time at ξ = 1 for E = 1.5ECH, Z = 1 and 3 different

values of τ̂r in the E < Ec scenario.

distribution. In both the quiescent runaway electron experiments (QRE) and disruption

experiments, due to the decreasing magnitude of E/Ec, the runaway electron beam will

have a transition from growth to decay. This means that at the beginning of the decay,

there is already a population of high energy electrons formed by previous growth. The

expected slowing-down time for these electrons determines the timescale for decay. The

result of the ELT in the marginal case shows that if E is very close to Ec, the RE decay

can be very slow. This can contribute to a hysteresis effect [21] for the runaway electron

population when the electric field is ramped up and down. In addition, the marginal

case ELT indicates very fast decay of the electrons with p < pcrit and much slower decay

of the higher energy electrons, which will result in a bump-on-tail electron distribution

in the momentum space near pcrit. This non-monotonic electron distribution has been

observed in experiments in the post-disruption case [30]. However, this effect will be

weakened by the secondary RE generation, which will be discussed below.

4. Runaway electron avalanche

In this section we focus on the secondary runaway electron generation, which comes

from the large angle scattering of a low-energy thermal electron by a high-energy

relativistic electron. It has been shown in the Rosenbluth-Putvinski [31] model that the

secondary runaway electron generation can cause an exponential growth of the runaway

electron population, or “runaway electron avalanche”. Here we show the applications

of the runaway probability function and the expected loss time on the runaway electron

avalanche study.

The kinetic equation for relativistic electron including the secondary generation can

be written as

∂f

∂t̂
+ E[f ] + C[f ] +R[f ] = S[f ], (24)

where S is the source term describing the secondary runaway electron generation. Using
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the model from Ref. [13], S can be expressed as

S[f ](p, ξ) =
1

p2

∫
S(pe, ξe, p, ξ)f(pe, ξe)p

2
edpedξe. (25)

The function S(pe, ξe, p, ξ) is the scattering probability function, describing the rate of

change of the number of electrons at momentum (p, ξ) due to large angle collisions with

electrons at (pe, ξe). S(pe, ξe, p, ξ) is derived from the Møller cross section, which can

be regarded as the relativistic version of the Coulomb cross section. In this model we

have taken into account the energy and pitch angle distribution of the seed runaway

electrons, which is an improvement over the Rosenbluth-Putvinski model. Note that

although the scattering probability function S is complicated and depends on both p

and ξ, it can be remarkably simplified by using a Legendre polynomial representation

of ξ, which is the representation used in CODE and what we are using in solving the

adjoint kinetic equations.

We first use the nonhomogeneous adjoint kinetic equation to calculate the critical

electric field, Ec, for runaway electron avalanche. Classical theory predicts that

Ec = ECH, and the avalanche growth rate is almost a linear function of E − ECH.

However, recent studies show that the SRRF can increase Ec due to the additional

energy dissipation. The kinetic equation Eq. (24) yields the nonhomogeneous adjoint

equation including the secondary generation,

E
[
T̄
]

+ C
[
T̄
]

+R
[
T̄
]
− S

[
T̄
]

= 1, (26)

where

S
[
T̄
]

(p, ξ) =
∫

S(p, ξ, p′, ξ′)T̄ (p′, ξ′)dp′dξ′. (27)

The solution T̄ of the adjoint equation Eq. (26) also corresponds to the integral of

the Green’s function of the kinetic equation Eq. (24). However, since Eq. (24) is not

a density conserving equation (It contains a particle source term.), the solution T̄ is

not the expected time for one single electron to leave the region of interest anymore.

Instead, it corresponds to the sum of the expected loss time of the test particle and

the loss time of all the children particles born by it through the source term Eq. (24).

The expected time for the electron population to decay will be shorter than T̄ since the

electrons will dissipate energy simultaneously.

The result of T̄ is very useful to study the runaway electron avalanche. To show

that, we calculate T̄ for Z = 1, τ̂r = 2 and different E/ECH, which is shown in Fig. 5.

We find that, as electric field increases, the value of T̄ above the critical momentum

increases significantly. Moreover, when E/ECH is above a certain threshold, the value

of T̄ in the high momentum region jumps to infinity. This means that in this case the

newly generated secondary runaway electrons will sustain the electron population in the

high energy region, and the RE population in this region will never deplete. In other

words, the avalanche is happening.

In Ref. [25], we found that when taking into account the energy decay due to

the large angle scattering by replacing the Landau-Fokker-Planck collision operator in
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the adjoint equation with the Boltzmann collision operator, the result of ELT in the

marginal case can decrease significantly. This is because the large angle scattering

can help high energy electrons pass the potential barrier in momentum space and thus

reduce the time spent in the energy decay. However, when including the source term

for secondary generation, the difference brought by the Boltzmann collision operator

becomes very small. This means that the additional energy dissipation from large angle

scattering in the marginal case will be overwhelmed by the secondary RE generation

effect, and thus is not important.
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Figure 5. T̄ calculated using Eq. (26) at ξ = 1 for Z = 1, τ̂r = 2 and three values of

E/ECH.

We can thus use the condition of T̄ → ∞ as a criterion for the runaway electron

avalanche, and determine the critical electric field Ec. By scanning the electric field from

low to high for different parameters of τ̂r and Z, we can determine the dependence of

Ec on these two parameters, as shown in Fig. 6. We also compare the results with the

critical electric field calculated using an approximate analytical distribution function

[21]. The two results are very close for small Z cases, and for large Z the Ec calculated

using the adjoint method is smaller than that from the analytical method§.
Note that in experiments a critical electric field larger than ECH has been observed,

but even taking SRRF into account, the calculated Ec is still smaller than the

observation. Two possible reasons have been posed to explain the discrepancy. The first

is that for a small electric field the critical momentum pcrit for an electron to run away

is very high, which results in an extremely slow growth that is hard to observe. Another

explanation about the observed critical electric field corresponding to the turning point

of the Hard X-ray signal in the QRE experiments [32] relies on the energy dependence

of the diagnostic and the redistribution of runaway electrons in momentum space [33]

with a dropping E/Ec. In addition, other kinetic effects such as the kinetic instabilities

[34–36] and magnetic field fluctuation [37] may also play a role.

§ Note that the result of Ec is different from the result in Ref. [25], where a different criterion based

on the transition region in RPF is used. The criterion used here has a clearer physics meaning and is

more relevant to the RE avalanche.
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Figure 6. The critical electric field for avalanche Ec calculated using the adjoint

method (solid line) plotted as a function of τ̂r for various Z. E0 from Ref. [21] (dashed

line) plotted for comparison.

On the other hand, the RPF can be utilized to calculate the avalanche growth

rate. For a given runaway electron distribution, we can calculate the distribution of

the secondary runaway electrons generated using Eq. (25). However, the calculated

S(p, ξ) is a divergent function for p → 0. To know how many of the newly generated

electrons can run away, we must use the RPF calculated using Eq. (22) (without the

source term). The avalanche growth rate is then

γ =
1

nr

∫
S(p, ξ)P (p, ξ)p2dpdξ, (28)

where nr is the density of the existing runaway electrons‖. Note that for a runway

tail whose growth is dominated by the avalanche, the exponential growth rate at every

part of the momentum space is almost the same, which means that the distribution

function is growing exponentially whereas the shape does not change. In this case we

can calculate the shape of the runaway electron tail distribution by specifying γ,

−E[f ]− C[f ]−R[f ] + S[f ] =
∂f

∂t
≈ γf. (29)

Thus for a given γ, f can be calculated as an eigenvector. Eqs. (28-29) provide

an iterative approach to calculate the avalanche growth rate and the shape of the

distribution function of the runaway electron tail. Fig. 7 shows the calculated avalanche

growth rate using this method. We also show a benchmark with the results obtained

from a kinetic simulation by solving Eq. (24) using CODE. The two results are very

close.

5. Summary

The adjoint kinetic equation is derived and applied to calculate the runaway probability

and the expected loss time regarding runaway electron dynamics in momentum space.

‖ nr can be calculated by integrating the RE distribution function from the critical momentum to the

high energy boundary. The critical momentum is chosen as P (pcrit, ξ = 1) = 0.5.
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Figure 7. The growth or decay rate of high energy electron population as a

function E/ECH for Z = 1 and τ̂r = 2. τ is the relativistic electron collision time

τ = mec/ (eECH). The Coulomb logarithm ln Λ is set to be 20 due to the high velocity

of REs. The blue line is the obtained by solving Eq. (24) directly using CODE. The

red dots are the results obtained using the RPF and iterative method. Each point is

calculated using 10 iterations. The positive value corresponds to the avalanche growth

rate, and the negative value corresponds to the decaying rate of high energy electron

population for E < Ec.

The runaway probability function successfully identifies the runaway-slowing-down

separatrix, and the increase of the critical momentum induced by the pitch angle

scattering effect. The expected loss time shows the existence of an attractor in the

runaway electron momentum space from the synchrotron radiation reaction force.

Analysis of the ELT in the marginal case reveals a potential barrier near the critical

runaway momentum. In addition, both quantities are utilized to study the runaway

electron avalanche, and provide an accurate approach to calculate the critical electric

field and the avalanche growth rate.

The adjoint method can also be easily extended to study the influences of other

physics on runaway electron dynamics, including Bremsstrahlung radiation [18, 20] and

magnetic fluctuations [37], by adding the corresponding operators into the adjoint kinetic

equation. Other areas of runaway electron physics can also be studied, such as the

thermal quench where RPF can help determine the number of seed REs generated. In

addition, the adjoint method can be used to study any stochastic dynamical system

that has a separatrix or a singular point, e.g. particle behavior close to the magnetic

separatrix and the X-point. Future applications of this method are promising.
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