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Parallel electron force balance and the L-H transition
T. Stoltzfus-Dueck1

Princeton University, Princeton, NJ 08544a)

(Dated: May 5, 2016)

In one popular paradigm for the L-H transition, energy transfer to the mean flows directly depletes turbulence fluctu-
ation energy, resulting in suppression of the turbulence and a corresponding transport bifurcation. To quantitatively
evaluate this mechanism, one must remember that electron parallel force balance couples nonzonal velocity fluctu-
ations with electron pressure fluctuations on rapid timescales, comparable with the electron transit time. For this
reason, energy in the nonzonal velocity stays in a fairly fixed ratio to the free energy in electron density fluctuations,
at least for frequency scales much slower than electron transit. In order for direct depletion of the energy in turbulent
fluctuations to cause the L-H transition, energy transfer via Reynolds stress must therefore drain enough energy to
significantly reduce the sum of the free energy in nonzonal velocities and electron pressure fluctuations. At low k⊥,
the electron thermal free energy is much larger than the energy in nonzonal velocities, posing a stark challenge for
this model of the L-H transition.

PACS numbers: 52.25.Fi, 52.25.Xz, 52.35.We, 52.55.Fa
Keywords: L-H transition, tokamak, Reynolds stress, zonal flows

Although the edge transport barrier regime known as H-
mode was discovered experimentally over 30 years ago1 and
is necessary in order for ITER to achieve its performance
goals, we still lack a clear, universally accepted explanation of
the physics underlying this enhanced confinement regime.2,3

However, most models in current discussion are based around
the effect of radially sheared E × B velocities.4 In one pop-
ular variant of this picture, turbulent fluctuations directly
lose energy via transfer to the shear flows.5 Experimental
attempts to validate this variant have used energy balance
between the zonal and nonzonal portions of the E × B ve-
locity to estimate the effect of energy transfer via Reynolds
stress.6,7 In the following, I will briefly demonstrate that such
analysis must be corrected to include the nonzonal portion of
the free energy in electron density fluctuations. Since this en-
ergy may often be much larger than the energy in the E ×B
velocity, its inclusion may significantly affect the viability of
the direct energy-transfer paradigm in explaining the L-H
transition.

We will treat the problem in a very simple two-fluid flux-
tube model, with isothermal electrons, a single species of
singly-ionized cold ions, purely resistive parallel dynamics,
frequencies fast relative to ion transit (ω ≫ cs/qR), and a
shearless, simple-circular, large-aspect-ratio magnetic geom-
etry. [Although this model must be generalized for quan-
titative treatments of edge turbulence in experiment, these
generalizations do not affect the basic structure underlying
our conclusions. Some effects of omitted generalizations will
be mentioned throughout the text.] The resulting equations
appear in SI units8 as

(∂t + vE · ∇) (ne + n0) = 1
e

∇∥j∥ + 1
e

K (n0eϕ − neTe0) ,

(1)
n0mi

B2 (∂t + vE · ∇) ∇2
⊥ϕ = ∇∥j∥ − K (neTe0) , (2)

ηj∥ = Te0

n0e
∇∥ne − ∇∥ϕ. (3)

Eq. (1) shows the evolution of fluctuating electron density
ne under advection by the E × B drift vE = B−1b̂ × ∇ϕ,
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divergence of the parallel current ∇∥j∥ (equivalent to −e
times parallel electron density flux, due to our orderings),
and the toroidal effects due to K .= −(2/B2)b̂ × ∇B · ∇,
both the curvature and ∇B drifts e−1K(neTe0) and the di-
vergence of the E × B drift K(ϕ). E × B advection down
the gradient of the mean density n0 is the sole free energy
source in this model. Eq. (2) essentially states that the cur-
rent must be divergence-free: the LHS is (minus) the diver-
gence of the ion polarization current (both linear and non-
linear), while the RHS consists of the divergence of the elec-
tron curvature current −K(neTe0) and the parallel current
∇∥j∥. Eq. (3) determines the parallel current by a balance
between resistive drag n0eηj∥ and the parallel forces on elec-
trons, due to electron pressure gradient −Te0∇∥ne and elec-
tric force n0e∇∥ϕ. After evaluation of K and the substitution
vE ·∇n0 → −(n0/Ln)vx

E [for vx
E

.= vE ·∇x, radial coordinate
x, and 1/Ln

.= −n−1
0 (dn0/dx)], we may take n0, Te0 and B

to be constants. Eqs. (1)–(3) may be seen as a generaliza-
tion of the Hasegawa-Wakatani equations9 to include some
toroidal effects, or as a simplification of isothermal Braginskii
or gyrofluid equations.10

In many cases, the parallel resistivity η is small enough
that parallel electron diffusion is rapid relative to other phys-
ical processes. In this case, if the terms on the RHS of Eq. (3)
do not approximately cancel, then a large parallel current j∥
is needed to make ηj∥ large enough to satisfy Eq. (3), so
Eqs. (1) and (2) will simplify to11

∂tne ≈ 1
e

∇∥j∥ = 1
ηe

(
Te0

n0e
∇2

∥ne − ∇2
∥ϕ

)
, (4)

n0mi

B2 ∂t∇2
⊥ϕ ≈ ∇∥j∥ = 1

η

(
Te0

n0e
∇2

∥ne − ∇2
∥ϕ

)
. (5)

Considering a single Fourier mode in the perpendicular di-
rection so ∇2

⊥ → −k2
⊥, we may combine Eqs. (4) and (5) to

evolve the dimensionless combination he
.= ne/n0 − eϕ/Te0:

∂the = Te0

ηn0e2

(
1 + 1

k2
⊥ρ2

s

)
∇2

∥he, (6)

showing dissipation of he due to parallel conduction. The
basic rate can easily be seen to follow from (collisional)
parallel electron diffusion: k2

∥Te0/ηn0e2 = k2
∥v2

te/νei for
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vte
.= (Te0/me)1/2 and νei the appropriate electron-ion col-

lision rate. The factor of 1/k2
⊥ρ2

s, with the “sound radius”
ρs just the ion gyroradius evaluted at the electron tempera-
ture ρs

.= csmi/eB for cs
.= (Te0/mi)1/2,12 can substantially

increase the damping rate for he, in the common case of fluc-
tuations at k⊥ρs ≪ 1, that is, for cross-field spatial scales
larger than the sound radius. The physical reason is more
straightforward than it may appear: at these larger spatial
scales, the ion polarization response becomes weak, so that
even a small parallel current can cause a large change in ϕ.
This means that for whatever parallel current divergence we
get from Ohm’s Law [Eq. (3)], the change in the potential
must be larger by 1/k2

⊥ρ2
s to bring in enough ions (across

the field) to maintain quasineutrality. From this analysis,
we may conclude that at timescales longer than the very
short timescale νeik

2
⊥ρ2

s/k2
∥v2

te corresponding to parallel elec-
tron diffusion, the RHS of Eq. (3) must be in approximate
balance, so that ∇∥(ne/n0) ≈ ∇∥(eϕ/Te0). If we were to
include electron inertia or electromagnetic fluctuations [ne-
glected in Eqs. (1)–(3)], we would slow the short timescale
to the longest of three parallel electron timescales: resistive
(given here), collisionless (going with electron transit time),
or Alfvénic (going with Alfvén damping time), but the ul-
timate relaxation to electron adiabatic response would be
unchanged, as long as our other frequencies were still much
slower than the slowest electron parallel rate.

Since the magnetic field is always tangential to the flux
surface, the parallel gradient vanishes for anything that is
constant over the flux surface. For this reason, it is advan-
tageous to decompose the potential ϕ into its flux-surface
average ⟨ϕ⟩ (the ’zonal’ potential), which is constant over a
flux surface so that ∇∥⟨ϕ⟩ = 0, and the remaining ’nonzonal’
potential ϕ̃

.= ϕ − ⟨ϕ⟩, which trivially satisfies ⟨ϕ̃⟩ = 0. In
our simple geometry, we may define a radial coordinate x and
binormal coordinate y such that vx

E
.= vE · ∇x = −B−1∂yϕ,

vy
E

.= vE · ∇y = B−1∂xϕ, and ∇2
⊥ ≈ ∂2

x + ∂2
y , in which ∂x

and ∂y are partial derivatives with respect to x and y. We
may then decompose vy

E = ⟨vy
E⟩ + ṽy

E with ⟨vy
E⟩ = B−1∂x⟨ϕ⟩

and ṽy
E = B−1∂xϕ̃. Since the flux-surface average involves

integrating over the angle-like y, the corresponding decom-
position for vx

E is simply ⟨vx
E⟩ = 0 (by periodicity of ϕ in y)

so vx
E = ṽx

E = −B−1∂yϕ = −B−1∂yϕ̃.

Turbulent evolution is complicated, due primarily to the
advective nonlinearities, in our case the (vE · ∇)ne and
(vE · ∇)∇2

⊥ϕ terms in Eqs. (1) and (2). Some insight may
therefore be gained by considering quantities that are invari-
ant under the nonlinearities, that is, quantities whose evo-
lution equations do not contain the nonlinear terms. Much
productive analysis has resulted from a focus on fluctuation
free energy, a nonlinear invariant that is proportional to the
square of the turbulent amplitudes, roughly measuring the
strength of the fluctuations. Such equations may be derived
for Eqs. (1)–(3) as follows: Multiply Eq. (1) by Te0ne/n0 and
Eq. (2) separately by −ϕ̃ and by −⟨ϕ⟩ , then integrate each
resulting equation over some volume

∫
dV and do some inte-

grations by parts, neglecting the fluxes through the bound-
aries. Note that ∇∥⟨f⟩ = 0 and

∫
dV ⟨f⟩g̃ = 0 for arbitrary

functions f and g. The resulting equations are13

∂tEn= Te0

∫
dV

[ 1
Ln

nevx
E − ϕK (ne) − 1

n0e
j∥∇∥ne

]
, (7)

∂tE∼=
∫

dV
[
Te0ϕ̃K (ne)+j∥∇∥ϕ̃−n0mi(ṽx

E ṽy
E)∂x⟨vy

E⟩
]

(8)

∂tEz =
∫

dV
[
Te0 ⟨ϕ⟩ K (ne) + n0mi(ṽx

E ṽy
E)∂x⟨vy

E⟩
]

(9)

for density free energy En
.= Te0

2n0

∫
dV n2

e, nonzonal E × B

energy E∼
.= 1

2 n0mi

∫
dV[(vx

E)2 + (ṽy
E)2], and zonal E × B

energy Ez
.= 1

2 n0mi

∫
dV⟨vy

E⟩2. [For emphasis, En, E∼,
and Ez refer to portions of the free energy, not to elec-
tric field components.] The only free energy source is the
nevx

E/Ln term in Eq. (7), due to density transport down
∇n0. The curvature term ϕK(ne) conservatively trans-
fers energy between En and both E∼ and Ez, with the
ϕ̃K(ne) portion often referred to as “curvature drive” and
the ⟨ϕ⟩K(ne) portion important for GAM oscillations. (The
curvature-mediated energy transfer will not play a central
role in the following analysis.) The Reynolds work term
n0mi(ṽx

E ṽy
E)∂x⟨vy

E⟩ conservatively transfers energy between
E∼ and Ez, capturing the energy transfer that plays a key
role in many models of the L-H transition. The parallel cur-
rent plays a dual role: In the evolution of the total energy
(En + E∼ + Ez), the summed parallel current terms con-
tribute positive-definite dissipation, −(Te0/e)

∫
dV j∥∇∥he =

−η
∫

dV j2
∥ = −(T 2

e0/e2η)
∫

dV(∇∥he)2 < 0. If h̃e becomes
small, so ñe/n0 ≈ eϕ̃/Te0, the individual parallel current
terms −(Te0/n0e)j∥∇∥ne and j∥∇∥ϕ̃ = j∥∇∥ϕ become nearly
equal and opposite, representing free energy transfer between
En and E∼. If we suppose now that η is small enough that
ñe/n0 ≈ eϕ̃/Te0, we may immediately estimate the ratio of
free energy in nonzonal E × B velocity as compared with
that in the nonzonal fluctuating density, Eñ

.= Te0
2n0

∫
dV ñ2

e:

E∼

Eñ
=

∫
dV[(vx

E)2 + (ṽy
E)2]/c2

s∫
dV ñ2

e/n2
0

= mi

Te0B2

∫
dV

∣∣∇⊥ϕ̃
∣∣2∫

dV ñ2
e/n2

0
∼ k2

⊥ρ2
s,

(10)
where k⊥ is a representative wavenumber averaged over the
turbulent fluctuation spectrum. In the typical edge turbu-
lence case of fluctuations at scales much larger than the
sound radius (k⊥ρs ≪ 1), we see that the energy in the
nonzonal velocities is much smaller than the free energy in
the electron density fluctuations.

What does this imply for quantitative evaluation of the
predator-prey model5 of the L-H transition? In the predator-
prey model, direct energy transfer to the mean flows de-
pletes the energy content of the turbulence, resulting in sup-
pression of the turbulence and the transition to H-mode.
In Eqs. (7)–(9), this energy transfer appears explicitly as
the Reynolds work term, n0mi(ṽx

E ṽy
E)∂x⟨vy

E⟩. Even if the
correlations are optimal for energy transfer to mean flows,
this energy transfer term cannot deplete E∼ faster than
[
∫

dV n0mi(ṽx
E ṽy

E)∂x⟨vy
E⟩]/E∼ ≤ max |∂x⟨vy

E⟩|.14 However,
our Eq. (6) and subsequent discussion shows that the paral-
lel current acts at a rapid rate ∼ k2

∥v2
te/(νeik

2
⊥ρ2

s) to enforce
ñe/n0 ≈ eϕ̃/Te0, thus also E∼/Eñ ∼ k2

⊥ρ2
s. So, assuming the

parallel electron rate is fast relative to max |∂x⟨vy
E⟩|, parallel

electron physics will effectively cause the sum (E∼ + Eñ) to
move as a unit, with E∼ and Eñ staying in a roughly fixed
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ratio to one another. So, in order for the Reynolds work term
to deplete the free energy from turbulent fluctuations, it must
transfer an amount of energy comparable with (E∼ + Eñ),
rather than with E∼ alone. Since Eñ/E∼ ∼ 1/(k⊥ρs)2 is
often much larger than one in edge turbulence, this makes
it significantly more difficult for the Reynolds work term to
directly deplete the turbulent fluctuations’ free energy.

Alternatively, consider now a transition that is slower than
a typical instability growth rate γ, so that the ∂tEn and ∂tE∼
terms in Eqs. (7) and (8) become small relative to at least
some of the energy source and transfer terms on the RHS.
In this slow-transition limit, we must balance the free en-
ergy source γEñ

.= Te0
∫

dV nevx
E/Ln against energy trans-

fer via the the Reynolds stress
∫

dV n0mi(ṽx
E ṽy

E)∂x⟨vy
E⟩ ≤

E∼ max |∂x⟨vy
E⟩|, leading to a criterion for turbulence sup-

pression max |∂x⟨vy
E⟩| ≥ γ(Eñ/E∼) ∼ γ/(k⊥ρs)2, resem-

bling a “Waltz rule”15 that has been modified by the factor
1/(k⊥ρs)2. Since 1/(k⊥ρs)2 is typically large in edge turbu-
lence, this formula requires a much larger flow shear than
the usual criterion (|∂x⟨vy

E⟩| & c1γ, for constant c1 of or-
der unity), suggesting that other mechanisms must typically
dominate in order to get turbulence suppression at the more
easily accessible shearing rate max |∂x⟨vy

E⟩| ∼ γ.
It is important to recall that depletion of the turbulence

via energy transfer to Ez is only one of several possible mech-
anisms through which E × B flow shear could suppress tur-
bulence. For example, sheared E ×B flows could distort the
turbulent fluctuations to reduce their effective growth rate γ,
or could increase their mean perpendicular wave number k⊥
and thereby enhance cross-field dissipation.4 In that latter
case, energy would also be redistributed between Eñ and E∼
as the mean k⊥ changed. When η is small enough, this trans-
fer is approximately conservative, so it has little effect on the
suppression criterion for the rapid L-H transition case, since
the Reynolds stress must still transfer the L-mode level of
(Eñ + E∼) to Ez in order to suppress the turbulence. How-
ever, it could become significant for the slow-transition case
if k⊥ρs became a significant fraction of unity during the tran-
sition. Indirect effects, such as those due to modification of
the effective γ or k⊥ by eddy shearing, are not directly ad-
dressed by the energy-balance arguments presented in this
article, and could act to suppress turbulence even if the di-
rect energy depletion by Reynolds work is negligible.

Note also that the nonadiabatic response he can become
order unity for some edge parameter values. However, the
parallel current still acts strongly enough that ñe/n0 and
eϕ̃/Te0 must remain comparable in magnitude at frequencies
lower than the parallel electron rate. This is enough to cause
the general ordering given by Eq. (10) and to support the
subsequent analysis.

In summary, parallel electron conduction causes a relax-
ation of turbulent fluctuations towards adiabatic electron re-
sponse (ñe/n0 ≈ eϕ̃/Te0) on rapid parallel electron tran-
sit timescales. At longer timescales, the energy in nonzonal
E × B flows E∼ is held in an approximately fixed relation-
ship to the free energy in nonzonal density fluctuations Eñ,
with E∼/Eñ ∼ (k⊥ρs)2. For the typical case that the elec-
tron transit time is fast relative to the background E × B
shearing rate, electron density fluctuations rapidly restore
nonzonal E × B energy lost by Reynolds-stress transfer, im-
plying that the Reynolds work term must deplete the energy
not only from nonzonal E × B flows but also from Eñ in

order to suppress the turbulence. Because Eñ ≫ E∼ for the
typical edge turbulence case of fluctuations at scales rather
larger than ρs, (k⊥ρs)2 ≪ 1, this makes it much more diffi-
cult to suppress the turbulence via direct energy transfer to
sheared flows.
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14This bound follows from the fact that 0 ≤ (|ṽx

E | − |ṽy
E |)2.

15R. E. Waltz, G. D. Kerbel, J. Milovich, and G. W. Hammett, Phys.
Plasmas 2, 2408 (1995).

16T. Stoltzfus-Dueck, B. D. Scott, and J. A. Krommes, Phys. Plasmas
20, 082314 (2013).
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