
Princeton Plasma Physics Laboratory

PPPL-5253

A fully non-linear multi-species Fokker-Planck-Landau collision operator
for simulation of fusion plasma

Robert Hager, E.S. Yoon, S. Ku, E.F. D'Azevedo, P.H. Worley, C.S. Chang

June 2016

Prepared for the U.S.Department of Energy under Contract DE-AC02-09CH11466.

Princeton Plasma Physics Laboratory
Report Disclaimers

Full Legal Disclaimer

This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government nor any agency thereof, nor any of
their employees, nor any of their contractors, subcontractors or their employees, makes any
warranty, express or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or any third party’s use or the results of such use of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any agency thereof or its
contractors or subcontractors. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or any agency thereof.

Trademark Disclaimer

Reference herein to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any agency thereof or its
contractors or subcontractors.

PPPL Report Availability

Princeton Plasma Physics Laboratory:

http://www.pppl.gov/techreports.cfm

Office of Scientific and Technical Information (OSTI):

http://www.osti.gov/scitech/

Related Links:

U.S. Department of Energy

U.S. Department of Energy Office of Science

U.S. Department of Energy Office of Fusion Energy Sciences

A fully non-linear multi-species Fokker-Planck-Landau

collision operator for simulation of fusion plasma

Robert Hagera,∗, E. S. Yoonb, S. Kua, E. F. D’Azevedoc, P. H. Worleyc, C.
S. Changa

aPrinceton Plasma Physics Laboratory, P.O. Box 451, Princeton, NJ 08543, USA
bRensselaer Polytechnic Institute, 110 8th Street, Troy, NY USA 12180, USA
cOak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831, USA

Abstract

Fusion edge plasmas can be far from thermal equilibrium and require the

use of a non-linear collision operator for accurate numerical simulations.

In this article, the non-linear single-species Fokker-Planck-Landau collision

operator developed by Yoon and Chang [Phys. Plasmas 21, 032503 (2014)]

is generalized to include multiple particle species. The finite volume dis-

cretization used in this work naturally yields exact conservation of mass,

momentum, and energy. The implementation of this new non-linear Fokker-

Planck-Landau operator in the gyrokinetic particle-in-cell codes XGC1 and

XGCa is described and results of a verification study are discussed. Finally,

the numerical techniques that make our non-linear collision operator viable

on high-performance computing systems are described, including special-

ized load balancing algorithms and nested OpenMP parallelization. The

collision operator’s good weak and strong scaling behavior are shown.

Keywords: plasma, fusion, collision operator, XGC, particle-in-cell

PACS: 52.20.Fs, 52.65.Tt, 52.65.Rr

Preprint submitted to Journal of Computational Physics April 14, 2016

1. Introduction

Coulomb collisions are an essential part of the physics needed to de-

scribe the plasmas that commonly occur in nuclear fusion experiments. This

is especially true in the low-temperature, highly collisional edge region of

tokamak plasmas. Most kinetic codes for the simulation of fusion plasma

employ a linearized version of the Fokker-Planck collision operator. The

linearization is based on the assumption that the plasma distribution func-

tions can be represented by the sum of a Maxwellian distribution function

and a small perturbation, i.e.

f = fM + δf,
δf

fM
≪ 1. (1)

Examples of such linearized operators are the collision operators by Hirsh-

man and Sigmar [1], Boozer and Kuo-Petravic [2], Wang et al. [3], and Belli

et al. [4].

Linearization of the collision operator is well justified in the core of

tokamak plasmas, where radial mixing and transport are small because the

ion orbit width and turbulence scales are much smaller than the gradient

scale lengths of the background density and temperatures. This parameter

regime is often called the local regime. However, in the edge region of toka-

mak plasmas, especially in H-mode discharges with their narrow density

and temperature pedestals, physics become non-local as the ion orbit width

and the scales of turbulence become comparable to the background scale

∗Corresponding author
Email addresses: rhager@pppl.gov (Robert Hager), yoone@rpi.edu (E. S. Yoon),

sku@pppl.gov (S. Ku), dazevedoef@ornl.gov (E. F. D’Azevedo), worleyph@ornl.gov
(P. H. Worley), cschang@pppl.gov (C. S. Chang)

2

lengths of the plasma. In the scrape-off layer and around the magnetic sep-

aratrix surface, there are neutral ionization and charge-exchange processes,

particle loss to the material wall, and radiative energy loss. In this situ-

ation, the perturbation δf can be comparable to the background fM , and

the assumptions for linearizing the Fokker-Planck operator are invalid. The

Coulomb collision rate is large and becomes one of the dominant physics

phenomena. Therefore, a non-linear Fokker-Planck operator is required for

accurate results in the tokamak edge.

There are both physical constraints and practical requirements for the

development of numerical methods when implementing nonlinear collision

operators. Regarding physics, collision operators must conserve mass sepa-

rately for each species as well as total momentum and energy. In addition,

the entropy should increase, and the probability distribution functions of

all particle species should relax toward a Maxwellian when approaching

thermal equilibrium in a closed system. Furthermore, by definition, the

probability distribution function should always be positive. To limit the

cost of numerical simulations, the time discretization of the Fokker-Planck

equation needs to be implicit in order to circumvent the Courant condition

of collisional diffusion in velocity space. Recently, remarkable progress in

the development of numerical methods that satisfy all of the above con-

straints and requirements has been reported. For more details, we refer the

reader to articles by Buet and Le Thanh [5, 6] and references therein. Other

important contributions have been made by Taitano et al. [7], and Pataki

and Greengard [8].

Recently, Yoon and Chang [9] developed a non-linear Fokker-Planck-

Landau (FPL) collision operator in the 2-dimensional guiding-center ve-

3

locity space for single-species, strongly magnetized plasma, which was im-

plemented in the 5-dimensional, full-function gyrokinetic PIC code XGC1

[10]. The purpose of this paper is to extend the work by Yoon and Chang

[9] to multiple particle species, and to apply it to the gyrokinetic particle-

in-cell (PIC) codes XGC1 and XGCa. This is necessary to capture the

non-adiabatic behavior of electrons, especially in the plasma edge. Further-

more, considering that the concentrations of impurities are much higher in

the edge region than in the core region, it is imperative to treat non-linear

collisions among multiple particle species (i.e. more than two) accurately

for more realistic simulations of the plasma edge. As in Ref. [9], finite

gyro-radius effects are not considered in the collision operator.

The remainder of this article is organized as follows. In Sec. 2, we derive

the discretized multi-species Fokker-Planck-Landau operator and prove the

important conservation laws for mass, momentum, and energy in the contin-

uum and in discretized velocity space. We also explain the implementation

of the new multi-species collision operator in the gyrokinetic hybrid total-δf

PIC codes XGCa [11] and XGC1 [10]. The results of various verification

studies to demonstrate the accuracy of this FPL operator are presented in

Sec. 3. Since our implementation of the FPL operator is intended for the

use in high-performance computing, we demonstrate the scalability of our

approach with the code XGCa in Sec. 4. Our conclusions are presented in

Sec. 5.

4

2. Multi-species Fokker-Planck-Landau operator and its imple-

mentation in particle-in-cell codes

Some of the material in this section is rather fundamental and well-

known. Some of the material has already been explained in Ref. [9]. This

basic material is included here for the sake of completeness and for the

general audience.

2.1. The Fokker-Planck-Landau collision operator

The Fokker-Planck collision operator in Landau form (FPL) for multiple

particle species is given by

dfa
dt

∣∣∣∣
col

=
∑
b

Cab(fa, f
′
b)

= −
∑
b

e2ae
2
b ln Λab

8πϵ20ma

∇ ·
[∫

d3v′ U ·
(
fa
mb

∇′f ′
b −

f ′
b

ma

∇fa

)]
= −

∑
b

∇ · (Eabfa +Dab · ∇fa) = −
∑
b

∇ · Jab. (2)

Here, the subscripts a and b are species indices, fa = fa(v) and fb are

distribution functions, f ′ = f(v′), ∇ = ∂/∂v, and ∇′ = ∂/∂v′, ea/b are

the particle charges, ma,b are the particle masses, ln Λab is the Coulomb

logarithm for collisions between species a and b, and ϵ0 is the vacuum per-

mittivity. The tensor U is defined as

U =
u2I − uu

u3
, (3)

where u = v−v′ and u = |u|. The right-hand side of Eq. (2) shows that the

collision operator can be expressed in the form of a continuity equation. The

corresponding flux Jab in velocity space is driven by the drag and diffusion

5

coefficients Eab and Dab

Eab =
Γab

mb

∫
d3v′U · ∇′f ′

b, (4)

Dab = −Γab

ma

∫
d3v′ Uf ′

b, (5)

Γab =
e2ae

2
b ln Λab

8πϵ20ma

. (6)

Please note that although Jab is local in velocity space, the interactions

driving Jab are non-local in velocity space.

Mass, momentum, and energy conservation are easily demonstrated by

evaluating∑
a

∫
d3v

[
ϕa

∑
b

Cab(fa, f
′
b)

]
= −

∑
a,b

∫
d3v ϕa∇ · Jab

=
∑
a,b

∫
d3v∇ϕa · Jab. (7)

for ϕa = ma (mass), ϕa = mav (momentum), and ϕa = mav
2/2 (energy).

The contribution of the mutual collisions between species a and b is∫
d3v

∫
d3v′

Γab

mamb

(
∇ϕa −

ma

mb

∇′ϕ′
b

)
·U · [mafa∇′f ′

b −mbf
′
b∇fa] . (8)

It is obvious that Eq. (8) equates to zero for the mass and momentum

moment. For the kinetic energy moment, one needs to recall that u ·U =

U · u = 0, which reflects the Galilean invariance and rotational symmetry

of the FPL operator. Specifically, the fact that U is a projection on the

plane perpendicular to u ensures that C(fa, f
′
b) = 0 when fa and fb are

Maxwellians with the same temperature. It also embodies the fact that

Coulomb collisions in a plasma produce small angle scattering, which can

be interpreted as giving colliding particles a small kick perpendicular to

their differential velocity u.
6

Due to the linear properties of integration, it is even trivial to show that

the conservation properties of the FPL operator remain intact even if we

were to cut off the integration over velocity for any species s at v = Kvt,s,

where vt,s is the thermal velocity of species s, and K is a finite natural

number. We illustrate this by introducing such a cut-off for species b. The

integral from vb = 0 to Kvt,b is denoted by
∫
c
d3v and the integral from

vb = Kvt,b to infinity by
∫
∞ d3v. The expression in Eq. (8) then splits into

the two terms∫
d3v

∫
c

d3v′
Γab

mamb

(
∇ϕa −

ma

mb

∇′ϕ′
b

)
·U · [mafa∇′f ′

b −mbf
′
b∇fa] ,

+

∫
d3v

∫
∞
d3v′

Γab

mamb

(
∇ϕa −

ma

mb

∇′ϕ′
b

)
·U · [mafa∇′f ′

b −mbf
′
b∇fa] ,

(9)

which vanish independently from each other for the mass, momentum, and

energy moments. The generalization to a cut-off for both species is straight-

forward. This justifies the truncation of the velocity spaces of each species at

individual cut-off velocities introduced later in this article for the discretized

FPL operator – a highly advantageous feature hidden in the Landau form

of the Fokker-Planck operator.

This remarkable property of the FPL operator that the momentum

and energy changes due to interactions between each velocity pair v and

v′ cancel independently from each other is obscured in the Rosenbluth-

MacDonald-Judd (RMJ) form of the Fokker-Planck operator [12]. This is

due to the representation of the drag and diffusion coefficients in terms of

the so-called Rosenbluth potentials, which need to be known in the same

velocity range as the distribution function of the colliding species. In order

to avoid the use of impractical cut-off velocities in case of RMJ collisions
7

between species with very different thermal velocities (e.g. ion-electron),

Taitano et al. [13] circumvented this constraint by using an asymptotic

expansion for the Rosenbluth potentials.

2.2. Gyrophase averaged FPL operator

As in Ref. [9], we assume that the distribution functions of all species

are independent of the gyro-phase. We mostly follow the single species

procedure pioneered in Ref. [9]. To calculate the gyro-phase averaged FPL

operator in cylindrical coordinates (v⊥, v∥, φ) starting from the weak form∑
b

∫
d3v ϕaCab(fa, f

′
b), one needs to evaluate the gyro-average of terms of

the form ∫ 2π

0

∫ 2π

0

∇ ·U ·

∇

∇′

 dφdφ′. (10)

The gyro-phase average, which is discussed in detail in Ref. [9], results in

the following weak form of the FPL operator

2π
∂

∂t

∫
d2v ϕafa =∑

b

Γab

mamb

∫
d2v

∫
d2v′ (mafa∇ϕa ·UE · ∇′f ′

b −mbf
′
b∇ϕa ·UD · ∇fa)

=
∑
b

∫
d2v

∫
d2v′∇ϕa · Jab = −

∑
b

∫
d2v

∫
d2v′ ϕa∇ · Jab. (11)

In this expression, the gradient in 2-dimensional velocity space is simply

∇ = ∂v⊥v̂⊥ + ∂v∥v̂∥. The tensors UE and UD, which define the drag and

diffusion coefficients Eab and Dab, are given by

UE =

U⊥⊥′ U⊥∥

U∥⊥′ U∥∥

 , UD =

U⊥⊥ U⊥∥

U⊥∥ U∥∥

 , (12)

8

where the coefficients Uxx are given in Ref. [9]. The gyro-averaged form

of the FPL operator, Eq. (11), still conserves mass and energy. How-

ever, only the momentum in the direction parallel to the magnetic field is

conserved. The perpendicular translational momentum is zero after gyro-

averaging (without affecting the magnetic moment). To demonstrate the

conservation laws, one again needs to analyze the contributions of the mu-

tual collisions between species a and b,∫
d2v

∫
d2v′ [ϕaC(fa, f

′
b) + ϕ′

bC(f ′
b, fa)] =

=

∫
d2v

∫
d2v′

[
mafa

(
∇ϕa ·UE − ma

mb

∇′ϕ′
b ·U ′

D

)
· ∇′f ′

b

−mbf
′
b

(
∇ϕa ·UD − ma

mb

∇′ϕ′
b ·U ′

E

)
· ∇fa

]
. (13)

The expression in Eq. (13) equates to zero for the parallel momentum

moment (ϕa,b = ma,bv∥v̂∥) and the energy moment (ϕa,b = (ma,b/2)(v
2
⊥+v2∥))

because the tensors UE and UD fulfill the following identities:0

1

 · (UE −U ′
D) = 0,

0

1

 · (UD −U ′
E) = 0,

v⊥

v∥

 ·UE −

v′⊥

v′∥

 ·U ′
D = 0,

v⊥

v∥

 ·UD −

v′⊥

v′∥

 ·U ′
E = 0, (14)

where U ′
E and U ′

D result from UE(v,v
′) and UD(v,v

′) after swapping v

and v′.

2.3. Discretization of the FPL collision operator

For numerical treatment, we discretize the gyro-phase averaged weak

form of the FPL operator given in Eq. (11),

2π
∂

∂t

∫
d2v ϕafa = −

∑
b

∫
d2v

∫
d2v′ ϕa∇ · Jab. (15)

9

Since the FPL collision operator allows for the use of individual cut-off

velocities for each species, we discretize velocity space into uniform rectan-

gular grids such that −Kvt,s ≤ v∥,s ≤ Kvt,s with ∆v∥ = 2Kvt,s/(N−1), and

0 ≤ v⊥,s ≤ Kvt,s with ∆v⊥ = Kvt,s/(M − 1), where K is a small natural

number, and N and M are the number of grid points in the parallel and

perpendicular direction. The volume element becomes ∆V (J) = J∆v2⊥∆v∥

with 0 ≤ J ≤ M . As in typical fluid simulations, distribution functions are

evaluated on the grid points (I, J) with 0 ≤ I ≤ N and 0 ≤ J ≤ M , and

fluxes Jab are evaluated on a staggered grid (I ± 1/2, J ± 1/2). Fluxes at

I − 1/2 < 0, I + 1/2 > N , J − 1/2 < 0, and J + 1/2 > M are zero to make

the discretized operator conservative by preventing fluxes into and out of

the velocity space grid. A sketch of this discrete velocity grid is shown in

Fig. 1. The resulting discretized operator becomes

2π
∂

∂t

N∑
I=1

M∑
J=1

∆V (J)ϕa(I, J)fa(I, J)

= −
∑
b

N∑
I=1

M∑
J=1

∆V (J)ϕa(I, J) (∇ · Jab) (I, J). (16)

Since Eq. (16) must hold for arbitrary test functions ϕa, the system of

equations that need to be solved numerically is

2π
∂

∂t
fa(I, J) = − (∇ · Jab) (I, J). (17)

To preserve Gauss’s divergence theorem and, thus, the conservation laws

in discretized velocity space, it is necessary to define the discrete divergence

10

Figure 1: Illustration of the discretized velocity space with 3× 3 grid points. Dots mark

the velocity grid, squares the corresponding staggered grid. In the volume marked with

red stripes (bottom left to top right), the velocity space flux Jab vanishes. The square

marked with blue stripes (top left to bottom right) represents a volume element ∆V (J).

Consequently, there are no fluxes into and out of the velocity grid.

11

operator as

(∇ · Jab) (I, J) =
(J⊥

ab)(I, J + 1
2
)− (J⊥

ab)(I, J − 1
2
)

∆v⊥

+
(J

∥
ab)(I +

1
2
, J)− (J

∥
ab)(I − 1

2
, J)

∆v∥

,

Jab(I, J ± 1

2
) =

∆Va(J ± 1
2
)

2∆Va(J)

[
Jab(I +

1

2
, J ± 1

2
) + Jab(I −

1

2
, J ± 1

2
)

]
,

Jab(I ±
1

2
, J) =

1

2∆Va(J)

[
∆Va(J +

1

2
)Jab(I ±

1

2
, J +

1

2
)

+∆Va(J − 1

2
)Jab(I ±

1

2
, J − 1

2
)

]
, (18)

where J⊥
ab = Jab · v̂⊥ and J

∥
ab = Jab · v̂∥. This makes sense insofar as fluxes at

higher J are associated with larger phase space volumes and can be thought

to have larger influence on the flux-balance of the volume element (I, J).

The flux on the staggered grid is given by

Jab(I ±
1

2
, J ± 1

2
) = Eab(I ±

1

2
, J ± 1

2
)fa(I ±

1

2
, J ± 1

2
)

+Dab(I ±
1

2
, J ± 1

2
) · (∇fa)(I ±

1

2
, J ± 1

2
),

Eab(I ±
1

2
, J ± 1

2
) =

Γab

mamb

N−1∑
i=1

M−1∑
j=1

∆Vb(j +
1

2
)ma

×UE(I ±
1

2
, J ± 1

2
, i+

1

2
, j +

1

2
) · (∇′f ′

b)(i+
1

2
, j +

1

2
),

Dab(I ±
1

2
, J ± 1

2
) = − Γab

mamb

N−1∑
i=1

M−1∑
j=1

∆Vb(j +
1

2
)mb

×UD(I ±
1

2
, J ± 1

2
, i+

1

2
, j +

1

2
)f ′

b(i+
1

2
, j +

1

2
). (19)

Values of fa, fb, and their gradients on the staggered grid are obtained by

12

simple linear interpolation:

f(i+
1

2
, j) =

1

2
[f(i+ 1, j) + f(i, j)] ,

f(i+
1

2
, j +

1

2
) =

1

2

[
f(i+

1

2
, j + 1) + f(i+

1

2
, j)

]
,

(∂v⊥f)(i+
1

2
, j +

1

2
) =

f(i+ 1
2
, j + 1)− f(i+ 1

2
, j)

∆⊥
. (20)

2.4. Discrete conservation laws

To prove that mass, momentum, and energy are conserved exactly in

this discretization, i.e. that Eq. (13) holds in the discretized velocity space,

it is useful to show first that Eq. (7) holds in the discretized velocity space.

By substituting Eq. (18) into the RHS of Eq. (16), one obtains

−
N∑
I=1

M∑
J=1

∆Va(J)ϕa(I, J)∇ · Jab(I, J) = −
N∑
I=1

M∑
J=1

ϕa(I, J){
1

2∆v⊥

[
∆Va(J +

1

2
)

(
J⊥
ab(I +

1

2
, J +

1

2
) + J⊥

ab(I −
1

2
, J +

1

2
)

)
−∆Va(J − 1

2
)

(
J⊥
ab(I + 1, J − 1

2
) + J⊥

ab(I −
1

2
, J − 1

2
)

)]
+

1

2∆v∥

[
∆Va(J +

1

2
)

(
J
∥
ab(I +

1

2
, J +

1

2
)− J

∥
ab(I −

1

2
, J +

1

2
)

)
+∆Va(J − 1

2
)

(
J
∥
ab(I +

1

2
, J − 1

2
)− J

∥
ab(I −

1

2
, J − 1

2
)

)]}
. (21)

After reordering the sums using the fact that the flux is zero on the staggered

grid outside of the velocity grid boundaries, and after sorting for the flux

13

on the staggered grid, one finds

N−1∑
I=1

M−1∑
J=1

∆Va(J +
1

2
)

1

2∆v⊥

J⊥
ab(I +

1

2
, J +

1

2
)

× [ϕa(I + 1, J + 1) + ϕa(I, J + 1)− ϕa(I + 1, J)− ϕa(I, J)]

+
1

2∆v∥

J
∥
ab(I +

1

2
, J +

1

2
)

× [ϕa(I + 1, J)− ϕa(I, J) + ϕa(I + 1, J + 1)− ϕa(I, J + 1)]

=
N−1∑
I=1

M−1∑
J=1

∆Va(J +
1

2
)(∇ϕa)(I +

1

2
, J +

1

2
) · Jab(I +

1

2
, J +

1

2
). (22)

Equations (21) and (22) prove Eq. (7) in the discretized velocity space. The

discretized version of Eq. (13) is then obtained by adding the corresponding

term resulting from b-a collisions to Eq. (22) and substituting the discrete

fluxes Jab and J ba by the definition in Eq. (19):

N−1∑
I=1

M−1∑
J=1

(∇ϕa)(I +
1

2
, J +

1

2
) · Jab(I +

1

2
, J +

1

2
)∆Va(J +

1

2
)

+
N−1∑
i=1

M−1∑
j=1

(∇′ϕ′
b)(i+

1

2
, j +

1

2
) · J ba(i+

1

2
, j +

1

2
)∆Vb(j +

1

2
)

=
Γab

mamb

N−1∑
I=1

M−1∑
J=1

N−1∑
i=1

M−1∑
j=1

∆Va∆V ′
b[

mafa

(
∇ϕa ·UE − ma

mb

∇′ϕ′
b ·U ′

D

)
· ∇′f ′

b

−mbf
′
b

(
∇ϕa ·UD − ma

mb

∇′ϕ′
b ·U ′

E

)
· ∇fa

]
, (23)

where primed quantities depend on the lower case summation indices (i +

1/2, j+1/2), unprimed quantities depend on upper case summation indices

(I + 1/2, J + 1/2), and the tensors U
(′)
E and U

(′)
D depend on all summation

indices. Thus, mass, parallel momentum, and energy are conserved exactly
14

by the discretized FPL operator described in this article provided that the

finite difference expressions for ∇ϕs yield ms(0, 1) and 2ms(v⊥, v∥) for ϕs =

msv∥ and ϕs = msv
2. This is true for our simple finite difference derivatives:

∂v∥v∥(I) =
v∥(I + 1)− v∥(I − 1)

2∆v∥

,

∂v⊥v
2
⊥ =

v2⊥(I + 1)− v2⊥(I − 1)

2∆v⊥

=
(v⊥(I + 1) + v⊥(I − 1))(v⊥(I + 1)− v⊥(I − 1))

2∆v⊥

= v⊥(I + 1) + v⊥(I − 1) = 2v⊥(I). (24)

Moreover, the discrete conservation laws in Eq. (23) retain the detailed

conservation of the continuum FPL operator. In contrast, the RMJ op-

erator developed by Taitano et al. [7] conserves mass, momentum, and

energy only globally. In addition to accurate conservation of mass, en-

ergy and momentum, physical solutions require that the overall entropy

S = −
∑

a

∫
fa ln(fa)d

3v increases, i.e. that the H-theorem is satisfied. We

have not observed a case of decreasing entropy yet in an ordinary tokamak

plasma. The relaxation of distorted Maxwellians with different tempera-

tures to the equilibrium Maxwellian presented in Sec. 3.2 demonstrates

that the entropy indeed increases, and the H-theorem is satisfied. However,

the user has to pay attention to any odd behavior in their special problems.

2.5. Conservation of the thermal equilibrium

The equilibrium conservation scheme used in Ref. [9] for the single-

species FPL operator can be applied to the multi-species formulation of the

FPL operator as well. From Eq. (19) in Ref. [9], we obtain solutions for

15

the interpolation weights δ⊥ and δ∥,

δ⊥(J +
1

2
) =


{
1− exp[1

2
∆v⊥v⊥(J + 1

2
)/v2t]

}−1 − Λ−1
⊥{

1− exp[1
2
∆v⊥v⊥(J + 1

2
)/v2t]

}−1
,

δ∥(I +
1

2
) =


{
1− exp[1

2
∆v∥v∥(I +

1
2
)/v2t]

}−1

− Λ−1
∥{

1− exp[1
2
∆v∥v∥(I +

1
2
)/v2t]

}−1 , (25)

where Λ⊥ = −v⊥(J+
1
2
)∆v⊥/v

2
t and Λ∥ = −v∥(I+

1
2
)∆v∥/v

2
t [vt = (T/m)1/2].

One of the two solutions for each, δ⊥ and δ∥, is always between 0 and 1

and is used as interpolation weight in the calculation of the distribution

functions on the staggered grid. With these interpolation weights, Eq. (20)

is generalized to

f(i+
1

2
, j) = δ∥(i+

1

2
)f(i+ 1, j) + [1− δ∥(i+

1

2
)]f(i, j),

f(i+
1

2
, j +

1

2
) = δ⊥(j +

1

2
)f(i+

1

2
, j + 1)

+ [1− δ⊥(j +
1

2
)]f(i+

1

2
, j),

(∂v⊥f)(i+
1

2
, j +

1

2
) =

f(i+ 1
2
, j + 1)− f(i+ 1

2
, j)

∆⊥
. (26)

Note that the definition of the finite difference derivative does not change

except for the definition of the distribution function on the staggered grid.

While the thermal velocity to be used in the calculation of δ⊥ and δ∥ is

unique in single-species simulations, there is more freedom in simulations

with multiple particle species. The temperature corresponding to the equi-

librium Maxwellian in the multi-species case is Teq = (
∑

s nsTs)/(
∑

s ns),

which is simply Teq = (Ti + Te)/2 in case of singly charged ions and elec-

trons. One could use the corresponding thermal velocity vt,eq in the calcu-

lation of the interpolation weights for all collision processes. However, the
16

like-particle collisions seek to drive the distribution functions to the ther-

mal equilibrium of the respective species, and inter-species collisions drive

the distribution function to the inter-species equilibrium. This is especially

important if the collision frequency of one species is much greater than the

collision frequencies of the other species. Therefore, we use vt = vt,s in like-

particle collisions and vt = vt,ab = (naTa + nbTb)/(na + nb) in inter-species

collisions between species a and b.

As discussed in Ref. [9], this equilibrium conservation scheme does not

guarantee positivity of the distribution function. If a distribution function

becomes negative on a specific grid point after a collision time step, it is

corrected to be a negligibly small value, thereby allowing for error. This

is usually a rare event provided that the noise level in the distribution

functions is controlled by using enough marker particles and appropriate

resolution in velocity space.

2.6. Implementation in particle-in-cell codes

In order to connect the grid based collision operator described in the

previous sections to particle-in-cell codes, one needs to combine the solver

for Eq. (17) with a time integrator and with a particle-mesh interpolation

for obtaining the plasma distribution functions on the velocity grid.

We implemented our FPL operator in the codes XGC1 [10] and XGCa

[11]. Both codes are global, gyrokinetic PIC codes for the simulation of toka-

mak fusion plasmas and are designed for extreme-scale high-performance

computing. The XGC codes calculate the motion of marker particles in a 5-

dimensional phase space (3-dimensional configuration space, 2-dimensional

velocity space). The specialty of the XGC codes is that the configuration

17

space includes the whole plasma volume from the magnetic axis to the inner

reactor wall. While XGC1 is a gyrokinetic turbulence code, XGCa excludes

turbulence by assuming that electric and magnetic fields are axisymmetric

and, thus, describes only neoclassical physics.

We use the same backward Euler time discretization and Picard iteration

as in Ref. [9]. The generalization of the implicit time integrator described

therein is straightforward and leads to

dfa
dt

=
f
(k)
a,i+1 − fa,i

∆t
=

∑
b

C(f
(k)
a,i+1, f

(k−1)
b,i+1), (27)

where i is the time index, and k is the iteration index of the Picard iteration.

The distribution functions of all species need to be advanced together, and

the new convergence criterion for the Picard iteration is that the relative

errors of the total mass, energy, and parallel momentum are below a certain

threshold (usually 10−6). Due the exact conservation laws of the discretized

FPL operator, the Picard iteration rapidly converges to a solution that con-

serves mass, parallel momentum, and energy. Convergence is, however, not

guaranteed, e.g. if the initial guess is too far from the actual solution or the

collision time step is too large. Therefore, the number of Picard iterations

is usually limited to 20 in our simulations, and the collision operation is

discarded with an error estimate where convergence is not reached within

the target number of iterations. As a rule of thumb, we found that the Pi-

card iteration converges well (within ∼ 5 iterations or less) if the time step

of the collision operation is at or below the lowest electron collision time

of the system τe ≈ T
3/2
e,min/(5 · 10−11nmin) [14], where Te,min is the minimum

of the electron temperature in eV in the global simulation area, and nmin

is the density in m−3 at the corresponding location. Thus, the time step
18

that needs to be used for the collision operator is effectively determined

by the species with the highest collision frequency and is comparable to

the time step that needs to be used for the ion particle motion (∼ 10−7

s). Since τe ≪ τi, ion collisions at all energies, and since the collision time

becomes longer at higher energy, and electron collisions at intermediate to

high energies are sufficiently resolved. The use of an implicit method has

the advantage that in order to be stable the time step of the collision opera-

tor does not have to be much smaller than the electron collision time as can

be expected for a simple explicit method. For very low energy electrons,

mv2/2 ≪ Te, however, we admit that there is a possibility that the implicit

method compromises accuracy. In the present application of the collision

operator, there is only a negligible fraction of low energy electrons so that

the use of an implicit method is justified when the implicit time step is ∼ τe.

In some other applications there may be more lower energy electrons, whose

collision time is much shorter than the implicit time step, and the use of

improved explicit time integration methods such as Refs. [15] and [16] may

be considered. Alternative methods for handling the disparate time scales

of electron and ion collisions such as the ones discussed in Refs. [17, 18]

have not been considered in this work.

In order to obtain the plasma distribution functions before solving the

FPL operator, mesh-particle interpolation is necessary in configuration and

velocity space. The properties of the mesh-particle interpolation have been

discussed in Ref. [9]. It is important to note that mesh-particle interpolation

introduces an additional source for errors in the conservation laws of the

collision operator. The interpolation errors are studied in Sec. 3.2.

19

3. Verification

In the following, we present results of various verification studies per-

formed with the code XGCa that demonstrate the functionality of the FPL

collision operator discussed in this article.

3.1. Conservation of the thermal equilibrium

The most fundamental test of our implementation of the FPL operator

in XGC1 and XGCa is the conservation of the thermal equilibrium. For this

purpose, we ran XGCa with two particle species, Deuterium ions (mD =

3.34 ·10−27 kg) and electrons (me = 9.109 ·10−31 kg), but without evaluating

the left-hand side of the gyrokinetic equation, i.e. with deactivated particle

motion. Thus, the time evolution of the plasma distribution functions is

due to collisional processes alone, and each collision cell in configuration

space is completely independent of each other.

In order to demonstrate the effect of the equilibrium conservation scheme

described in section 2.5, we ran this conservation test once with dynamic

(equilibrium-conserving) interpolation weights δ∥ and δ⊥ according to Eq.

(26) and once with fixed (not equilibrium-conserving) δ∥ = δ⊥ = 1/2. The

cut-off velocity for both species is vc,s = 4vt,s with a velocity grid of 41 ×

41 grid points. We initialized the simulation in thermal equilibrium, i.e.

each species started with a Maxwellian distribution function at temperature

T = Teq = 300 eV, and then we tracked the root-mean-square (RMS)

of the relative deviation from the initial Maxwellian distribution function

over 20000 time steps (corresponding to ∼ 16 ion collision times). The

distribution functions were diagnosed every 500 time steps. The results are

shown in Fig. 2. In both cases, with fixed and dynamic coefficients δ∥ and

20

0 5 10 15
Time/τi

10-5

10-4

10-3

10-2

10-1

δ
f 0
/f
0

δf0,i /f0 (conserving)

δf0,i /f0 (non-conserving)

δf0,e /f0 (conserving)

δf0,e /f0 (non-conserving)

Figure 2: Quality of the conservation of the thermal equilibrium. Ions and electrons

are initialized in thermal equilibrium at Teq = 300 eV with Maxwellian distribution

functions. After 20000 collision time steps, the root-mean-square relative deviation of the

distribution functions from the initial Maxwellian is ∼ 10−4 with activated equilibrium

conservation mechanism while it is 3-4% with deactivated equilibrium conservation.

δ⊥, the RMS deviation of the ion distribution function grows within the

first few ion collision times but is stable afterwards. It is reasonable to

assume analogous transient behavior for the electron distribution function

on the electron collision time scale, which is, however, not resolved in the

diagnostic data.

Despite the similar time evolution, the difference between the simula-

tions with activated (dynamic δ∥/⊥) and deactivated (fixed δ∥/⊥) equilibrium

conservation scheme is drastic. While in case of the former, the RMS of the

relative deviation from the equilibrium Maxwellian does not exceed 10−4,

the deviation is between 3 and 4% in case of the latter.

3.2. Temperature isotropization and flow relaxation

In this section, we verify that our FPL collision operator leads to the

decay of a perturbed plasma to the thermal equilibrium in a simple, but
21

comprehensive two-species relaxation test performed with XGCa with Deu-

terium ions and electrons. As in the equilibrium conservation test described

in Sec. 3.1, the left-hand side of the gyrokinetic equation is not evaluated.

In contrast to the conservation test, however, we initialize ions and electrons

with shifted bi-Maxwellians

fs(v∥, v⊥) =
n

α(2π)3/2v3t,s
exp

[
−ms

(v∥ − us,∥)
2 + α−1v2⊥

2eTs,0

]
, (28)

where Ts,∥ = Ts,0 and Ts,⊥ = αTs,0 are the parallel and perpendicular tem-

peratures, ms is the mass, and us,∥ is the parallel fluid flow of species s, and

e is the elementary charge. The mean temperature of species s is given by

Ts = (2Ts,⊥ + Ts,∥)/3. The thermal velocity vt,s is evaluated for the base

temperature Ts,0. For our test, we chose T0,i = 200 eV, T0,e = 300 eV,

α = 1.3, ue,∥ = 0.5(me/mi)
1/2vt,e, and ui,∥ = 50(me/mi)vt,i. The initial

values of the ion and electron flows have values representative of typical

tokamak plasmas, in which ions carry most of the parallel momentum. In

thermal equilibrium, Ts,∥ = Ts,⊥, Ti = Te, and ui,∥ = ue,∥. Our choice of the

initial state enables us to observe the different time scales of the isotropiza-

tion of the electron and ion temperatures, the relaxation of the temperature

difference between ions and electrons, and the relaxation of ion and electron

flows. In addition, the quality of mass, momentum, and energy conservation

during the relaxation process can be studied.

Figures 3 and 4 show the time evolution of the ion and electron tem-

peratures and flows from a simulation without mesh particle interaction.

Temperatures and flows obtained from the simulation are compared to the

analytical result based on the isotropization and energy transfer frequencies

given in Ref. [19], and the flow relaxation frequency based on the friction

22

0.001 0.010 0.100 1.000 10.000 100.000
Time/τi

200

250

300

350

400

T
e

m
p

e
ra

tu
re

 (
e
V

)

NRL

Ti,∥

Ti,⊥

Te,∥

Te,⊥

Figure 3: Relaxation of the perpendicular and parallel ion and electron temperatures

towards thermal equilibrium. The results of the non-linear FPL operator are compared

to the relaxation rates given in the NRL Plasma Formulary [19].

force for large mass ratios given in Eq. (1.17) in Ref. [20],

νS =
e4ni ln Λie

3(2π)3/2ϵ20
√
me(eTe)3/2

. (29)

The relaxation time scales observed in the simulation agree very well with

the theoretical predictions. In case of the electron temperature isotropiza-

tion and the flow relaxation, the theoretical relaxation rates – while having

the correct order of magnitude – differ from the numerical results by a factor

of approximately 2. These differences are due to the arbitrary assumption

made in the calculation of the analytical result that the particle distribution

functions are always accurately described by Eq. (28).

Since there are two contributions to the conservation errors in our imple-

mentation of the FPL collision operator, we ran two sets of relaxation tests.

In the first set of simulations, mesh-particle interpolation was deactivated

so that the only error source is the implicit time integration. This error is

limited by the convergence criterion applied to the Picard iteration in the
23

0.001 0.010 0.100 1.000 10.000
Time/τi

0

2•10
4

4•10
4

6•104

P
a

r.
 f

lo
w

 (
m

/s
)

u e,∥

u i,∥

Hazeltine-Hinton w/ small
 mass ratio truncation

Figure 4: Relaxation of the parallel ion and electron flows. The results of the non-linear

FPL operator are compared to Eq. (29), i.e. the ion-electron friction with small mass

ratio truncation obtained from Eq. (1.17) in Ref. [20]. Differences between the analytical

result and the simulations are due to the fact that the ion and electron distribution

functions are not always exactly shifted bi-Maxwellians as defined in Eq. (28).

implicit time stepper (cf. Sec. 2.6). In the second set of simulations, mesh-

particle interpolation is activated, which introduces an additional diffusive

interpolation error, which can be controlled by the number of particles per

collision cell. The accumulated relative errors of momentum and energy

with deactivated mesh-particle interpolation are shown in Figs. 5 and 6 for

three different cases. We tested with cut-off velocities of 4, 5, and 6vt,s and

grid sizes of 41×41, 51×51, and 61×61 grid points. The difference between

the three cases is marginal.

While the relative error per collision operation cannot exceed the limit

set by the convergence criterion of the implicit time stepper in cases without

mesh-particle interpolation, the error per time step can be larger than the

convergence criterion with activated mesh-particle interpolation. Therefore,

we investigated the influence of the number of marker particles per collision

24

0.001 0.010 0.100 1.000 10.000 100.000
Time/τi

10
-8

10
-7

10
-6

10
-5

E
(t

)/
E

(0
)-

1

vc = 6 vt

vc = 5 vt

vc = 4 vt

Figure 5: Accumulated absolute value of the relative error of the total kinetic energy

in the relaxation test depicted in Figs. 3 and 4 without mesh particle interpolation.

The dependence on the cut-off velocity of the velocity grid used by the non-linear FPL

operator is marginal.

0.001 0.010 0.100 1.000 10.000 100.000
Time/τi

10
-7

10
-6

10
-5

10
-4

p
(t

)/
p

(0
)-

1

vc = 6 vt

vc = 5 vt

vc = 4 vt

Figure 6: Accumulated absolute value of the relative error of the total parallel momentum

in the relaxation test depicted in Figs. 3 and 4 without mesh particle interpolation. There

is no dependence on the cut-off velocity of the velocity grid used by the non-linear FPL

operator.

25

0.001 0.010 0.100 1.000 10.000 100.000
Time/τi

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

δ
E

(t
)/

E
(0

)-
1

2500 ptl/vertex
5000 ptl/vertex
10000 ptl/vertex

Figure 7: Absolute value of the relative error of the total kinetic energy per time step

in the relaxation test depicted in Figs. 3 and 4 with mesh particle interpolation. The

additional diffusive error due to mesh particle interpolation in velocity space increases

the relative error per time step only slightly above the threshold of 10−6 demanded by

the implicit time integrator of the non-linear FPL operator. The dependence on the

number of particles per collision cell is weak.

cell in the simulations with activated mesh-particle interpolations. We used

2500, 5000, and 10000 particles per collision cell. The latter is a realistic

value for production runs of XGC1 and XGCa. Figures 7 and 8 show the

relative error of momentum and energy per collision time step compared

to the convergence criterion of the implicit time stepper. As expected, the

energy and momentum errors can be larger than the convergence criterion

due to mesh-particle interaction. In case of the kinetic energy, the error per

time step depends only weakly on the number of particles per collision cell.

In contrast, the momentum error during the fast processes of electron tem-

perature isotropization and flow relaxation is larger than the convergence

criterion by a factor of up to 30 when using only 2500 particles per collision

cell. With 10000 particles per collision cell, the momentum error is only

26

0.001 0.010 0.100 1.000 10.000 100.000
Time/τi

10
-8

10
-7

10
-6

10
-5

10
-4

δ
p
(t

)/
p
(0

)-
1

10000 ptl/vertex
5000 ptl/vertex
2500 ptl/vertex

Figure 8: Absolute value of the relative error of the total parallel momentum per time

step in the relaxation test depicted in Figs. 3 and 4 with mesh particle interpolation. The

additional diffusive error due to mesh particle interpolation in velocity space increases the

relative error per time step by a factor of up to 30 above the threshold of 10−6 required

by the implicit time integrator of the non-linear FPL operator. With 10000 particles per

collision cell, the diffusive interpolation error is reduced such that the effective relative

error is close to the desired threshold.

27

slightly enhanced.

Verification studies of full XGCa simulations are beyond the scope of

this article and will be published separately. We only want to remark that

we found good agreement between the bootstrap currents calculated with

XGCa and the neoclassical code NEO [21, 4] in the local regime, for which

NEO is constructed, even in diverted geometry [11].

4. Performance considerations

Since the collision operator discussed in this article is intended for use

in high-performance computing (HPC) applications, scalability is an im-

portant requirement to make this operator viable on today’s and on future

HPC systems. We employ our version of the FPL (Eulerian) collision op-

erator in the XGC particle-in-cell applications. For these applications, the

particle-related work typically exhibits a greater degree of exploitable par-

allelism than the phase space mesh-related work, and scales better as a

result. Defining the mesh size to be the number of vertices in the config-

uration space mesh, the complexity of the mesh-related work (field solver,

collision operator) is close to linear in the mesh size, and, even without

parallel overhead inefficiencies, will demonstrate degraded scalability when

the number of computational threads is comparable to (or larger than) the

number of mesh vertices. Note that for practical grid sizes in XGC1 or

XGCa simulations (N < 4000), the scaling of the collision operator with

the velocity grid size N is between O(N) and O(N2). The reason for this

beneficial scaling is that the computing time needed for the calculation of

the drag and diffusion coefficients E and D, which scales quadratically with

the size of the velocity grid [O(N2)] is not yet the dominant computational
28

0.01

0.10

1.00

10.00

C
o
m

p
u
ti
n
g
 t
im

e
/c

o
lli

s
io

n
 o

p
.
(s

)

E and D

Solver

Total

N1.96

N1.12

N1.37

1000
Number of velocity space vertices (N)

10000

Figure 9: Scaling of the Fokker-Planck-Landau collision operator with the total number

of vertices (N) of the velocity space mesh. The dotted lines are fits to the data points.

For this test, the collision operator was solved on a single configuration space vertex with

8 OpenMP threads. As expected, the calculation of the drag and diffusion coefficients E

and D scales quadratically with N . However, the total computing time is not dominated

completely by the calculation of the drag and diffusion coefficients for the tested grid

sizes. Other operations that scale linearly in N such as the solver in the Picard iteration

contribute significantly so that the overall scaling of the collision operator is O(N1.37)

for practical grid sizes used in XGC1 and XGCa. For larger mesh sizes than the ones we

tested, the scaling will be closer to N2.

cost. Operations that scale linearly in N such as the solver contribute sig-

nificantly to the total cost. This is illustrated in Fig. 9. The particle-related

work is independent between particles and the number of particles is typi-

cally much larger than the size of the mesh, allowing many more threads to

be used. When the cost of the particle-based work is significantly greater

than that of the mesh-based work, these applications have demonstrated

excellent scalability even beyond the thread count at which the mesh-based

cost stops decreasing. (This scalability of the XGC applications is possi-

ble because of an effective and low cost particle load balancing scheme.)

29

However, the cost of the collision operator can be comparable to that of

particle-related work in problems of interest, and it is critical that paral-

lelism be exploited efficiently in its implementation. To establish this, we

studied the performance characteristics of our collision operator with the

gyrokinetic neoclassical particle-in-cell code XGCa.

4.1. Typical problem size

First, we discuss the typical problem size of simulations with XGC1 and

XGCa. The meshes for the field solver in an XGC1 simulation need to

resolve the gyroradius scale in the poloidal and minor radial direction. In

the toroidal direction, at least 32 toroidal modes need to be resolved for

accurate description of turbulence. These resolution requirements result in

configuration space meshes with of the order of 106 vertices in typical XGC1

simulations. In XGCa, only axisymmetric perturbations of the plasma are

considered, and the resolution requirements for the poloidal direction are

less strict, which reduces the number of vertices in realistic cases by a factor

of approximately 100 compared to XGC1.

Since the implementation of our collision operator in the full-f version

of XGC1 required several hundred thousand particles per collision cell [9],

the field solver mesh could not be used for the collision operator directly.

Instead, a much coarser mesh had to be used for collisions. The hybrid total-

δf method employed in XGC1 and XGCa reduces the required number of

particles per collision cell significantly. In Sec. 3.2 we showed that 5000-

10000 marker particles per collision cell are sufficient for accurate collisions.

This allows us to use the same triangular mesh for the field solver and for

the collision operator in XGC1 and XGCa. For comparison, we note that

30

the number of mesh cells in the XGC1 and XGCa meshes is approximately

twice the number of mesh vertices. In order to resolve the fine velocity space

structures of turbulence, XGC1 requires around 10000 particles per cell.

Thus, O(108) particles are required for an XGCa simulation and O(1010)

particles are required for an XGC1 simulation. Typical production runs of

XGCa use between 500 and 1000 compute nodes on the Edison computing

system (Cray XC30, NERSC); production runs of XGC1 occupy usually

8192-16384 compute nodes on the Titan system (Cray XK7, ORNL).

4.2. Domain decomposition and load balancing

While the details of the parallelization techniques applied in the XGC

codes are beyond the scope of this article and will be presented elsewhere,

it is necessary to explain the basic aspects of domain decomposition and

load balancing here. The simulation domain in the XGC codes in configu-

ration space is a topological torus. In the toroidal direction, this torus is

decomposed into Nφ segments and each segment is assigned to a set of MPI

processes. The sources of the electric and magnetic fields (charge density

and current) are evaluated through particle-mesh interpolation on triangu-

lar meshes on the poloidal cross sections at the segment boundaries. The

triangular meshes used for the XGC codes are (approximately) field-aligned

meshes with optimizations applied around the X-point of the magnetic sep-

aratrix. From the magnetic axis to a (arbitrary) flux-surface in the open

field-line region, the mesh is (mostly) flux-surface aligned and one-element-

deep. Between the outmost flux-surface of the mesh and the wall of the

vacuum vessel, the mesh is truly unstructured. A detailed description of

these meshes, which are identical in each segment, can be found in Refs.

31

[22, 23].

The vertices of the solver mesh in each segment are then distributed

among the MPI processes assigned to that segment. The decomposition of

the solver mesh is also identical in each segment. Each MPI process handles

the distribution function data of the mesh vertices assigned to it as well as

the data of the marker particles located in the patch of the mesh assigned to

the process. Each MPI process evaluates the collision operator in its patch

of the mesh and the motion of the particles therein, which facilitates data

locality.

In case of XGCa, the plasma distribution functions are axisymmetric,

which allows for another level of MPI parallelization of the collision opera-

tor. Due to the fact that the solver mesh and its decomposition is identical

in each toroidal segment, each MPI process needs to evaluate the collision

operator only on part of the mesh vertices of the patch assigned to the pro-

cess. After each process assigned to the same patch finishes the evaluation

of the collision operator on its part of the patch, results are gathered.

While each toroidal segment is assigned the same number of processes,

the decomposition of the solver mesh on the poloidal cross sections is dy-

namic and needs to be optimized with the goal of a balanced workload on

all processes. Assuming for the moment that the computing time needed

for the collision operation is the same for each collision cell (i.e. mesh ver-

tex), the performance of the collision operator is likely to be optimal if

collision cells are distributed evenly among the MPI processes available to

the application. However, although the collision operator can be expected

to need a considerable fraction of the computing time for one simulation,

the evaluation of particle motion (particle push) is often the dominant cost

32

in realistic use cases. The performance of the particle push is optimal if the

simulation domain is decomposed such that each MPI process is assigned

the same amount of marker particles. Unfortunately, the density of marker

particles in configuration space is not uniform most of the time.

Hence, a domain decomposition that provides optimal load balance for

the collision operator will exhibit load imbalance in the particle push step

and vice versa. Therefore, we had do develop a flexible dynamic domain

decomposition algorithm to find the optimal balance between collision op-

erator and particle push. This turned out to be challenging because the

number of mesh vertices assigned to an MPI process is not always a reli-

able measure for the actual computing time needed to evaluate the collision

operator. Depending on the local physical parameters like the collision fre-

quency, the Picard iteration used for implicit time integration converges

faster on some vertices than on others. In contrast, the load imbalance in

the particle distribution is a reliable predictor of the load imbalance in the

cost of particle-related work. Therefore, we measure both the actual time

spent in the collision operator on each vertex and the actual total run time

per time step and use this to determine how much particle imbalance can

be accepted when optimizing the mesh decomposition in regular intervals.

4.3. Nested OpenMP parallelism

The XGC codes use mixed MPI and OpenMP parallelization. The

OpenMP threads available to each MPI process can be used to acceler-

ate the evaluation of the collision operator on two levels. In the outer level,

threads can evaluate the collision operator on several of the mesh vertices

assigned to their host MPI process in parallel. In the inner level, threads

33

can be used to accelerate the evaluation of the collision operator for each

collision cell assigned to their host process while collision cells are processed

sequentially. The inner level parallelization is somewhat less efficient than

the outer in that, for the inner level, the whole collision operator is not

parallelized. Only the most computationally expensive loops are threaded,

leaving a small but measurable, “serial fraction”. However, the outer level

parallelization has the drawback of requiring significantly more memory for

storing the coefficients Uxx appearing in Eq. (12) (approximately 130 MB

with 41 × 41 velocity grid points). The inner level parallelization, on the

other hand, does not require additional memory. On computers with little

memory per process like Mira (BlueGene Q, ANL), outer level paralleliza-

tion quickly uses up the available memory. Moreover, nested parallelism,

using both outer and inner level parallelization, can help in situations in

which more parallel threads are available than there are mesh vertices.

Therefore, the ability to switch between the two OpenMP paralleliza-

tion approaches described above benefits the portability and performance of

the XGC codes. By using nested OpenMP parallelism, available OpenMP

threads can be assigned flexibly to the inner and outer level parallelization

to optimize the performance of the collision operator based on the specifics,

e.g. available memory, of individual HPC systems, compute node counts,

and problem sizes.

We tested the efficiency of different thread setups on Edison (two 12-core

CPUs per compute node, two hardware threads per core, 1.3GB memory

per thread), Titan (one 16-core CPU per compute node, 1GB memory per

core), and Mira (one 16-core CPU per compute node, four hardware threads

per core, 256 MB memory per thread). The problem size for this test is

34

7.2 · 107 marker particles (with me = mi/100) on Edison and Titan, and

10.0·107 particles on Mira. The configuration space mesh has 20694 vertices

and the velocity grid 41×41 grid points. We ran the code for 100 time steps

with the collision operator being evaluated every time step. On Edison, we

used 100 compute nodes and each compute node hosted 2 MPI processes

with 24 OpenMP threads each; on Titan, we used 300 compute nodes with

2 MPI processes per compute node and 8 OpenMP threads per process,

and on Mira we used 1024 compute nodes. Note that the Edison and Titan

experiments use the same total number of threads (4800), while the Mira

experiments used 65536 threads. We have not yet been able to get nested

OpenMP parallelism to work in the collision operator on Mira. So, instead of

changing the partition of threads in the two levels of OpenMP parallelism,

we tested with 1 (64), 2 (32), 4 (16), 8 (8), and 16 (4) MPI processes

(OpenMP threads) and assigned all available threads to the inner level

parallelization. By increasing the number of MPI processes per compute

node, one also increases the number of collision cells that are processed in

parallel on a compute node.

The results of this test are shown in Fig. 10. In general, nested OpenMP

parallelism works very well because it allows the code to reduce memory

use while preserving the overall performance of the collision operator. On

Edison, the slowest thread configuration is only approximately 50% slower

than the fastest. On Titan, the slowest configuration is around 20% slower

than the fastest one. On Mira, the best performance is observed with 4 and 8

MPI processes. When we tried to increase the number of MPI processes per

compute node above 16, the system ran out of memory, which demonstrates

the scarcity of memory on this type of system. Each of the 64 hardware

35

OpenMP threads in inner level parallelization

128

256

512

1,024

2,048

4,096

1 2 4 8 16 32 64

R
u

n
ti
m

e
 (

s
)

Edison

Titan

Mira

Figure 10: Efficiency of nested OpenMP parallelism in the collision operator in XGCa

simulations. The number of OpenMP threads in the inner level OpenMP parallelization

of the collision operator was varied. On Edison, the test was run on 100 compute nodes

each with 2 MPI processes and 24 OpenMP threads per process. On Titan, 300 compute

nodes with 2 MPI processes and 8 OpenMP threads per node were used. On Mira, the

test ran on 1024 compute nodes with full hyperthreading (64 hardware threads per node).

Since Mira does not support nested OpenMP parallelism, the number of MPI processes

per compute node was varied instead with all OpenMP threads used in the inner level

OpenMP parallelization.

36

threads has only 256 MB memory at its disposal. With a velocity grid of

41 × 41 grid points, each instance of the collision operator alone requires

approximately 130 MB of memory.

4.4. Parallelization efficiency

As mentioned in the introduction to this section, the parallel efficiency of

approximately linear complexity mesh-based numerical methods necessarily

deteriorates when the number of parallel threads becomes comparable to

or larger than the number of mesh vertices. The FPL collision operator

discussed here is no exception. Therefore, we investigated whether the

scalability of XGCa code is affected by the collision operator. We conducted

three scaling studies. In each of them, we ran XGCa for 100 time steps with

the collision operator being evaluated every time step.

First, we varied the number of marker particles, while keeping the num-

ber of compute nodes and the number of mesh vertices fixed. On Edison, we

used 256 compute nodes (2 MPI tasks/node, 24 OpenMP threads/process)

with a configuration space mesh of 20694 vertices and a velocity grid of

41 × 41 grid points. The number of marker particles per hardware thread

(48 hardware threads/compute node) varied from 2048 to 131072, corre-

sponding to a total of 25 · 106 to 1.6 · 109 marker particles. A total of 2 · 108

markers or approximately 16000 markers per hardware thread would be re-

alistic for this case. We ran the simulations with enhanced electron mass,

me = mi/100, and realistic electron mass, which increases the computing

time spent on the particle motion by a factor of 4. The results of this particle

scaling study are shown in Fig. 11. When the number of marker particles is

small, the total computing time is dominated by the collision operator and

37

7.5

15

30

60

120

240

480

960

1920

3840

7680

1024 2048 4096 8192 16384 32768 65536 131072 262144

R
u

n
ti
m

e
 (

s
)

Particles/Thread

practical scale:

10,000 particles/collision cell

Total

Collisions
Electron push

Total (enh. elec. mass)

Collisions (enh. elec. mass)
Electron push (enh. elec. mass)

Figure 11: Scaling of XGCa on 256 Edison compute nodes with 2 MPI processes and 24

OpenMP threads per process nodes. The size of the configuration space mesh is fixed

at 20694 vertices but the particle count was varied. There are two distinct performance

regimes, the collision-dominated and the particle dominated regime. In most realistic

cases, XGCa operates in the particle dominated regime.

adding more particles increases the total run time only slightly. With in-

creasing particle count, a transition occurs between the collision-dominated

performance regime and the particle-dominated regime, in which the total

run time is determined by the computing time spent on the particle push.

The results of the particle scaling study suggest that XGCa benefits from

the favorable scalability of the particle-in-cell technique when operated in

the particle-dominated regime.

We also ran a strong scaling study on Edison using the same mesh as

before. In order to relate the strong scaling test to the particle scaling

test, we performed two series of simulations, one with me = mi/100 and

108 marker particles, and the other with realistic electron mass and 2 · 108

particles. The latter is a realistic use case in which the cost for the particle

push is dominant. We scaled the resources used on this problem from 16
38

7.5

15

30

60

120

240

480

960

1,920

3,840

7,680

512 1024 2048 4096 8192 16384 32768 65536 131072

R
u
n
ti
m

e
 (

s
)

MPI tasks x OpenMP threads

practical scale:

500-800

compute nodes

16 32 64 128 256 512 1024 2048

Compute nodes

Total

Collisions
Electron push

Total (enh. elec. mass)

Collisions (enh. elec. mass)
Electron push (enh. elec. mass)

Figure 12: Strong scaling of XGCa on Edison with a configuration space mesh of 20694

vertices. The total number of particles is 108 with enhanced electron mass me = mi/100

(performance dominated by collisions), and 2 · 108 with realistic electron mass (perfor-

mance dominated by particles). Each compute node hosted 2 MPI processes with 24

OpenMP threads per process; all OpenMP threads are used in the outer level OpenMP

parallelization. Using only 6 threads in the outer and 4 in the inner level OpenMP par-

allelization improves performance when the number of parallel threads is larger than the

number of configuration space vertices (dashed-dotted lines).

compute nodes on Edison to 2048 nodes, which corresponds to 37% of the

whole system. The results of the strong scaling study are shown in Fig.

12. In case of the smaller problem with enhanced electron mass, the com-

puting time spent on the collision operator and the particle push is similar.

Performance degradation sets in when the product of MPI processes and

OpenMP threads (i.e. the total number of hardware threads) is around 20%

of the mesh size. The realistic use case, on the other hand scales well with

all OpenMP threads in the outer level OpenMP parallelization up to 1024

compute nodes. Then, the computing time spent on collisions stagnates at

39

a level comparable to the time spent on the particle push. At this point,

a significant number of parallel threads is idle during the evaluation of the

collision operator. Using the idle threads in the inner level parallelization

improves the performance of the collision operator significantly. We verified

this by repeating the test on 2048 compute nodes with 6 OpenMP threads

in the outer and 4 in the inner level parallelization of the collision opera-

tor. A typical production run for the problem size discussed here would use

between 500 and 800 compute nodes on Edison.

Finally, we performed a weak scaling study with XGCa on Edison with

10000 particles per mesh vertex. The smallest problem in this study used

a mesh with 10188 vertices and was run on 128 compute nodes. The larger

problems used meshes with 22109, 40197, and 81936 vertices, and were run

on 256, 512, and 1024 compute nodes. The velocity grid in all cases had

41 × 41 grid points. We tested the weak scaling with enhanced (me =

mi/100) and realistic electron mass. In the latter case, the particle push

was responsible for most of the total run time. Figure 13 summarizes the

results. While there is only little performance degradation (∼ 10%) with

realistic electron mass, the largest case case with 81936 mesh vertices and

enhanced electron mass is 24% slower than the smallest case.

From the these tests, we conclude that realistic use cases of XGCa are

well within the operating range in which the code’s scaling is determined by

the more scalable particle-in-cell part and not by the mesh limited scaling of

the collision operator. Extrapolating the performance data obtained with

XGCa to a large XGC1 simulation with approximately 106 mesh vertices

and 2 · 1010 marker particles on 16384 compute nodes on Titan, we also

expect XGC1 to be operating in the scalable operating range. Detailed

40

60

120

240

480

960

1920

3840

64 128 256 512 1024 2048

R
u

n
ti
m

e
 (

s
)

Compute nodes

Total

Collisions
Electron push

Total (enh. elec. mass)

Collisions (enh. elec. mass)
Electron push (enh elec. mass)

Figure 13: Weak scaling of XGCa on Edison with configuration space meshes of 10188,

22109, 40197 and 81936 vertices, 10000 particles per vertex with enhanced electron mass

(me = mi/100) and realistic electron mass. With realistic electron mass, the computing

time is dominated by the particle push and performance degrades less with increasing

number of compute nodes than with enhanced electron mass.

performance studies using XGC1 are currently being carried out and will

be published elsewhere.

5. Summary and Conclusions

We generalized the single-species Fokker-Planck-Landau collision oper-

ator developed by Yoon and Chang [9] to a multiple-species formulation.

Since accuracy is essential for a collision operator, we thoroughly inves-

tigated the conservation laws for mass, parallel momentum, and energy.

Specifically, we demonstrated that the Landau form of the Fokker-Planck

operator has the favorable property that the discrete velocity space meshes

do not have to be identical for all species because conservation laws apply

independently for each velocity pair (v,v′). Therefore, the only prerequi-

41

site for the discrete velocity grids is that the grids cover those velocities

at which the corresponding distribution function is not negligibly small.

Compared to the RMJ form of the Fokker-Planck operator, for which the

use of different velocity grids requires special treatment [7], this is an im-

portant simplification. The RMJ operator, on the other hand, is likely to

show better scaling behavior when varying the size of the velocity grid due

to the representation of the drag and diffusion coefficients with Rosenbluth

potentials. However, due to the relatively small velocity space meshes used

in XGC1 and XGCa simulations, the O(N2) scaling of the calculation of the

drag and diffusion coefficients may only impact the overall performance of

the XGC codes, if much larger velocity grids (N ≳ 10000) need to be used

(see Fig. 9).

Moreover, we proved that the continuum conservation laws of the FPL

operator are exact in the discretized operator. Therefore, the Picard itera-

tion used for the implicit time advance implemented in the XGC codes will

always converge to a distribution function that conserves mass, momentum

and energy to the desired accuracy without requiring additional complex

numerical measures.

In various tests against neoclassical theory and other neoclassical codes,

we verified our implementation of the FPL operator. We demonstrated that

residual conservation errors can be controlled by adjusting the convergence

criterion in the Picard iteration of the implicit time integrator and by the

number of marker particles.

Our implementation of the FPL operator is intended for use in extreme-

scale high-performance computing applications, where the mixing of PIC

and mesh based code modules may limit scalability when the number of

42

parallel threads becomes comparable to the size of the mesh (the configu-

ration space mesh in the present case). Therefore, we studied scalability

for realistic problem sizes with the code XGCa. According to the results of

our scaling studies, it is unlikely in realistic cases that the generally good

scalability of the PIC part of the XGC codes is diminished significantly by

the introduction of the mesh based collision operator. To achieve this good

scalability, we needed to implement nested OpenMP parallelism as well as

special load balancing algorithms that are able to balance the workload of

PIC and mesh components of the XGC codes.

Acknowledgements

Support for this work was provided through the Scientific Discovery

through Advanced Computing (SciDAC) program funded by the U.S. De-

partment of Energy Office of Advanced Scientific Computing Research and

the Office of Fusion Energy Sciences. The work was performed at Prince-

ton Plasma Physics Laboratory, which is managed by Princeton University

under Contract No. DE- AC02-09CH11466, at Oak Ridge National Lab-

oratory, which is managed by UT-Battelle, LLC under Contract No. DE-

AC05-00OR22725, and at Rensselaer Polytechnic Institute under Contract

No. DE-SC0008449. Awards of computer time was provided by the Innova-

tive and Novel Computational Impact on Theory and Experiment (INCITE)

program. This research used resources of the Argonne Leadership Com-

puting Facility, which is a DOE Office of Science User Facility supported

under contract DE-AC02-06CH11357. This research also used resources

of the Oak Ridge Leadership Computing Facility, which is a DOE Office

of Science User Facility supported under Contract DE-AC05-00OR22725.
43

This research also used resources of the National Energy Research Scien-

tific Computing Center, a DOE Office of Science User Facility supported by

the Office of Science of the U.S. Department of Energy under Contract No.

DE-AC02-05CH11231.

[1] S. P. Hirshman, D. J. Sigmar, Approximate Fokker-Planck collision operator for

transport theory applications, Physics of Fluids (1958-1988) 19 (10) (1976) 1532–

1540. doi:http://dx.doi.org/10.1063/1.861356.

[2] A. H. Boozer, G. Kuo-Petravic, Monte Carlo evaluation of trans-

port coefficients, Physics of Fluids (1958-1988) 24 (5) (1981) 851–859.

doi:http://dx.doi.org/10.1063/1.863445.

[3] W. X. Wang, N. Nakajima, M. Okamoto, S. Murakami, A new delta-f method for

neoclassical transport studies, Plasma Physics and Controlled Fusion 41 (9) (1999)

1091.

[4] E. A. Belli, J. Candy, Full linearized Fokker-Planck collisions in neoclassical trans-

port simulations, Plasma Physics and Controlled Fusion 54 (1) (2012) 015015.

doi:http://stacks.iop.org/0741-3335/54/i=1/a=015015.

[5] C. Buet, K.-C. Le Thanh, About positive, energy conservative and equilibrium state

preserving schemes for the isotropic Fokker-Planck-Landau equation (Dec 2006).

URL https://hal.archives-ouvertes.fr/hal-00092543

[6] C. Buet, K.-C. Le Thanh, Positive, conservative, equilibrium state preserving and

implicit difference schemes for the isotropic Fokker-Planck-Landau equation (May

2007).

URL https://hal.archives-ouvertes.fr/hal-00142408

[7] W. Taitano, L. Chacón, A. Simakov, K. Molvig, A mass, momentum, and energy

conserving, fully implicit, scalable algorithm for the multi-dimensional, multi-species

Rosenbluth-Fokker-Planck equation, Journal of Computational Physics 297 (2015)

357 – 380. doi:http://dx.doi.org/10.1016/j.jcp.2015.05.025.

[8] A. Pataki, L. Greengard, Fast elliptic solvers in cylindrical coordinates and the

Coulomb collision operator, Journal of Computational Physics 230 (21) (2011) 7840

– 7852. doi:http://dx.doi.org/10.1016/j.jcp.2011.07.005.

44

[9] E. S. Yoon, C. S. Chang, A Fokker-Planck-Landau collision equation solver on two-

dimensional velocity grid and its application to particle-in-cell simulation, Physics

of Plasmas 21 (3) (2014) 032503. doi:http://dx.doi.org/10.1063/1.4867359.

[10] S. Ku, C. Chang, P. Diamond, Full-f gyrokinetic particle simulation of centrally

heated global ITG turbulence from magnetic axis to edge pedestal top in a realistic

tokamak geometry, Nuclear Fusion 49 (11) (2009) 115021.

[11] R. Hager, C. S. Chang, Gyrokinetic neoclassical study of the bootstrap current

in the tokamak edge pedestal with fully non-linear coulomb collisions, Physics of

Plasmas 23 (4) (2016) 000000. doi:???

[12] M. N. Rosenbluth, W. M. MacDonald, D. L. Judd, Fokker-Planck equation for an

inverse-square force, Phys. Rev. 107 (1957) 1–6. doi:10.1103/PhysRev.107.1.

[13] W. T. Taitano, L. Chacón, A. N. Simakov, private communication.

[14] R. J. Goldston, P. H. Rutherford, Introduction to Plasma Physics, 1st Edition,

Taylor and Francis, New York, 1995.

[15] O. Larroche, An efficient explicit numerical scheme for diffusion-type

equations with a highly inhomogeneous and highly anisotropic diffu-

sion tensor, Journal of Computational Physics 223 (1) (2007) 436 – 450.

doi:http://dx.doi.org/10.1016/j.jcp.2006.09.016.

[16] B. Peigney, O. Larroche, V. Tikhonchuk, Fokker-Planck kinetic modeling of

suprathermal alpha-particles in a fusion plasma, Journal of Computational Physics

278 (2014) 416 – 444. doi:http://dx.doi.org/10.1016/j.jcp.2014.08.033.

[17] E. Epperlein, G. Rickard, A. Bell, A code for the solution of the Vlasov-Fokker-

Planck equation in 1-D or 2-D, Computer Physics Communications 52 (1) (1988) 7

– 13. doi:http://dx.doi.org/10.1016/0010-4655(88)90165-8.

[18] E. Epperlein, Fokker-Planck modeling of electron transport in laser-produced plas-

mas, Laser and Particle Beams 12 (1994) 257–272. doi:10.1017/S0263034600007722.

[19] J. D. Huba, NRL Plasma Formulary, Naval Research Laboratory, Washington, DC,

2013.

[20] F. Hinton, R. Hazeltine, Theory of plasma transport in toroidal confinement sys-

tems, Rev. Mod. Phys. 48 (1976) 239–308. doi:10.1103/RevModPhys.48.239.

[21] E. A. Belli, J. Candy, Kinetic calculation of neoclassical transport including self-

45

consistent electron and impurity dynamics, Plasma Physics and Controlled Fusion

50 (9) (2008) 095010. doi:http://stacks.iop.org/0741-3335/50/i=9/a=095010.

[22] M. F. Adams, S.-H. Ku, P. Worley, E. D’Azevedo, J. C. Cummings, C. Chang,

Scaling to 150k cores: Recent algorithm and performance engineering developments

enabling XGC1 to run at scale, in: Journal of Physics: Conference Series, Vol. 180,

IOP Publishing, 2009, p. 012036.

[23] F. Zhang, R. Hager, S.-H. Ku, C.-S. Chang, S. C. Jardin, N. M. Ferraro, E. S. Seol,

E. Yoon, M. S. Shephard, Mesh generation for confined fusion plasma simulation,

Engineering with Computers 32 (2) (2016) 285–293. doi:10.1007/s00366-015-0417-y.

46

Princeton Plasma Physics Laboratory
Office of Reports and Publications

Managed by
Princeton University

under contract with the
U. S . D e p a r t m e nt of E n e rgy

(DE-AC02-09CH11466)

P.O. Box 451, Princeton, NJ 08543
Phone: 609-243-2245
Fax: 609-243-2751

E-mail: publications@pppl.gov

Website: http://www.pppl.gov

