PPPL-5280

Fusion Nuclear Science Facilities and Pilot Plants Based on the Spherical Tokamak

Authors: J.E. Menard, T. Brown, L. El-Guebaly, M. Boyer, J. Canik, B. Colling, R. Raman, Z. Wang, Y. Zhai, P. Buxton, B. Covele, C. D'Angelo, A. Davis, S. Gerhardt, M. Gryaznevich, M. Harb, T.C. Hender, S. Kaye, D. Kingham, M. Kotschenreuther, S. Mahajan, R. Maingi, E. Marriott, E.T. Meier, L. Mynsberge, C. Neumeyer, M. Ono, J-K. Park, S.A. Sabbagh, V. Soukhanovskii, P. Valanju, R. Woolley

Abstract: A Fusion  Nuclear  Science Facility (FNSF) could play an important role in the development of fusion energy by providing the nuclear environment needed develop  fusion  materials and  components.   The  spherical  torus/tokamak (ST)  is a  leading  candidate for  an  FNSF  due  to  its  potentially high neutron wall  loading and modular configuration. A key consideration for the choice of FNSF  configuration is the  range of achievable  missions as a function of device  size.   Possible missions include: providing high neutron wall loading and  fluence, demonstrating tritium self-sufficiency,  and  demonstrating electrical  self-sufficiency.  All of these  missions  must also be compatible with a viable divertor, first-wall,  and blanket  solution.  ST-FNSF configurations  have been developed simultaneously incorporating for the first time:  (1) a blanket  system  capable  of tritium breeding  ratio  TBR  ≈ 1, (2) a poloidal field coil set supporting high elongation  and triangularity for a range of internal  inductance and normalized  beta  values  consistent  with  NSTX/NSTX-U previous/planned operation, (3)  a  long-legged  divertor   analogous  to  the  MAST-U  divertor   which  substantially reduces  projected   peak  divertor   heat-flux  and  has  all  outboard poloidal  field coils outside  the vacuum  chamber  and superconducting to reduce power consumption, and (4)  a  vertical  maintenance scheme  in  which  blanket  structures and  the  centerstack can be removed independently. Progress  in these ST-FNSF missions vs. configuration studies  including  dependence  on  plasma  major  radius  R0    for  a  range  1m  to  2.2m are  described.   In particular, it  is found  the  threshold  major  radius  for TBR  = 1 is R0    ≥1.7m,  and  a  smaller  R0 =1m  ST  device  has  TBR  ≈ 0.9 which  is below unity but  substantially reduces  T  consumption relative  to  not  breeding.    Calculations of neutral beam heating  and current drive for non-inductive ramp-up and sustainment are described.  An A=2,  R0   = 3m device incorporating high-temperature superconductor toroidal   field  coil  magnets  capable  of high  neutron fluence  and  both  tritium  and electrical  self-sufficiency is also presented following systematic aspect  ratio  studies.

Submitted to: Nuclear Fusion
_________________________________________________________________________________________________

Download PPPL-5280 (pdf 7.1 MB 113 pp)
_________________________________________________________________________________________________