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Collisional dependence of Alfvén mode saturation in tokamaks
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Abstract

Saturation of Alfvén modes driven unstable by a distribution of high energy particles as a function

of collisionality is investigated with a guiding center code, using numerical eigenfunctions produced

by linear theory and numerical high energy particle distributions. The most important resonance

is found and it is shown that when the resonance domain is bounded, not allowing particles to

collisionlessly escape, the saturation amplitude is given by the balance of the resonance mixing time

with the time for nearby particles to collisionally diffuse across the resonance width. Saturation

amplitudes are in agreement with theoretical predictions as long as the mode amplitude is not so

large that it produces stochastic loss from the resonance domain.
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I. INTRODUCTION

The effect of Alfvén modes on energetic particles in tokamaks is important in general,

and could be of significance for ITER[1]. It has been demonstrated that high energy injected

beam driven Alfvén modes can significantly modify the beam particle distribution, either

through profile modification or induced loss[2–6]. Previous work concerning the induced loss

of beam particles due to Alfvén modes has used experimental values for mode amplitudes.

Work is needed to be able to correctly predict mode amplitudes in current devices and in

ITER in order to understand the presently observed beam density reduction and predict

expected fast ion transport due to Alfvén modes. Significant loss can greatly diminish

plasma heating and thus compromise the ability to achieve a burning plasma. When a

sufficient number of modes reach a critical amplitude, stochastic transport of beam ions

takes place. Thus the effect of the modes on beam density is a sensitive function of the mode

saturation amplitudes. Mode saturation is a function of collisionality, since collisions move

particles in and out of resonances responsible for instabilities, and there are several previous

theoretical studies of the dependence of mode saturation on particle collisionality[7–10].

These studies however make use of analytic particle distributions, usually a simple bump

on tail distribution, and also employ nonlinear fluid equations and a simple model mode

eigenfunction. In this work we examine the dependence of mode saturation amplitudes on

particle collisionality for a particular discharge in NSTX[11], making use of the numerical

high energy beam particle distribution, and the full mode structure as predicted by a stability

code, including many poloidal harmonics.

Solving the drift kinetic equation in the presence of Alfvén modes driven unstable by a

distribution of high energy particles and advancing the mode amplitudes and phases in time

is done with the use of a δf formalism, whereby the initial distribution f0 is assumed to be

a steady state high energy particle distribution in the absense of the modes, and f = f0 +δf

describes the particle distribution in the presence of the modes. The Hamiltonian is written

as H = H0 + H1 with H0 giving the unperturbed motion, conserving particle energy E,

toroidal canonical momentum Pζ , and magnetic moment µ. The δf formalism and the

construction of the initial high energy particle distribution are described in detail in another

publication[12]. It is important to ascertain whether the scaling predictions arising from

idealized models is reproduced with a particle code using a δf formalism, actual mode
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eigenfunctions, and representations of the full equilibrium particle distribution.

In Fig. 1 is shown the NSTX equilibrium used, the q profile, and the potential associated

with toroidal rotation. Plasma rotation, by modifying local toroidal velocities, can change

the existence and location of mode-particle resonances.

FIG. 1: Equilibrium, showing the poloidal cross section with X and Z in centimeters (left), the q

profile (center), and radial potential (right) for NSTX discharge 141711.

In section II we briefly present the guiding center formalism, the representation of the

mode used along with equations for advancing the modes in time, and the δf formalism

used to find mode growth. In section III we give the numerical results. In section IV we

present a rapid means of determining single mode saturation amplitudes and a comparison

with theoretical expressions. In section V are the conclusions.

II. GUIDING CENTER EQUATIONS

We use units of time given by ω−1
0 , where ω0 = eB/(mc) is the on-axis gyro frequency,

B the magnetic field strength, e the charge and m the particle mass, and units of distance

given by the major radius R. The basic unit of energy becomes mω2
0R

2, which can also be

written as (mv2/2)(2R2/ρ2), the gyro radius is ρ = v/B ≪ 1, and the magnetic moment

µ = v2
⊥/(2B) is of order ρ2[13].

Kinetic Poincaré plots, made following high energy particle orbits in the presence of

a perturbation with a single toroidal mode number and frequency, and recording points

whenever nζ − ωt = 2πk with k integer, indicate mode-particle resonances and the island

structure of these resonances. Location of mode-particle resonances is also a very delicate
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process requiring high accuracy[14–16]. The time scales of interest in mode saturation are

given by the linear growth rate, the collision rate, the diffusion rate of particles in the vicinity

of the resonance, and the resonance bounce frequency, giving the mixing time for particles

trapped within a resonance. Because of the dependence of bounce time within a resonance on

the distance from the resonance O-point, after a few bounce times the distribution within

the resonance is irreversibly flattened, giving a final mixed state of higher entropy. This

mixing time is thus a distribution averaged bounce time for particles within the resonance,

giving the time scale for the flattening of the distribution at the resonance.

The duration of resonance and the replenishment of that part of the distribution within

resonance is modified by particle collisions. Pitch angle scattering collisions, due to collisions

with the background ions, are given by a simple energy conserving operator[17].

The equilibrium magnetic field is given by

~B = g∇ζ + I∇θ + δ∇ψp, (1)

with ψp the poloidal flux, ζ a toroidal angle coordinate, and θ a poloidal angle coordinate.

The equilibrium is axisymmetric, thus independent of ζ. In an axisymmetric equilibrium

using Boozer coordinates g and I are functions of ψp only. The Hamiltonian is

H0 =
ρ2
‖B

2

2
+ µB + Φ (2)

with ρ‖ = v‖/B, µ the magnetic moment and Φ the electric potential[13]. Guiding center

equations advance the variables ψp, θ, ζ, and ρ‖, leaving µ a constant of the motion. The

toroidal canonical momentum is

Pζ = g(ψp)ρ‖ − ψp. (3)

The perturbation has the form δ ~B = ∇× α~B with

α =
∑

m,n

Anαm,n(ψ)sin(Ωmn), Φ =
∑

m,n

AnΦm,n(ψ)sin(Ωmn), (4)

where each mode has a given value of n and frequency, but many poloidal harmonics m,

Ωmn = nζ −mθ − ωnt − φn, where φn is the mode phase, and for ideal modes the electric

potential Φ is chosen to cancel the parallel electric field induced by d ~B/dt, requiring

∑

m,n

ωBαm,ncos(Ωmn) − ~B · ∇Φ/B = 0.
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and in Boozer coordinates

(gq + I)ωαmn = (nq −m)Φmn.

The perturbation α is related to the ideal displacement ~ξ,

αmn =
(m/q − n)

(mg + nI)
ξψmn.

The numerically produced eigenfunctions are normalized with the largest harmonic ξψmn(ψp)

having maximum amplitude 1. Thus the amplitude An is the magnitude of the ideal dis-

placement caused by this harmonic, normalized to the major radius R, which is 100 cm, as

seen in Fig. 1.

Stepping equations[18] for modes, with j the particle index are given by

dAn
dt

=
−ν2

A

DnωnAn

∑

j,m

wn
[

ρ‖B
2αmn(ψp) − Φmn(ψp)

]

cos(Ωmn) − γdAn, (5)

dφn
dt

=
−ν2

A

DnωnA2
n

∑

j,m

wn
[

ρ‖B
2αmn(ψp) − Φmn(ψp)

]

sin(Ωmn), (6)

with Dn = 4π2
∑

m

∫

ξ2
mn(ψp)dψp. γd is a linear damping rate including damping due to

the continuum, radiation, thermal ion Landau damping, and electron Landau damping, and

all terms in the sums are evaluated at the coordinates of particle j. The frequency νA is

the local Alfvén frequency and wn is the weight of particle j for mode n. Collisions alter

the mode evolution through the modification of the particle distribution, which of course

modifies the values of Eqs. 5, 6. Mode saturation occurs when the distribution has been

suficiently flattened in the vicinity of the resonances that the effective mode drive, including

the damping and the effect of collisions, is reduced to zero.

The steady state distribution f0 is a function only of the particle energy E, the canonical

momentum Pζ , and the magnetic moment µ. Since the mode frequencies under consideration

are much below the cyclotron frequency, the modes do not change µ. The particle weights,

which record the effect of the modes on the distribution, are stepped according to

dw

dt
=

w − 1

h(ψp, θ, ζ, ρ‖, 0)
[Ė∂Ef0 + Ṗζ∂Pζ

f0]. (7)

with h(ψp, θ, ζ, ρ‖, t) the distribution of marker particles, and the exchange of energy and

momentum between the particle distribution and the modes is given by

dE

dt
= ∂tH = −ρ‖B2∂tα+ ∂tΦ,

dPζ
dt

= −∂ζH = ρ‖B
2∂ζα− ∂ζΦ. (8)
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FIG. 2: Harmonics of the 111 kHz, n = 5 mode with 5 ≤ m ≤ 13 (left). Modes with m < 8 are too

small to be seen, and the peaks, from left to right, correspond to modes with m = 8, 9, 10, 11, 12, 13,

in that order. The beam particle distribution in µ, (right) with particle density in arbitrary units,

is seen to be strongly peaked at µB = 20 keV.

The full particle distribution is given by f = f0 + δf and

δf(ψp, θ, ζ, ρ‖, t) =
∑

j

wδ(ψp − ψp,j(t))δ(θ − θj(t))δ(ζ − ζj(t))δ(ρ‖ − ρ‖,j(t)). (9)

with the summation over j, the particle index. More detail concerning the δf formalism is

given in reference [12].

III. NUMERICAL RESULTS

We examine an unstable TAE mode in NSTX shot 141711 at 470 msec, with n = 5 and

a frequency of 111 kHz. In distinction to previous simulations[7–9, 19–21], this work makes

use of a numerical fit to the high energy beam distribution as given by TRANSP[22] rather

than an analytic approximation. Details of the method for constructing the representation of

the high energy beam distribution f0 are given in reference [12]. The mode radial structure

for the eigenvalues was supplied by NOVA[23, 24].

The radial structure of the poloidal harmonics of this 111 kHz, n = 5 mode are shown

in Fig. 2. Poloidal mode numbers range from m = 8 to m = 13. Also shown is the beam

particle distribution in the variable µB, in keV. The distribution is fairly strongly peaked
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at µB = 20 keV, as seen in Fig. 2, and we will use this value to examine the resonances.

The obtained time evolution is shown for several different values of collisionality in Fig. 3

using 200,000 marker particles. A convenient unit of time for particle motion is the time

for one toroidal transit of a particle on the magnetic axis with pitch 1 and a characteristic

energy. The mode initially overshoots the final saturation amplitude, obtained in a little

over 1000 toroidal transit times, or 3.3 msec. Initially the mode grows with γ/ω = .028,

and the damping, supplied by NOVA, was γd/ω = .0014. The linear growth rate observed

numerically is larger than that predicted by NOVA, given as γ/ω = .017. Thus this damping

rate is much smaller than the linear growth rate, and has little if any effect on the simulation

results. The collisionality ranged from 0.003 times a characteristic value of ν0 = 1/t0 with

t0 = 30 msec to 10 times this, giving a range of over three orders of magnitude. The resulting

saturation amplitudes ranged from 10−4 to 6 × 10−3, almost two orders of magnitude. The

largest collisionality value, ν = 10ν0 is seen to result in a saturation level approximately

equal to the next smaller value, ν = 3ν0, indicating that the collision rate has exceeded

the resonance mixing time, not allowing particles to transfer energy and momentum to the

mode before scattering out of resonance. For very low collisionality the saturation is less

well determined, as there are large oscillations in the final mode amplitude.

There are several pieces of data useful for checking theoretical predictions for mode sat-

uration amplitude. They include, beside mode amplitude and collision frequency, the inital

linear growth rate and damping, the bounce or mixing time within a resonance island at

saturation, the island width, or in cases of large amplitude, the extent of the stochastic

domain, and the local collisional diffusion rate due to the mode.

The domain of broken KAM surfaces[25] is determined by the method of phase vector

rotation[14]. This method is used to determine the significant resonances. The island width

for significant resonances is further envisioned using a Poincaré plot. In Fig. 4 is shown the

Pζ , E plane with the dominant resonance seen to be at Pζ/ψw = −0.1 for a particle energy

of 55 keV . There are of course no collisions present for the construction of this plot. The

resonance is in the domain of co-passing orbits, labelled P , bounded on the right by the

magnetic axis, on the left by the plasma edge, and on the bottom by the triangular domain

of trapped orbits, labelled T . The canonical momentum Pζ is normalized to the value of

poloidal flux at the plasma edge, ψw. This Poincaré plot is also made for µB = 20keV ,

along the path shown in blue in the Pζ , E plane, where the distribution is strongly peaked,
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FIG. 3: Time evolution of 111 kHz n = 5 TAE mode with collisionality of 0.003, 0.01, 0.03, 0.1,

0.3, 1, 3, 10 times the NSTX value of ν0 . Shown is the amplitude of the largest harmonic in units

of the major radius R, vs time.

and for the particle energy of 55 keV . There are of course resonances at all values of µ

and particular values of Pζ and E in the distribution. Nevertheless an examination of the

single strong resonance seen in Fig. 4 is sufficient to discover the saturation amplitude and

mechanism.

The resonant island can be shown in the variables E,θ or ψp,θ, or Pζ ,θ. Poloidal flux as

a choice is not useful, because even without a perturbation due to a mode, this quantity

varies strongly in an orbit due to drift motion. It is convenient to choose a variable that is

conserved in the absense of perturbations, and we have chosen the canonical momentum Pζ .
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FIG. 4: Plot of the Pζ E plane showing the domain of broken KAM surfaces in red, and the line

along which the Poincaré plot is made in blue (left), and the Poincaré plot (right). The mode

amplitude was A = 6×10−4 for a 111 kHz n = 5 TAE mode. The plots are made for µB = 20 keV,

where the distribution is strongly peaked, as seen in Fig. 2. The domains of passing and trapped

particles have been labled with P and T respectively.

IV. A RAPID MEANS OF DETERMINING MODE SATURATION

In this section we introduce a means of determining single mode saturation amplitude

without going through a lengthy simulation of mode growth. The method hinges on the

simple recognition that particles within the resonance give their energy to the mode on the

time scale of the particle bounce frequency. Since the bounce frequency is a function of

distance from the resonance O-point, the resulting motion produces a mixing of different

particle energies resulting in a partial flattening of the distribution. This is a collisionless

process. On the other hand new particles are diffusing into the resonance from the nearby

distribution at the local collisional diffusion rate, attempting to reestablish the density gra-

dient. Thus one can hypothesize that mode saturation occurs when the resonance island

has grown to the point where these two rates are balanced. But these two rates can be

quickly numerically determined for a given mode amplitude, giving a means of finding the

saturation amplitude without a lengthy simulation.

In Fig. 5 is shown a determination of the local collisional diffusion rate, the local colli-

sionless mixing time, and the approximate extent of the domain of broken KAM surfaces,
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FIG. 5: Local determination of < dP 2
ζ > versus time, in units of toroidal transits, with and without

collisions. The plot approaching a constant in time is collisionless (long dashes), and that becoming

linear in time is collisional (short dashes). In the collisionless case the width of the domain of broken

KAM surfaces is given by the constant asymptotic value W 2 = 2× 10−5 and in the collisional case

the collisional diffusion rate is given by the asymptotic slope, a rate of D = 9.8 × 10−8. Shown in

red are linear least square fits to the data, and with a solid vertical red line, the time taken as the

mixing time, at t = 50. The parameters for the simulation were E = 40keV , µB = 20keV , and

Pζ/ψw = −0.27, with amplitude A = 3 × 10−4 and collision rate ν = .003 ν0.

for toroidal canonical momentum Pζ with a mode amplitude of A = 3 × 10−4 using 5000

particles. This is not the saturation amplitude for any of the chosen values of collisional-

ity, simply an arbitrary amplitude to demonstrate the method. The plots are obtained by

launching particles with values of Pζ , E, and µB all near the resonance location shown in

Fig. 4, but with a distribution of phase relations with respect to the mode.

The collisional plot gives, with a collisionality of ν = .003 ν0, a value of diffusion D, with

< dP 2
ζ >= Dt, of D = 9.8× 10−8, units of normalized canonical momentum to transit time.

The brackets <> refer to a mean over the whole particle distribution, and the value of D is

of course the slope of the large time asymptotic value, fit with the red line. The collisionless

plot gives the time evolution of particles in the resonance as the distribution asymptotically

approach flattening. There is an initial large change in < P 2
ζ > as particles on the high
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FIG. 6: Time for local collisional diffusion across island width, Td = w2/D, and collisionless mixing

time Tm, for ν = .003 ν0, ν = .01 ν0, (left) and ν = .03 ν0, ν = .1 ν0 (right). The crossing of the

curves for Td and Tm gives a reasonably accurate determination of the saturation amplitude. The

mixing times are fit approximately with T = c/
√
A, as is shown in the smooth black curves with

no markings.

energy side of the resonance move to the low side, and vice versa, with a time given by the

particle bounce time in the resonance. This can be used as a definition of the mixing time,

made precise by using the first crossing of < dP 2
ζ > with the final saturation value, after

the initial overshoot, of Tm = 50. The final value of < dP 2
ζ > gives a determination of the

extent of the broken KAM surfaces, given by its asymptotic value, seen to be W 2 = 2×10−5.

Here island width W is given in terms of canonical momentum. The time for particles to

diffuse across W is then given by Td = W 2/D. Times are given in toroidal transit times and

distances in the space of canonical momentum.

In Fig. 6 are shown the values of the collisional diffusion time Td and the mixing time

Tm as a function of mode amplitude, for collision rates of ν = .003 ν0, ν = .01 ν0, ν = .03 ν0

and ν = .1 ν0. In all these cases as the mode amplitude increases the mixing time decreases,

indicating a more rapid resonance bounce, and the scaling is given by Tm = c/
√
A, as is

shown with the black lines giving an approximate fit for amall amplitude. The collisional

diffusion rate D is approximately linear in the mode amplitude, but the width of the domain

11



FIG. 7: Poincaré plot showing large scale stochasticity (left), and local determination of < dP 2
ζ >

versus time (right), mode amplitude A = 2.2 × 10−3. In the collisionless case (long dashes) the

width of the domain of broken KAM surfaces is approximately W 2 = 10−3 and the mixing time

is about Tm = 25, but in fact the last KAM surface has been broken and there is collisionless

diffusion leading to loss. The collisional case is shown with short dashes. Shown in red are linear

least square fits to the data.

of broken KAM surfaces is proportional to A2, as seen in Fig. 5, so the diffusion time

Td = W 2/D increases with A. The crossing of these two curves gives a determination

of the saturation amplitude. These values are seen to cross at the observed saturation

amplitude of the mode within numerical error of the determinations, indicating that the

balance between collisional diffusion across the domain of broken KAM surfaces and the

mixing time within this domain is a good method of determining saturation width. In

reference [21] a similar method is elaborated using orbital dynamics within an island, but

this kind of analysis depends on detailed information regarding the resonance and is of course

not simply applicable when the distribution is not given analytically.

However for larger collisionality the qualitative nature of these plots changes. In Fig. 7 is

a Poincaré plot showing large scale stochasticity, and local determination of < dP 2
ζ > versus

time, with and without collisions, with mode amplitude A = 2.2× 10−3. In the collisionless

case the width of the domain of broken KAM surfaces is approximately W 2 = 10−3 and the
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FIG. 8: Time for local collisional diffusion across island width, Td = w2/D, and collisionless mixing

time Tm, for ν = .3 ν0, ν = ν0 (left), and ν = 3ν0, ν = 10ν0 (right). The collisionless mixing time

values are of course independent of the collision value, the curves are labelled merely to denote the

domain of amplitude range for comparison with the collisional values. For all values of collisionality

equal or larger than ν = ν0 there is no steady state, the plots of Tm and Td do not cross.

mixing time is about Tm = 25, but in fact the collisionless value does not asymptote to a

constant, it is unbounded, the last KAM surface has been broken and there is collisionless

diffusion leading to loss. Shown in red are linear least square fits to the data. In Fig. 8 are

shown the values of the collisional diffusion time Td and the mixing time Tm as a function of

mode amplitude, for collision rates of ν = .3 ν0, ν = ν0, ν = 3 ν0 and ν = 10 ν0. In all these

cases the mixing time Tm is taken to be the value of the first crossing shown in Fig. 5, which

is an arbitrary but precise determination of the internal equilibration time. For values of

ν = ν0 and larger there is no interception of Td and Tm, also indicating that no saturation

occurs. This is the case for all higher values of collisionality. Clearly the destruction of

bounding KAM surfaces, allowing particles to leave the resonance domain, decreases the

mixing rate, and Tm increases or remains constant with increasing mode amplitude, instead

of decreasing as in Fig. 6.

In Table I is given the saturation data, including the collision frequency, the saturation

amplitude in units of major radius, the width W of the domain of broken KAM surfaces
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squared, with width in units of canonical momentum Pζ/ψw, the local mixing time Tm as

given by the second crossing of the collisionless time history with the final steady state

width, the local collisional diffusion rate D, and the derived time for diffusion across the

width of the domain, Td = w2/D. The times are given in units of the transit time. Also

shown is the constant k relating the amplitude A to the collisionality through Eq. 11. It is

seen that this number is reasonably constant for amplitudes for which the resonance is well

defined, but begins to fail as the stochastic domain is approached.

Table I. Mode Saturation Data












































ν ν sec−1 A w2 Tm D Td k

.003 0.10 .00013 2.716 × 10−6 78 3.53 × 10−8 77 6.3 × 10−3

.01 0.33 .00031 2.19 × 10−5 49 2.97 × 10−7 59 6.6 × 10−3

.03 1.00 .0006 1.02 × 10−4 45 1.9 × 10−6 52 6.0 × 10−3

.1 3.33 .0014 3.25 × 10−4 34 8.51 × 10−6 38 6.5 × 10−3

.3 10.0 .0022 1 × 10−3 25 2.87 × 10−5 27.8 4.9 × 10−3

1 33.3 .0042 2.2 × 10−3 22 9.75 × 10−5 22.5 4.2 × 10−3

3 100 .0055 4.3 × 10−3 22 1.78 × 10−4 18.5 2.6 × 10−3

10 333 .0055 4.× 10−3 22 2.6 × 10−4 15.4 1.2 × 10−3













































Some work has been done on determining mode saturation[7–9, 19]. In particular, a

simple model gives for saturation[8]

ωb =
νeffγL
γd

(10)

where νeff = νd(ω/ωb)
2 and ωb is the bounce frequency in the resonance, γL the linear

growth rate, νd the pitch angle scattering frequency, and γd the damping due to background

dissipation. Substituting the fact that ωb = 2π/Tm is proportional to
√
A, upon writing

ωb/ω = (A/A0)
1/2 we find

A = A0(ν/ω)2/3(γL/γd)
2/3 = kν

2/3
d (11)

where for all the simulations in this paper, A0 and k are constants. Other important pa-

rameters are the mode frequency, ω = 111 kHz, the damping γd/ω = .0014, and the linear

growth rate γ/ω = .028. Inserting γL/γd = 20 and for ν = .01ν0 = 11sec−1 we find

A0 = .067. Similarly substituting the value for the mixing time for this value of ν and
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writing ωb = 2πC/Tm we find C = 1.2, i.e. the mixing time numerically observed very

accurately gives the resonance bounce frequency.

V. CONCLUSION

The saturation of a toroidal Alfvén mode is studied using the numerical beam particle

distribution given by TRANSP, as a function of the pitch angle scattering rate, and is found

to scale with the predicted ν2/3 dependence. The major mode-particle resonance is found,

and local collisional and collisionless transport properties near this resonance give a novel

means of determining saturation levels. Although this work considers a single mode, and

the situation in a typical discharge includes many modes, the single mode saturation values

can probably serve as good intial values for a multi mode simulation, with subsequent mode

amplitude modification through the change of the particle distribution perturbing these

values. This will be investigated in future work. Multi mode simulations also require a

multi-processor extension of the present code.
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