
Princeton Plasma Physics Laboratory 
 
 
 

PPPL-5257 
 

 

Saturation of Alfvén modes in tokamaks 
 
 
 
 

R. White, N. Gorelenkov, M. Gorelenkova, 
M. Podesta, S. Ethier, and Y. Chen 

 
 
 
 
 
 
 
 

September 2016 
 

 
 

 

 
 

Prepared for the U.S.Department of Energy under Contract DE-AC02-09CH11466. 



Princeton Plasma Physics Laboratory 
Report Disclaimers 

 
 
Full Legal Disclaimer 

 

This  report was  prepared as  an  account of work  sponsored by  an  agency of the United 
States Government. Neither the United States Government nor  any  agency thereof, nor  any  of 
their  employees, nor  any   of  their  contractors, subcontractors or  their  employees, makes any 
warranty, express or  implied, or  assumes any  legal  liability or  responsibility for  the accuracy, 
completeness, or any  third party’s  use  or the results of such  use  of any  information, apparatus, 
product, or  process  disclosed, or  represents that  its use   would   not   infringe privately  owned 
rights. Reference herein to any  specific  commercial product, process, or  service by  trade name, 
trademark, manufacturer, or otherwise, does  not  necessarily constitute or imply  its endorsement, 
recommendation, or  favoring by  the United States  Government or  any   agency thereof  or  its 
contractors  or  subcontractors.  The   views   and   opinions  of  authors  expressed herein  do  not 
necessarily state or reflect those of the United States Government or any  agency thereof. 

 
Trademark Disclaimer 

 

Reference herein  to any  specific  commercial product,  process, or  service by  trade name, 
trademark, manufacturer, or otherwise, does  not  necessarily constitute or imply  its endorsement, 
recommendation, or  favoring by  the United States  Government or  any   agency thereof  or  its 
contractors or subcontractors. 

 
 
 

PPPL Report Availability 
 
 
Princeton Plasma Physics Laboratory: 

 
http://www.pppl.gov/techreports.cfm 

 
Office of Scientific and Technical Information (OSTI): 

 

http://www.osti.gov/scitech/ 
 
 
 
Related Links:  

 
 
 
 

U.S. Department of Energy 
 
 
 

U.S. Department of Energy Office of Science 
 
 
 

U.S. Department of Energy Office of Fusion Energy Sciences 



Saturation of Alfvén modes in tokamaks
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Abstract

Growth of Alfvén modes driven unstable by a distribution of high energy particles up to satura-

tion is investigated with a guiding center code, using numerical eigenfunctions produced by linear

theory and a numerical high energy particle distribution, in order to make detailed comparison

with experiment and with models for saturation amplitudes and the modification of beam profiles.

Two innovations are introduced. First, a very noise free means of obtaining the mode-particle

energy and momentum transfer is introduced, and secondly, a spline representation of the actual

beam particle distribution is used.

PACS numbers: 52.35.Bj, 52.35.Vd

∗Electronic address: rwhite@pppl.gov

1



I. INTRODUCTION

The effect of Alfvén modes on energetic particles in tokamaks is important in general,

and could be of significance for ITER[1]. It is necessary to examine mode evolution to

saturation to predict the effect of such modes on high energy particle transport and to assist

in constructing hybrid models for such transport. Previous work[2–6] using experimentally

determined mode spectra and amplitudes has shown that a spectrum of Alfvén modes can

cause a reduction of the beam profile to a critical gradient level corresponding to the onset

of stochastic particle loss due to the mode spectrum, with the mode amplitudes held at

a level just above that producing such loss. This work reports numerical simulation of

mode evolution of unstable Alfvén modes to saturation levels and the resulting effect on

beam particle distributions using equilibria and beam particle distributions generated by

TRANSP[7] and Alfvén eigenfunctions generated by NOVA[8, 9].

Solving the drift kinetic equation in the presence of Alfvén modes driven unstable by

a distribution of high energy particles and advancing the mode amplitudes and phases in

time is done with the use of a δf formalism, whereby the initial distribution f0 is assumed

to be a steady state high energy particle distribution in the absense of the modes, and

f = f0+δf describes the particle distribution in the presence of the modes. The Hamiltonian

is written as H = H0 + H1 with H0 giving the unperturbed motion, conserving particle

energy E, toroidal canonical momentum Pζ , and magnetic moment µ. By writing the initial

particle distribution in terms of these variables, a simple means of calculating mode-particle

energy and momentum transfer results, giving a very accurate means of advancing the

modes in time. The numerical beam deposition code NUBEAM in TRANSP produces a list

of particles, giving energy, pitch, and location, which can be used to find the unperturbed

distribution f0(E,Pζ , µ). This steady state equilibrium distribution is thus constructed using

beam deposition analysis, and no assumptions are made regarding how closely it resembles

a Maxwellian[10]. Furthermore, particle classification in terms of co- and counter- passing,

trapped, banana, confined or lost, etc, is easily given in terms of these variables[11]. The

unstable mode spectrum and eigenfunctions in the plasma studied are given by NOVA, which

has been shown to agree well with the modes observed in discharges.

High energy particle destabilized Alfvén modes generally saturate at amplitudes small

enough so that the linear eigenfunctions provide a good approximation to the mode structure
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FIG. 1: Equilibrium, showing the poloidal cross section with X and Z in centimeters, the q profile,

and radial potential for NSTX discharge 141711

for amplitudes up to saturation. We restrict this study to a case exhibiting saturated mode

amplitudes at a well defined mode frequency, although the formalism can also describe mode

chirping.

In this work we will use as a test case of the method developed discharge 141711 in

NSTX[12] at a time of 470 msec. In Fig. 1 are shown the equilibrium, q profile, and radial

potential giving plasma rotation for this case. This discharge provides an example in which

modes grow to a level which modifies the particle distribution without significant change in

mode frequency, and with amplitudes which permit the use of linear eigenfunctions. Nonlin-

ear mode-mode coupling is completely negligible, although the particle dynamics involved

in driving the modes is fully nonlinear, with modes coupled through their modification of

the particle distribution. However, the present work is restricted to the consideration of

single modes, mode coupling through the modification of the particle distribution will be

addressed in a future publication.

In section II we review the guiding center formalism used for the simulation and the low

noise method for finding mode-particle energy and momentum transfer. Section III shows

the important resonances for each of the ten modes present in the discharge. In section IV

the δf formalism used is derived, and in section V the equations for advancing the mode

amplitudes and phases are given. Section VI gives the means by which energy is transfered

from the high energy distribution to the modes, and section VII is the construction of a

splined representation of the beam particle distribution present in the experiment and the

results of the simulations. Section VIII shows the method for finding the mode induced
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modification of the particle distribution with examples for these modes, and section IX is

the conclusion.

II. GUIDING CENTER EQUATIONS

We use units of time given by ω−1
0 , where ω0 = eB/(mc) is the on-axis gyro frequency,

B the magnetic field strength, e the charge and m the particle mass, and units of distance

given by the major radius R, which was 100 cm, as seen in Fig. 1. The basic unit of

energy becomes mω2
0R

2, which can also be written as (mv2/2)(2R2/ρ2), the gyro radius is

ρ = v/B ≪ 1, and the magnetic moment µ = v2
⊥/(2B) is of order ρ2. Particle motion both

along and across the field lines is of order ρ but to leading order the cross field motion is

the cyclotron motion, and cross field drift is of order ρ2[11].

Equilibrium field quantities are given by ~B = g∇ζ+I∇θ+δ∇ψp with ψp the poloidal flux,

θ a poloidal angle coordinate, ζ a toroidal angle coordinate, and g, I and δ are equilibrium

functions. The Hamiltonian is

H0 =
ρ2
‖B

2

2
+ µB + Φ (1)

with ρ‖ = v‖/B, µ the magnetic moment and Φ the electric potential[11]. The toroidal and

poloidal canonical momenta are

Pζ = g(ψp)ρ‖ − ψp, Pθ = ρ‖ + ψ, (2)

with ψ the toroidal flux, and dψ/dψp = q(ψp), the field line helicity.

Guiding center equations advance the variables ψp, θ, ζ, and ρ‖, leaving µ a constant of

the motion. The energy E must be recalculated after each time step and the accuracy of

energy conservation in the absense of time dependent modes is used to control the time step.

Introduce a magnetic field perturbation of the form δ ~B = ∇ × α~B. This form also

requires introducing an electric potential Φ, discussed in section V. We then find[13] for the

exchange of energy and momentum between the particle distribution and the modes

dH

dt
= ∂tH = −ρ‖B

2∂tα+ ∂tΦ,
dPζ
dt

= −∂ζH = ρ‖B
2∂ζα− ∂ζΦ. (3)

Because of the small value of α, the terms in Eqs. 3 are typically four orders of magni-

tude smaller than those for stepping the four particle variables ψp, θ, ζ, and ρ‖, and thus
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these equations are much more accurate than the numerically found energy and momentum

changes calculated from the stepped variables, which depend on the cancellation of large

terms. In particular, a time independent perturbation will result in a lack of particle energy

conservation due to numerical error, whereas the energy transfer by Eq. 3 is exactly zero.

Similarly, an axisymmetric perturbation will erroneously result in modification of Pζ but

Eq. 3 will give exactly zero. With a general perturbation the values of particle energy and

canonical momentum obtained by stepping ψp, θ, ζ, and ρ‖, will always contain a significant

amount of noise as compared to the values given by Eqs. 3. Of course to evaluate Eqs. 3

the particles must be advanced in the four dimensional space of ψp, θ, ζ, ρ‖, and the energy

transfer is evaluated at the particle location in this space, the improved accuracy is only in

the value of the energy transfered to the modes, not in the particle orbits. But to study

mode growth and saturation, it is precisely the energy and momentum transfered to the

modes which is of interest. Using changes in particle energy and momentum to find the

transfer to the modes depends on subtracting terms of order one to obtain terms of order

α, typically four orders of magnitude smaller.

Kinetic Poincaré plots, made following high energy particle orbits in the presence of

a perturbation with a single toroidal mode number and frequency, and recording points

whenever nζ − ωt = 2πk with k integer, indicate mode-particle resonances and the island

structure of these resonances. Location of mode-particle resonances is also a very delicate

process requiring high accuracy[14–16]. In the presence of a single mode, with α and the

Hamiltonian functions of nζ − ωt we have

ωṖζ = nḢ. (4)

For a single mode this condition restricts the motion of particles in the Pζ , E plane to a line

nE − ωPζ = constant, (E, the energy, is the value of the Hamiltonian) due to the action of

a mode, defining the possible diffusion in this plane.

Including collisions µ is not constant, and using µ = v2
⊥/(2B) and λ = v‖/v we find

dµ =
2E

B
λdλ (5)

and a simple energy conserving pitch angle scattering operator can be used for the changes

in λ. In addition, a slowing down operator giving the slowing of high energy particles due

to collisions with electrons can easily be included.
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FIG. 2: Harmonics, resonance domains, and a sample Poincaré plot, mode 1, n = 2, 103 kHz, µB

= 20 keV

III. RESONANCE DETERMINATION

A general method for numerically determining the existence of or the destruction of

good KAM[17] surfaces can be obtained using the method of phase vector rotation[14–16].

Consider following two orbits located nearby one another. Examine a Poincaré section in

Pζ , θ and define the angle χ to give the orientation of the vector joining them in this plane.

If good KAM surfaces exist χ can change by at most an angle of π, due to their relative

velocity in the angular coordinate. However two orbits within an island rotate around one

another with χ increasing with the rotation about the island O-point, also referred to as

the bounce frequency of a particle trapped in the wave, which increases with the size of the

island. The rate of change of χ is a function of distance from the island O-point, dropping

to zero at the separatrix.

In Figs. 2-11 are shown the harmonic content, the location of resonances in the Pζ , E

plane determined by this method, as well as a Poincaré plot shown along the line E−Pζn/ω =

E0 in this plane for the ten modes of the discharge. The constant E0 is simply the particle

energy in the frame rotating with the mode. The points in the Pζ , E plane clearly indicate

the major resonances shown in the Poincaré plots. For this evaluation the magnetic moment

was constant, with µB = 20 keV, where the distribution is strongly peaked. Here and in

the following, B in these expressions refers to the value at the magnetic axis, so µB is a

constant, simply converting the value of the magnetic moment to units of energy. This

method can be used to examine the resonance locations for any value of µB, and sometimes

this can be instructive. The method of phase vector rotation can be used with many values

6



FIG. 3: Harmonics, resonance domains, and a sample Poincaré plot, mode 2, n = 3, 104 kHz, µB

= 20 keV

FIG. 4: Harmonics, resonance domains, and a sample Poincaré plot, mode 3, n = 4, 155 kHz, µB

= 20 keV

FIG. 5: Harmonics, resonance domains, and a sample Poincaré plot, mode 4, n = 4, 158 kHz, µB

= 20 keV
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FIG. 6: Harmonics, resonance domains, and a sample Poincaré plot, mode 5, n = 4, 125 kHz, µB

= 20 keV

FIG. 7: Harmonics, resonance domains, and a sample Poincaré plot, mode 6, n = 5, 157 kHz, µB

= 20 keV

FIG. 8: Harmonics, resonance domains, and a sample Poincaré plot, mode 7, n = 5, 111 kHz, µB

= 20 keV
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FIG. 9: Harmonics, resonance domains, and a sample Poincaré plot, mode 8, n = 5, 116 kHz, µB

= 20 keV

FIG. 10: Harmonics, resonance domains, and a sample Poincaré plot, mode 9, n = 5, 120 kHz, µB

= 20 keV

FIG. 11: Harmonics, resonance domains, and a sample Poincaré plot, mode 10, n = 6, 116 kHz,

µB = 20 keV
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of µ present, but for comparison with a Poincaré plot a single value of µ must be selected,

and the Poincaré plot shows the resonances only along the line E − Pζn/ω = E0.

The modes differ significantly regarding the location of the major resonances. In Fig.

2 we see that there is a major resonance in mode 1, seen both in the Pζ , E plane and in

the Poincaré plot near the left bounding surface, which corresponds to the plasma edge.

The right hand edge corresponds to the magnetic axis. The triangle shaped region at the

bottom of these plots is the domain of trapped particles. Mode 2, shown in Fig. 3, also

has a significant resonance near the plasma edge, but a stronger one more near the plasma

center. These plots give insight as to what kinds of beam particle redistribution each mode

is capable. Modes 2,4,6,7,9,10 have strong resonance in the center of the domain of canonical

momentum, extending over a large range of energy. Modes 1,5,8 and 9 have strong resonances

very near the magnetic axis.

The domains of broken KAM surfaces depend on the existence of a resonance, but this

is not sufficient. It is also necessary that a relevant harmonic be reasonably large at the

radius at which the resonance occurs. Particle orbits, because of drift motion, do not stay

on a particular flux surface. But harmonic amplitudes are functions of the flux surface, and

can be localized, thus a particle can move in and out of the region where the amplitude is

large in a single orbital transit. Thus analytic estimates of resonance are not reliable, and

methods which exist[18],[19] depend on integration over actual particle orbits.

IV. DELTA F FORMALISM

Now consider mode evolution using a δf procedure. We assume the initial particle distri-

bution is in steady state through the processes of slowing down, collisions, and a continuous

source, which could be either beam injection or alpha particle production. Write the parti-

cle distribution as f = f0 + δf where the distribution in the absence of the modes f0 is a

function of E, Pζ , µ, and is independent of time, and the modification of the distribution

δf is due to the modes. Following particle orbits

d

dt
f = 0. (6)

Then to order α, ν, using the fact that Ė and Ṗζ are order alpha and µ̇ is of order ν

d

dt
δf = −[∂Ef0Ė + ∂Pζ

f0Ṗζ + ∂µf0µ̇] = −R, (7)
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where Ė and Ṗζ refer to a single eigenmode, N , with definite values of n and ω, but which

may consist of many poloidal harmonics. The full change in the distribution is given by

the sum over all eigenmodes present. However, we assume that the distribution f0 is in

steady state through the combination of collisions and beam injection, and thus for the

time evolution of δf we do not include the term ∂µf0µ̇. The modification of the particle

distribution of interest is that due to the modes only.

Now define a marker distribution function in extended phase space[20], F (ψp, θ, ζ, ρ‖, w, t)

with w the particle weight, and

d

dt
F + ∂w(ẇF ) = 0. (8)

In the simulation F has the Klimontovich representation

F (ψp, θ, ζ, ρ‖, t) =
∑

j

δ(ψp − ψp,j(t))δ(θ − θj(t))δ(ζ − ζj(t))δ(ρ‖ − ρ‖,j)δ(w − wj(t)), (9)

with j the particle index and g(ψp, θ, ζ, ρ‖, t) =
∫

dwF is the numerically loaded and evolved

distribution function and δf is represented by

δf(ψp, θ, ζ, ρ‖, t) =
∑

j

wδ(ψp − ψp,j(t))δ(θ − θj(t))δ(ζ − ζj(t))δ(ρ‖ − ρ‖,j(t)). (10)

Integrating Eq. 8 over w we confirm that d
dt
g = 0. Multiply Eq. 8 by w and integrate by

parts. We then find
∫

dwwḞ =

∫

dwẇF. (11)

Thus

d

dt
δf =

∫

dwẇF,

∫

dwẇF = −R. (12)

Try a solution of the form ẇ = (a − bw)(−R), giving ag(E,Pζ , µ, t) − bδf(E,Pζ , µ, t) = 1.

Write g = g0 + δf , giving a = b = 1/g0, so

dw

dt
=

w − 1

g(ψp, θ, ζ, ρ‖, 0)
R. (13)

This formulation is extremely useful, as it does not require consideration of the time evolution

of the marker distribution, and using the form of R the evolution of w is given by the

expressions (Ė/g0)∂Ef0 and (Ṗζ/g0)∂Pζ
f0. Normally simulations assume that the initial

perturbation of the distribution δf is zero, so initially w(0) = 0.
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V. MODE STEPPING

The equilibrium magnetic field is given by

~B = g∇ζ + I∇θ + δ∇ψp, (14)

and in an axisymmetric equilibrium using Boozer coordinates g and I are functions of ψp

only. The perturbation has the form

α =
∑

m,n

Anαm,n(ψ)sin(Ωmn), Φ =
∑

m,n

AnΦm,n(ψ)sin(Ωmn), (15)

where n refers to a single mode with definite toroidal mode number and frequency, but many

poloidal harmonics m and Ωmn = nζ − mθ − ωnt − φn, with φn the mode phase, and for

ideal modes the electric potential Φ is chosen to cancel the parallel electric field induced by

d ~B/dt, requiring

∑

m,n

ωBαm,ncos(Ωmn) − ~B · ∇Φ/B = 0.

and in Boozer coordinates

(gq + I)ωαmn = (nq −m)Φmn.

The perturbation α is related to the ideal displacement ~ξ,

αmn =
(m/q − n)

(mg + nI)
ξψmn.

The numerically produced eigenfunctions are normalized with the largest harmonic ξψmn(ψp)

having maximum amplitude 1. Thus the amplitude An is the magnitude of the ideal dis-

placement caused by this harmonic, normalized to the major radius R.

Stepping equations for modes were previously derived[20], but in that derivation the ~ξmn

formed an orthonormal basis, not a possible choice for the case of a single mode comprising

several poloidal harmonics with fixed relative amplitudes. Stepping in time of the displace-

ment

~ξ =
∑

mn

An~ξmn(ψp)sin(Ωmn) (16)

is given by

∑

mn

2ωn~ξmn(ψp)[Ȧncos(Ωmn) + Anφ̇nsin(Ωmn)] = −ν2
A
~S (17)
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where the frequency νA is the local Alfvén frequency and the source ~S is related to mode-

particle energy transfer through

~v · ~En = Anωn
∑

m

~S · ~ξmn(ψp)cos(Ωmn), ~v · ∂t ~En = Anω
2
n

∑

m

~S · ~ξmn(ψp)sin(Ωmn) (18)

and ~En is the electric field corresponding to the displacement ~ξn =
∑

m
~ξmnsin(Ωmn),

~En = Anωn(~ξn × ~B)cos(Ωmn). (19)

Multiply Eq. 17 by
∑

m
~ξmn(ψp)cos(Ωmn) and

∑

m
~ξmn(ψp)sin(Ωmn) and integrate over

ψp, θ, ζ, giving

DnωnȦn = −ν2
A

∑

m

∫

~S · ~ξmn(ψp)cos(Ωmn)dψpdθdζ, (20)

DnωnAnφ̇n = −ν2
A

∑

m

∫

~S · ~ξmn(ψp)sin(Ωmn)dψpdθdζ (21)

with Dn = 4π2
∑

m

∫

ξ2
mn(ψp)dψp. Now use Eqs. 18 and the fact that ~v · ~En is the en-

ergy transfer between mode and particle, given by dH/dt = −ρ‖B
2∂tα + ∂tΦ, and use the

Klimontovich representation for the particle distribution to do the integrals, giving

dAn
dt

=
−ν2

A

DnωnAn

∑

j,m

wn
[

ρ‖B
2αmn(ψp) − Φmn(ψp)

]

cos(Ωmn) − γdAn, (22)

dφn
dt

=
−ν2

A

DnωnA2
n

∑

j,m

wn
[

ρ‖B
2αmn(ψp) − Φmn(ψp)

]

sin(Ωmn), (23)

with j the particle index and ψp, θ, ζ is the position of particle j. The linear damping rate

γd is due to the continuum, electron and thermal ion Landau damping, and radiation, and

all terms in the sums are evaluated at the coordinates of particle j, and wn the weight of

particle j for mode n. Note that there are extra factors of An in the denominator compared

to reference [20] because also the weight wn is proportional to An. Note also that particle

collisions and slowing down refer to collisions with a background particle species, not to

particle-mode transfer. Thus for use in the mode stepping equations the weights are not

stepped using the drive resulting from ∂µfµ̇. Collisions and slowing down only affect the

mode evolution by moving particles in and out of the resonances.

The time evolution of the phase φn produced by the particle distribution is equivalent to

a modification of the mode frequency through ω + φ̇n, and can describe mode chirping.
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FIG. 12: γ/ω versus time, Poincaré plots with 1000 transits and 40 transits. In one bounce time

the distribution in an island is flattened, and if the amplitude is fixed and there are no collisions

or slowing down of particles, causing them to enter or leave resonance, the mode drive stops.

VI. MODE-PARTICLE ENERGY EXCHANGE

In Fig 12 is shown the result of a simulation showing the evolution of the mode growth

rate with a given initial distribution, no particle source, collisions or slowing down. The

mode amplitude was fixed at a value giving a large resonance. It is seen that the growth

rate drops to zero in the bounce time of trapped particles in the mode, at which point the

energy and momentum densities in the island have been completly flattened, leaving nothing

to further drive the mode. The first Poincaré plot shows the resonant island structure, using

1000 toroidal transits to make the structure clear. The transit time is simply the time for a

toroidal transit of a particle with characteristic energy at the magnetic axis with pitch equal

to one. The second Poincaré plot shows two particle trajectories trapped in the resonance for

the time it takes for the growth rate to drop to zero, forty transits, showing that this is simply

the mean bounce time in the resonance. The bounce time is shorter for larger islands, and

thus larger islands flatten the distribution more quickly. Because the bounce time sepends

on distance from the resonance elliptic point, rotation about this point produces fine scale

mixing, leading irreversibly to a state of higher entropy. The time scale for mode saturation

is much shorter than the time scale for equilibrium changes. But a steady state high energy

distribution, because of slowing down and collisions, must be continually maintained by a

source. In the case of a beam profile the source is beam injection, in the case of alpha

particles it is the fusion source.
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FIG. 13: Evolution of particle weight in resonance.

The δf formalism produces the same result through the particle weights. In Fig. 13 is

shown the kinetic Poincaré plot of a particle trapped in resonance, for fixed mode amplitude

and no particle collisions or slowing down. Also shown is the particle weight as a function of

time. The weight grows rapidly until the particle has completed a bounce time, after which

it no longer changes, the total mode drive having been extracted. Additional drive to the

mode can come only from new particles entering the resonance, through scattering, energy

loss through drag, or through mode growth, increasing the size of the island.

Note that these simulations are very different from simulations of electrostatic or elec-

tromagnetic turbulence, where resonances are continually appearing and disappearing as

the fields change. In the present situation the resonances are very stable results of the high

energy particle distribution and are essentially constant over the whole simulation except for

becoming larger as the amplitudes grow, unless nearby resonances overlap, producing larger

stochastic domains. In this case it is not simple resonance bounce time that determines the

time scale for distribution flattening, but the time scale for stochastic transport.

VII. NUMERICAL METHOD FOR THE GENERAL CASE

The variables determining mode growth and saturation are the drive, given by partial

derivatives of f and the slowing down and collision frequencies and the damping. Growth

is determined by an imbalance between the rate at which free energy is introduced into

the island and the mixing rate, and saturation occurs when the island grows to a point
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where these rates are balanced[21]. Saturation occurs because the mixing rate increases

with island size and eventually equals the energy source rate, allowing a local flattening of

the distribution within the island and eliminating the mode drive.

To carry out simulations of actual discharges, we need representations of the magnetic

equilibrium, the high energy particle distribution, the spectrum of modes along with the

eigenfunctions ξm,n(ψp) and frequencies supplied by NOVA[9], values for collisional drag

and scattering rates, and the drive terms resulting from partial derivatives of the particle

distribution f0. In NSTX typical beam injection is 6 × 1020/sec and slowing down is from

20 to 100 msec, so the number in the beam is about 6 × 1019. Transit time is typically

three microseconds, so complete redeposition through beam injection occurs in 30000 tran-

sits. Typical simulations are shorter than this, and also short compared to the pitch angle

scattering time.

To advance the particle weights, we need the partial derivatives of f0. The numerical

method used is the following. Divide the space of E,Pζ , µB into bins. With Monte-Carlo

methods, develop a list of particles and construct a numerical distribution fE,Pζ ,µ. This can

be done once at the beginning of the simulations, and it can be made smoother by advancing

the initial distribution in time with a small collision frequency and slowing down operator,

recording particle locations in bins every time step. However this distribution is not time

independent. In any Hamiltonian system H(p, q), the invariant phase space volume element

is given by dpdq. In our case it is given for each value of µ by

dPζdPθdθdζ (24)

so the time independent distribution function is the distribution in this space. Distributions

are axisymmetric, so the variable ζ will be ignored. To find the correct time independent

distribution function we must construct the Jacobian for the contraction from the space of

dPζdPθdθdµ to dEdPζdµ. Note that this is an irreversible contraction to a space of smaller

dimension. The full particle distribution cannot be reconstructed given f(E,Pζ , µ), which

gives the space of all particle orbits but not the position of particles on the orbits. This

Jacobian is found by loading particles uniformly in the space given by Eq. 24 and then

finding their distribution in dEdPζdµ, which we donote by J(E,Pζ , µ). The correct time

independent distribution function is then

f0(E,Pζ , µ) = fE,Pζ ,µ(E,Pζ , µ)/J(E,Pζ , µ) (25)
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FIG. 14: Example NSTX beam distribution for shot 141711. The energy E ranges from 20 to 70

Kev, and the value of µB from 0 to 70 Kev. The canonical momentum Pζ/ψw ranges from -.5 to

.5. In each plot the third variable is summed over.

This reduction is possible because only the changes in E and Pζ are necessary to find the

modification of the mode. Of course for evaluations of mode-particle energy transfer these

quantities are evaluated at each particle location in the full four dimensional guiding center

phase space ψp, θ, ζ, and ρ‖, plus the value of µ.

An example is shown in Fig. 14 for the NSTX distribution for shot 141711 obtained from

NUBEAM in TRANSP. An initial deposition of 300,000 particles was loaded and advanced

for 105 steps or 2000 toroidal transits, resulting in 3 × 1010 entries in the 50 × 50 × 50 bins

for fE,Pζ ,µ(E,Pζ , µ). During the time evolution, very small values of collision and drag were

employed in order to produce smoothing in the variables E and /mu. The particle energy

ranges from 20 to 70 keV and µB from 0 to 70 keV . Note that the obtained distribution

naturally attenuates above this energy, no significant population of high energy particles
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FIG. 15: Examples of the two dimensional spline fits to f0 for fixed µ. In the first plot µB = 49keV ,

so particle energy is restricted to above this, and in the second µB = 7keV . The energy ranges

from 20 keV to 70 keV . Canonical toroidal momentum Pζ , normalized to ψw, ranges from -.5 to

.5.

has been omitted. The canonical momentum Pζ is normalized to ψw and ranges from -0.5

to 0.5. The Jacobian is then constructed by loading particles uniformly in θ, Pθ, Pζ , µ with

Monte Carlo techniques and then binning them in E,Pζ , µ to give J(E,Pζ , µ). This method

produces a time independent initial distribution which, with additional smoothing, can be

used to construct a spline fit.

The spline fit is made possible by observing that partial derivatives are needed only in

the variables Pζ and E, so for each value of µ a two dimensional spline is constructed. The

spline representation requires nine coefficients at each of the 50×50 grid points, giving with

50 values of µ, a total of 1.125× 106 coefficients to store for a given distribution. Examples

of the obtained two dimensional splines are shown in Fig. 15. In the first plot µB = 49keV

and in the second µB = 7keV . The energy range is from 20 keV to 70 keV , but since E

must be greater than µB it is restricted to larger energies in the first plot. Canonical toroidal

momentum Pζ , normalized to ψw, ranges from -0.5 to 0.5. The marker particles were loaded

uniformly in Pζ , Pθ, θ, µ, giving a time independent distribution g(E,Pζ , µ) which is also

uniform in E,Pζ , µ, since this loading simply reproduces the Jacobian. Thus the stepping

equation for the weight becomes

dw

dt
=

w − 1

g(E,Pζ , µ)
[∂Ef0Ė + ∂Pζ

f0Ṗζ ]. (26)

The use of a uniform distribution for g is much more accurate than having the marker
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FIG. 16: An example of time evolution of individual modes using NOVA damping rates with

collision time of 200 msec. Shown is the amplitude vs time, with time in units of toroidal transits.

distribution reproduce the actual particle distribution f0 because there are large domains in

the space of E,Pζ , µ where f0 is very small, and ∂Ef0/f0 can possess noise of order one.

The evolution of each mode was carried out separately, so there was no mode-mode

interaction in these simulations. The simulations included pitch angle scattering and slowing

down with time scales of 200 msec, probably somewhat higher than actual. Saturation

amplitudes scale as ν2/3 so the obtained saturation levels are probably large, but in any

case all modes must be advanced together in order to include mode-mode coupling and to

compare with experimental values. The initial growth rate is given in the first 50 transits,

and by 300 transits the growth rates for most modes have dropped to very small values.

In this case the transit time is about three microseconds. The growth rate and the mode

amplitude evolution are much smoother than in previous simulations[20, 22], in spite of the

use in that case of analytic representations of the particle distributions, due to the noise free

properties of Eqs. 3 as well as the use of splined partial derivatives of the distribution.

Time evolution of individual modes is shown in Fig. 16, using 200,000 marker particles.
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All modes evolve to stable saturated levels. The final time for these simulations, equal to 5

msec, corresponds to a small fraction of a collision time, with νT = .0025

As seen in Figs. 2- 11 a single mode produces resonance islands typically at several

different locations in the plasma. Linear theory uses analytic resonance positions and it is

not clear that all are completely or correctly given. But all resonance islands, unavoidable in

a full simulation, and existing in the real plasma, can contribute either to the stabilization

or destabilization of the mode, depending on the nature of the particle distribution.

In table I is shown the mode spectrum, giving the mode number N , the toroidal mode

number n, the range of poloidal mode numbers, the mode frequency, and growth rate from

linear theory as well as damping from the continuum and electron Landau damping. The

entry γN is the numerically observed growth rate. All these simulations were carried out

with collision and slowing down times of 200 msec, a collision rate somewhat larger than

that in the NSTX discharge examined.

Figure 17 is a comparison of the growth rates given by NOVA and those obtained in the

present simulation. The values of growth rate found by NOVA are often in disagreement

with the values given in these simulations, with agreement for some modes only within

a factor of five. The largest discrepancy in growth rate occurs for mode 8, which has

principle resonances near the magnetic axis. Part of this disagreement can perhaps be

ascribed to the fact that the distribution function used in NOVA was an analytic slowing

down distribution. Thus it is perhaps the case that the present values are more reliable

than those given by NOVA. But it is not clear that the present analysis of mode damping

is sufficiently accurate to properly give the experimentally observed growth rates. As final

results depend on collision rates, slowing down rates, and damping values, this must be

regarded as a weakness of the present analysis as regards comparison with experiment.

In addition, modes were advanced separately, there was no mode-mode coupling through

modification of the particle distribution. Thus comparison of saturation amplitudes is not

relevant at this point in the development of the model.
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FIG. 17: Numerical and NOVA growth rates.

























































N n m ω kHz γ/ω γN/ω γd/ω 103Asat harmonics

1 2 1 − 7 103 .138 .06 −.0047 1 1 − 7

2 3 2 − 10 104 .025 .016 −.0047 0.4 8 − 16

3 4 3 − 11 155 .027 .006 −.0039 0.15 17 − 25

4 4 3 − 11 158 .008 .005 −.00168 0.8 26 − 34

5 4 2 − 10 125 .023 .05 −.0021 5 35 − 43

6 5 5 − 13 157 .008 .002 −.00025 0.9 44 − 52

7 5 5 − 13 111 .017 .025 −.0014 1.5 53 − 61

8 5 3 − 11 116 .01 .08 −.0013 3 62 − 70

9 5 3 − 11 120 .013 .034 −.0031 1.9 71 − 79

10 6 7 − 15 116 .017 .018 −.0009 2 80 − 88

























































Modes observed in NSTX shot 141711 at t = 470 msec. Listed is the toroidal

mode number n, the range of poloidal mode numbers, the frequency in kHz, the

growth rates given by NOVA and by the present simulation, the damping due

to the continuum and electron Landau damping, the saturated amplitudes, and

the range of the harmonics included.
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FIG. 18: Distribution modification, for µB = 21 keV, mode 5, n = 4 and 125 kHz.

A simple model for mode saturation[23] gives

ωb =
νeffγL
γd

(27)

with ωb the bounce frequency in the resonance, γL the linear growth rate, γd the damping,

and νeff = ν(ω/ωb)
2 is the effective collision frequency. This expression is useful to compare

scaling of saturation for a fixed mode with different values of collision frequency or damping.

But in the present case each mode has its own unique resonance, and hence ωb, and there

is little information to extract using this expression. A separate publication[21] discusses

saturation of a single mode as a function of collision frequency. See also [22].

FIG. 19: Distribution modification, for µB = 28 keV, and the change in the energy distribution

for Pζ/ψw = −0.4, mode 8, n = 5 and 116 kHz.
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FIG. 20: Distribution modification, for µB = 21 keV, mode 9, n = 5 and 120 kHz.

FIG. 21: Distribution modification, for µB = 21 keV, mode 10, n = 6 and 116 kHz.

VIII. DISTRIBUTION MODIFICATION

To find the distribution modification construct δf by sorting the test particles into bins

in E,Pζ , µ using weight w

δf(ψp, θ, ζ, ρ‖, t) =
∑

j

wδ(ψp − ψp,j(t))δ(θ − θj(t))δ(ζ − ζj(t))δ(ρ‖ − ρ‖,j(t)),

and obtain good statistics by averaging over a number of steps.

We then have

f(E,Pζ , µ) = f0(E,Pζ , µ) + δf(E,Pζ , µ)

where the two terms must be weighted acccording to the number of entries in each.

There is obviously an enormous amount of data available in the 50x50x50 data points for

the initial and the modified distribution functions, giving detailed information concerning
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the change of the distribution for each value of µ. Figures 2 to 11 give examples of the

harmonics and the principle resonances, as well as example Poincaré plots. These, as well

as the magnitude of the saturation amplitude, can be used to select domains of interest

for distribution modification. Examples of distribution modification are shown for modes

5, 8, 9 and 10 in Figs. 18-21. These show only the modification near µB = 20keV , where

the distribution is peaked. Similar plots can be obtained for all 50 values of µB. Other

modes that saturate at small amplitude do not produce noticable modification of the beam

distribution. In addition to these two dimensional plots, a distribution can be obtained in

a single variable with the other two variables fixed. As an example in Fig. 19 is shown the

initial and modified ditribution in energy, for fixed Pζ/ψw = -.4, µB = 28 keV.

A future publication will consider simulations with multiple modes present, interacting

through the mutual modification of the distribution function. From the present results we

conclude that modes saturating at low levels will probably not significantly affect other

modes.

IX. CONCLUSION

Alfvén modes driven unstable by energetic particles, either injected beam particles or

fusion generated alpha particles, can evolve to amplitudes which produce large scale mod-

ification of the original high energy particle distribution. Thus it is critical to be able to

estimate the saturation amplitudes of such modes in order to predict their effect on at-

tempts to reach fusion producing temperature and density. This paper presents the initial

development of a formalism and code capable of predicting saturation amplitudes using ac-

tual numerically generated equilibria, high energy particle distributions, and unstable mode

eigenfunctions. A reduced noise means of evolving a spectrum of Alfvén modes up to sat-

uration has been developed, using a spline representation of the observed particle beam

distribution given by TRANSP and the spectrum of eigenmodes for this distribution given

by NOVA. The beam distribution is fit with a spline function of E and Pζ for each value

of µ, allowing smooth partial derivatives in these first two variables. The low noise level of

the simulations comes from the use of this representation of the beam distribution as well

as the use of the exact mode-particle energy and momentum transfer given by Eq. 3. The

method is illustrated using NSTX shot 141711. Poincaré plots and plots of phase vector
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rotation are used to understand and illustrate the resonance locations, and the δf method

is used to examine the modified particle distribution. Several of the modes do not produce

a significant modification of the initial beam particle distribution. These simulations repre-

sent only an initial exploration of the method. The modes were evolved one at a time, so

mode-mode coupling through the particle distribution was not included. A future publica-

tion will explore multi-mode simulations, and also use improved values of collisions, drag,

and damping, to better allow comparison with experiment.
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