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Identification of Multi-Modal Plasma Responses to Applied Magnetic
Perturbations using the Plasma Reluctance

Nikolas C. Logan1, Carlos Paz-Soldan2, Jong-Kyu Park1, Raffi Nazikian1
1Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543, USA
2General Atomics, PO Box 85608, San Diego, CA 92186-5608,
USA

Using the plasma reluctance, the Ideal Perturbed Equilibrium Code (IPEC) is able to efficiently identify
the structure of multi-modal magnetic plasma response measurements and the corresponding impact on
plasma performance in the DIII-D tokamak. Recent experiments demonstrated that multiple kink modes of
comparable amplitudes can be driven by applied nonaxisymmetric fields with toroidal mode number n =
2. This multi-modal response is in good agreement with ideal magnetohydrodynamic (MHD) models, but
detailed decompositions presented here show the mode structures are not fully described by either the least
stable modes or the resonant plasma response. This work identifies the measured response fields as the first
eigenmodes of the plasma reluctance, enabling clear diagnosis of the plasma modes and their impact on
performance from external sensors. The reluctance shows, for example, how very stable modes compose a
significant portion of the multi-modal plasma response field and that these stable modes drive significant
resonant current. This work is an overview of the first experimental applications using the reluctance to
interpret the measured response and relate it to multifaceted physics, aimed towards providing the foundation
of understanding needed to optimize nonaxisymmetric fields for independent control of stability and transport.

I. MOTIVATION

In tokamaks, nonaxisymmetric magnetic fields (δB)
smaller than the axisymmetric field (B) by many orders
of magnitude

(
δB/B ∼ 10−4

)
can drive energy, momen-

tum, and particle transport, significantly impacting the
plasma performance. Small asymmetries in the design
and construction of tokamaks, inevitably create intrin-
sic error fields (EFs) of this order. Error field correction
(EFC) coil sets are commonly used to negate any negative
and/or amplify any positive consequence of the intrinsic
error field. These intrinsic and applied external nonax-
isymmetries drive the natural modes of the plasma, which
can amplify or shield the perturbation relative to what
it would have been in vacuum. The performance is then
impacted by the effect of the total (external and plasma
response) field on the physics of interest.

In the case of an unstable or marginally stable equi-
librium, a single mode structure dominates the plasma
response and that response dominates the total pertur-
bation. This dominant mode can be directly probed using
applied fields even when the intrinsic EF is unknown, and
the plasma response resonant field amplification (RFA)
used to optimize EFC to avoid instability1–8. These large
marginally stable modes also modify equilibria of their
own accord, and are used to control the momentum and
density profiles of plasma1,9–12. The structure of this
dominant mode and its driving external fields is calcu-
lable from an ideal magnetohydrodynamics (MHD) equi-
librium, enabling predictive optimization of applied fields
when direct experimental optimization is not available.

An intuitive description of natural modes of the sys-
tem (plasma, surrounding vacuum, and possibly external
current carrying structures) ranks the 3D perturbations
in terms of their perturbed energy, δW . These are energy
ranked eigenmodes of the equilibrium and form a com-

plete orthonormal set of perturbations on the plasma sur-
face in ideal MHD13–15. The ideal stability code DCON15

calculates the energy eigenmodes of total surface dis-
placement for a given axisymmetric equilibrium, the least
stable of which indicates the proximity to instability. The
marginally stable DCON mode is a good approximation
of the dominant plasma response at or even slightly be-
yond the ideal MHD stability boundary and is used for
active feedback resistive wall mode stabilization16–20.

Separate from their role as indicators of approaching
instabilities, large stable modes have significant impact
of their own on the perturbed plasma equilibrium. The
sheet current necessary to shield resonant components of
the field in ideal MHD may be too great to sustain in
practice, leading to reconnection, error field penetration,
and the formation of islands. Even with flux surfaces in-
tact, the stable perturbations may induce particle trans-
port. Nonambipolar neoclassical transport across flux
surfaces leads to the exchange of momentum between
plasma and surrounding coils21? –24, affecting stability
through the rotation profile. Although the exact mech-
anism is still under study, stable resonant drive in the
edge increases particle transport in the pedestal, reduc-
ing the pressure gradient and stabilizing edge localized
modes (ELMs)25–30.

In an effort to quantize the impact of these driven
but stable modes, the Ideal Perturbed Equilibrium Code
(IPEC) calculates a hierarchy of external perturba-
tions ranked by the total resultant root-mean-square
(RMS) resonant current drive (RCD) using singular
value decomposition4,31,32. The singular values for a
given toroidal mode number n decay exponentially, with
the highest often an order of magnitude above the the
second33. This implies that the resonant currents and cor-
related phenomena for that n can be well approximated
by the extent to which any given external field overlaps
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the first resonant coupling mode, and this overlap metric
has been used extensively for predictive EFC4,6,7,32,33.

Both the energy ranking and RCD ranking of pertur-
bations can thus provide what is known as a single mode
model, in which a single mode of perturbation determines
the physics of interest. This reduction has been of pri-
mary importance for EFC, which typically uses little or
no tuning of the applied poloidal spectrum to null a sin-
gle mode component of the intrinsic EF34,35. The single
mode model asserts that the rest of the spectrum, in-
evitably driven by such a coarse correction, is of negligi-
ble consequence.

Experiments at the DIII-D National Fusion Facil-
ity have demonstrated that intrinsic n = 1 EF cor-
rection currents are consistent with nulling the domi-
nant RCD mode7 and that the plasma is insensitive to
n = 1 fields which have no overlap6. In such n = 1
experiments, the plasma response is dominated by the
amplification of the first RCD coupled kink structure.
This response then dominates the external magnetic
measurements36,37, making these measurement accurate
metrics for the correction of the EF mode component.

In contrast to the n = 1 results, recent experiments
have demonstrated that the plasma amplification of n =
2 EFs is multi-modal38. Changing the structure of the
applied field excited multiple modes of plasma response
to large amplitude. Despite this, the induced energy and
particle (but not momentum) transport follows a sin-
gle mode model with maxima/minima consistent with
the coupling/decoupling of the external field to the first
RCD ranked mode9. There is a discrepancy then, be-
tween the multi-modal amplitude of the externally mea-
sured plasma response and the single mode impact of the
applied field on the equilibrium.

The discrepancy between the observed response and
the equilibrium impact has important implications for
multi-modal EFC and control, as the response amplitude
measured by any given magnetic sensor array is no longer
a good metric for EFC. In this paper, it will be shown
that the observed response contains contributions from
very stable and from nonresonant perturbations. This
means neither a reduced set of the least stable modes
nor the RCD modes can be used to efficiently interpret
the measured response and relate it to the physics of in-
terest.

The plasma reluctance eigenbasis succeeds were the
aforementioned bases failed. The reluctance is a funda-
mental property of the axisymmetric plasma equilibrium
that describes the effective perturbed currents that would
arise if external fields drive nonaxisymmetry. It has hith-
erto remained a theoretical matter, unapplied in tokamak
experiments and diagnostic analysis. The gaol of this pa-
per is thus to introduce the plasma reluctance and show
its initial applications in DIII-D. The applications show
that the reluctance provides a framework for the inter-
pretation of multi-modal measurements and means for
relating them to the previous performance based metrics,
enabling multi-modal control of the MHD response.

The organization of this paper is as follows. Section
II reviews the experimental methods used at DIII-D to
study n = 2 multi-modal plasma response and the impact
of these multiple modes on the equilibria, highlighting
the aforementioned discrepancy between the magnetic re-
sponse and impact. Section III demonstrates the failure
of the energy and RCD ranked field decompositions to de-
scribe the observed plasma response. A framework rank-
ing applied fields by the external observability of their
plasma response using the plasma reluctance is then in-
troduced by Sec. IV. This framework efficiently describes
the observed multi-modal response. Section IV provides
the explicit relationship between the reluctance ranked
modes and the two performance based decompositions.
A discussion of the possible applications of this frame-
work and final conclusions are in Sec. V.

II. EXPERIMENTAL MOTIVATION

The observation of multimodal plasma response to
n = 2 fields has been detailed in many recent
publications10,30,38. The plasma equilibria studied in
these experiments are all ITER-similar shape lower single
null plasmas as shown in Fig. 1 with toroidal field on axis
of 1.93T. In all cases the structure of the applied field is
changed by scanning the relative toroidal phase of 4kA
n = 2 waveforms in two in-vessel coil arrays. Each coil
array consists of six picture frame coils spanning sixty de-
grees in toroidal extent and with poloidal cross sections
as shown in Fig. 1. Defining the kA current in the ith
upper coil as 4 cos(nφi − φIU ) and in each lower coil as
4 cos(nφi − φIL), the external field is parameterized by
the phasing (∆φUL ≡ φIU − φIL) of the upper relative
to the lower coil set.

Figure 2 shows the Fourier decomposition in PEST39

coordinates of the n = 2 external field structure at the
plasma surface for the full range of phasings. The 300
and 0 degree phasing spectra both have nulls near the
edge pitch resonant poloidal harmonic m = 10 ∼ nqlim
and peaks in the “kink resonant”7,40 harmonics near
m = 15 ∼ (n+ 1)qlim that are often associated with the
dominant plasma response in the single mode model. In-
deed, these spectra excite the large multimodal responses
observed in the experiment38. Here qlim is defined as the
safety factor of the IPEC control surface, which is nec-
essarily just inside the last closed flux surface where q is
finite.

The signature of multiple response structures in these
experiments is the disparate n = 2 plasma response mea-
sured by magnetic sensors on the low-field-side (LFS)
and high-field-side (HFS) of the vessel. Multi-modal re-
sponse is defined by multiple structures of significant am-
plitude, leading to the measurements at these poloidal
locations measuring different phasing dependences. Al-
though this behavior has been observed10 over a wide
range of normalized plasma pressure (βN ), collisional-
ity (ν∗e ), and total current (q95), this paper will concen-
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Figure 1. Cross section of the DIII-D tokamak, internal coils,
magnetic sensor arrays, and ITER-similar shaped plasma used
to study the multi-modal plasma response to n = 2 fields.
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Figure 2. PEST coordinate poloidal spectra of the external
field on the IPEC control surface applied by the I-Coils at
60◦ phasing intervals (indicated by color). The resonant pitch,
nqlim, near the surface containing 95% of the poloidal flux
(dashed) as well as (n + 1)qlim (dotted) vertical lines mark
the nominal “pitch aligned” and “kink aligned” pitch.

trate on a reference equilibrium (158103) with βN = 2.2,
ν∗e = 0.3, and q95 = 4.15 unless otherwise specified. Ref-
erence [38] presented good agreement between the exper-
imental measurements and ideal MHD modeling using
IPEC for this scenario, both clearly showing multi-modal
response. This agreement is reproduced in Fig. 3. Note
that more complex resistive and extended MHD plasma
response models, including MARS-F41 and M3D-C142,
have also observed this behavior and have been bench-
marked against IPEC in DIII-D37. This paper leverages
the relative simplicity of the ideal MHD IPEC model to
gain clear, physical insight into the experimentally ob-
served behavior that is well described within its approx-
imations.

Importantly, Ref. [38] showed that the energy trans-
port as well as the particle transport and resulting ELM
suppression were correlated with the coupling to the first
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Figure 3. Top: The pedestal density (blue) and deuterium-α
line emission from the divertor (green) as a function of I-coil
phasing during a continuous experimental scan and dominant
RCD mode metric for a IPEC modeled scan. Bottom: Dis-
crete phasing n = 2 amplitude measurements from LFS (or-
ange squares) and HFS (black triangles) magnetic sensor ar-
rays and synthetic sensor signal predictions from IPEC (solid
lines). Purple bands indicate phasings for which ELMs where
suppressed. All data is as shown in Ref. [38].

RCD mode. This connection is further corroborated by
the efficacy of single mode model EFC optimizing these
metrics using the IPEC RCD metric in similar plasmas9.
Note that despite the single mode behavior of the en-
ergy and particle transport, the momentum was decou-
pled from this RCD mode. It appears then that there are
multiple large amplitude structures excited in the plasma
and impacting the global equilibrium, but only one that
induces the edge energy and particle transport that im-
pact the ELMs.

It is desirable in experiments to interpret the impor-
tance of an external magnetic measurement in terms
of its implied performance impact. A prime example is
the n = 1 LFS plasma response amplitude, which has
been successfully used to indicate proximity to stability
boundaries and the amount of induced transport in sin-
gle mode EFC experiments43,44. With multi-modal re-
sponses it is not possible to draw a direct connection
between the observed signal and physics of interest. Cer-
tainly, the nulling the LFS signal does not minimize the
impact of the applied field in Fig. 3. An understanding of
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which modes of response are observed by external mag-
netic sensors as well as which are meaningful for perfor-
mance is necessary to accurately interpret impact from
measurements.

III. IDENTIFICATION USING PLASMA PERFORMANCE
BASES

This section describes the energy ranked and RCD
ranked external field perturbations on the plasma sur-
face as computed by the ideal MHD codes DCON15 and
IPEC31. Both codes use a formalism in which nonax-
isymmetric flux surface perturbations are expressed to
arbitrary accuracy using Fourier decomposition in angu-
lar magnetic coordinates (ϑ, ϕ). Perturbations of different
toroidal mode numbers (n) are decoupled by symmetry
and are treated independently in the codes. For a given
n, any nonaxisymmetric quantity V (ϑ, ϕ) on the flux sur-
face ψ can be written as the column vector,

V (ψ) = {Vm(ψ), mmin ≤ m ≤ mmax}, (1)

where Vm is the Fourier coefficient of the angular function
for poloidal mode number m.

This formalism can be used to compactly describe
a wide range of both time independent and time de-
pendent phenomena relating nonaxisymmetric fields and
toroidal plasma confinement with matrix equations in-
tuitively similar to those of circuit theory14. The DCON
and IPEC codes, however, focus on time independent per-
turbed equilibria.

The direct criterion of Newcomb (DCON) code cal-
culates the stability of nonaxisymmetric perturbations
about an axisymmetric equilibrium15,45. The code calcu-
lates solutions of a high order Euler-Lagrange system of
ordinary differential equations, describing the displace-
ments of flux surfaces that minimize the ideal MHD per-
turbed energy. The minimization of the perturbed energy
δW =

´
dx3ξ ·F (ξ) with respect to the nonaxisymmetric

displacement ξ provides M orthogonal ideal MHD force
(F ) balance solutions for which F (ξ) = 0. Here, M is the
number of poloidal harmonics retained in the calculation.
The M solutions span the space of all valid ideal MHD
perturbed equilibria for a given n and m truncation.

All of these perturbed equilibria are uniquely defined
by their displacement, or alternatively their flux, on the
outermost surface of the computational domain (qlim) ap-
proaching the surface of the plasma. And the total energy
of an arbitrary perturbation on this surface is,

δW = Φ† ·Λ−1 ·Φ, (2)

where the inverse plasma inductance, Λ−1, is calculated
directly by the minimization done in DCON. In ideal
MHD, the inverse plasma inductance is a hermitian ma-
trix. The eigenvectors Φi of this matrix thus provide a

complete, orthonormal basis set ordered by eigenvalues
representing the perturbed energy per square unit total
flux.

In a stable plasma, each of these eigenmodes has a
positive eigenvalue and must be externally driven in order
to be physically realized. The ideal perturbed equilibrium
code (IPEC) calculates the perturbed flux Φ given an
applied external flux, Φx, using the linear relationship,

Φ = Λ · L−1 ·Φx. (3)

Here the control surface inductance L defines the flux on
the surface produced by a surface current (I) such that
Φ = L·I, and the plasma inductance relates the total flux
to an effective surface current of the external field Φ = Λ·
Ix. Given an external flux, IPEC solves for the total flux
using Eq. (3) and decomposes it in the DCON eigenbasis
such that Φ =

∑M
i=1 ciΦi. The perturbed equilibrium is

then fully defined at any point (ψ, ϑ, ϕ) in the plasma
as the similarly weighted sum of DCON force balance
solutions.

The following sections discuss, in detail, various ways
in which the external perturbations applied in IPEC can
be categorized by the physics of interest. The conclusion
demonstrates the power of the full eigenmode calcula-
tion in constructing reduced models for understanding
the experiment and the physics. Note that while many
codes are used to compute the driven nonaxisymmetric
plasma response in DIII-D37, at this time only DCON
and IPEC formulate the complete eigenbasis of the input
axisymmetric equilibrium independent of external drive.
More complex models, often calculate a single least sta-
ble plasma mode by running time dependent calculations
with white noise initial conditions of nonaxisymmetry.
Time independent 3D equilibrium calculations, however,
have historically concentrated on calculating only the ex-
plicitly driven response. There is no fundamental reason
the eigenmodal descriptions presented here could not in-
clude physics beyond that of ideal MHD, although the
extension of the IPEC formalism to a Generalized Per-
turbed Equilibrium Code (GPEC)46 is beyond the scope
of this paper. Here, we use the ideal MHD results, which
agree well with the experimental observations, to mo-
tivate the basic plasma property classifications of multi-
modal plasma responses that may be extended to include
more physics as it is motivated by observations in other
experimental regimes.

A. Energy Gain Ranked Eigenspace

The eigen decomposition of the inverse plasma in-
ductance in DCON is an intuitive and informative cat-
egorization. Any negative eigenvalue immediately im-
plies ideal instability. A marginally stable eigenmode
is a good approximation of the unstable resistive wall
mode structure16,17,20 and can reasonably be expected
to dominate any perturbed equilibrium. A marginally
stable mode is defined as one for which the perturbed
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energy (δW ) is much smaller than the energy required
to similarly perturb the vacuum (δWv) such that s =
−δW/δWv → 0. Note that s is defined by the ratio of
two scalars,

s = − δW

δWv
= −Φ† ·Λ−1 ·Φ

Φ† ·L−1 ·Φ
, (4)

and does not provide a eigenbasis of its own. The “least
stable kink”, however, is given by the smallest eigenvalue
and corresponding eigenvector of L ·Λ−1 in stable equi-
libria by virtue of both matrices being positive definite.

The experimental results detailed in the previous sec-
tion, however, show more than one external field excites
a large plasma response. This equilibrium is, and the
majority of DIII-D plasmas are, relatively far from any
n > 1 ideal MHD stability boundary where the least sta-
ble mode would be expected to dominate over all others.
In such cases, a multimodal eigenbasis is required to de-
scribe the perturbed equilibrium, ruling out the stability
ranking discussed above that gives only the least stable
mode. A natural evolution is to rank the external field
structures by the energy of the total perturbation they
produce.

The energy of a perturbed equilibrium driven by ex-
ternal coils can be written in terms of the control surface
external flux by combining Eqs. (2) and (3),

δW = Φ†x · L†−1 ·Λ · L−1 ·Φx. (5)

This work, following the energy normalization used in
Ref. [4], will use a square-root area weighted field vector
Φ̃x with components Φm such that,

√
J |∇ψ|Bnorm =

mmax∑
m=mmin

Φ̃m(ψ)e−i(mθ−nφ). (6)

Here Bnorm is the normal field on the surface. The L-1
norm,

Φ̃x · Φ̃x =

ˆ
dϑdϕJ |∇ψ| (Bnorm)

2
, (7)

is proportional to the line energy of the applied external
field and for the remainder of this paper this quantity
will be referred to as the e-flux. The e-flux is related to
the true flux by the hermitian weighting matrix W, such
that Φx = W · Φ̃x.

The perturbed equilibrium energy expressed in the e-
flux basis is given by,

δW = Φ̃
†
x ·G · Φ̃x, (8)

where the energy gain matrix G = W† ·L†−1 ·Λ ·L−1 ·W
is again a hermitian matrix. The eigenvalues of this ma-
trix are proportional to the perturbed equilibrium energy
per unit line energy in the external field at the plasma
surface, and corresponding eigenvectors form a complete
orthonormal basis in which any external field can be de-
composed. The precise eigenvalues and eigenvectors that
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Figure 4. The energy gain matrix eigenvalues for the multi-
modal reference equilibrium.
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compose the bases are fundamental properties of the ax-
isymmetric equilibrium.

Figures 4 and 5 show the eigenvalues and eigenvec-
tors of the energy gain matrix for the equilibrium mod-
eled in Sec. II. The Fourier space was truncated such
that −20 ≤ m ≤ 44, and there are correspondingly 75
unique eigenmodes. The eigenvalues fall rapidly, indicat-
ing a small number of modes determine the total per-
turbed energy. The highest eigenvalue modes are con-
centrated near the lowest magnitude poloidal harmonics,
with some contribution from the “kink aligned” harmon-
ics near m ∼ 12. The lowest eigenvalues correspond to
eigenvectors that are spread across high Fourier harmon-
ics, with the notable exception of a few modes sharply
peaked near m = 10, which corresponds to the pitch of
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the last rational surface contained within the computa-
tional domain. This pitch resonant mode is extremely
difficult to drive.

The applied fields, shown in Fig. 2, are predominantly
composed of the lower (|m| < 20) poloidal wavenumber
components. Any applied spectrum Φ̃x can be decom-
posed in the gain ranked eigenmodes Φ̃

G

i . Figure 6 shows
the applied spectra decomposed in the stability basis,
confirming that all phasing couple best to the low m,
large eigenvalue modes. Still, there is significant drive for
the few stable modes mentioned above with the edge ra-
tional pitch.
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Figure 6. Energy gain eigenbasis decomposition of the exter-
nal field on the IPEC control surface applied by the I-Coils
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The contribution of each gain ranked eigenmode to the
measured plasma response can be calculated by isolating
the projection of the true external field on one or multiple
eigenmodes. If a small number of basis functions closely
approximates the observed response, these modes might
be constrained by a practical number of external mag-
netic measurements and thus be usable for active feed-
back stability control. Figure 7 shows the synthetic sensor
signal as a function of phasing cumulatively including the
isolated contribution of each eigenmode from the smallest
to largest eigenvalue. The average χ2 error in the top plot
shows that that the synthetic LFS sensor signal converges
regularly but slowly as the number of modes is increased.
The HFS signal contains a significant contribution from
the driven low gain modes discussed before, resulting in
poor convergence and significant discrepancies even with
nearly the full number of eigenmodes.

The somewhat counterintuitive result that these highly
stable modes contribute significantly to the measured
plasma response effectively negates using the high gain
eigenmodes to succinctly describe said response. This
means the few modes that determine the total perturbed
energy of the plasma cannot, on their own, be used to in-
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Figure 7. Top: Relative error of the HFS (blue) and LFS
(green) magnetics signal produced by isolating a cumulative
number of energy gain eigenmodes. Middle: The full HFS sig-
nal (black, bold) calculate by IPEC and the cumulative contri-
butions of progressively larger numbers (indicated by color)
of eigenmodes. Bottom: The corresponding full and partial
signals for the LFS sensors.

terpret and feedback on the measured plasma response.
Feedback might lead, for example, to unnecessary “sup-
pression” of the very stable modes. Since experimental
identification of all M eigenmodes is impractical, a sepa-
rate identification of the plasma response measurements
is thus needed before they can be confidently related to
the impact of applied fields on the perturbed energy.

B. Resonant Coupling Ranked Space

A second common ranking metric for the impact of
a perturbation on the equilibrium is the associated res-
onant current drive (RCD). This metric has been used
extensively in EFC efforts in active machines4–7, as well
as for the prediction of EF thresholds for future devices
such as NSTX-U and ITER33,47. The premise behind this
metric is that the surface current required to shield res-
onant (m = nq) flux in ideal MHD is indicative of the
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drive for islands at rational surfaces and that the opening
of these islands -not necessarily the global mode stability-
is the largest direct impact of the external fields on the
equilibrium. This impact has historically been the advent
of EF penetration for n = 1, while external perturbation
with n = 2 and 3 have been linked to ELM suppression
through the formation of islands at the top of the edge
pedestal formed in H-mode plasmas29,30. Despite the dis-
parate physics at island formation, the IPEC RCD metric
has been successful in predicting the optimal application
of external fields to inhibit or drive mode locking and
ELM suppression6,7,10,38.

Within the linear ideal MHD framework of IPEC, the
resonant current on each rational surface in the compu-
tation domain is linearly related to the external e-flux
such that,

Ĩr = C · Φ̃x. (9)

Here Ĩr is a R × 1 matrix vector of the square-root area
weighted resonant current at each rational surface, Φ̃x

is again the M × 1 external e-flux vector, and C is a
R ×M coupling matrix. Here R is the number of ratio-
nal surfaces within the computational domain, and Crm
is the coupling between each applied poloidal harmonic
m and rational surface r. The coupling matrix is, in gen-
eral, not square and not hermitian. It is, however, posi-
tive definite, and decomposing the matrix using singular
value decomposition gives R positive singular values cr.
These singular values rank the corresponding unit right
singular vectors of external e-flux by the RMS power of
induced resonant currents

∑
r

´
dϑdϕJr |∇ψ|r I2r . These

modes do not form a complete basis with which any exter-
nal e-flux Φ̃x can be decomposed. They do, however, form
a unit basis of the e-flux spanning the full space for which
there is any resonant current drive from external fields.
The first of these modes has been called the dominant ex-
ternal field4,33, dominant mode6,7 or just SVD138. This
work does not restrict its focus to one mode, but con-
siders the entire resonant current driving right singular
basis referred to henceforth simply as the RCD modes.

Figures 8 and 9 show the resonant coupling singular
values and corresponding RCD modes for the equilib-
rium studied in Sec. II. There are eight rational sur-
faces (R = 8) within the computational domain extend-
ing from 0.001 to 0.987 in normalized poloidal flux,
and thus eight singular values. These singular values
decrease exponentially, with one mode dominating the
resonant current power. This dominant mode is local-
ized in Fourier space near the “kink resonant” harmon-
ics m ∼ 12, while subsequent modes peak at progres-
sively lower poloidal mode numbers. These sub-dominant
modes drive more core localized modes, the large wave-
length of which easily create large signals on the LFS
sensor. The RMS current drive ranking preferentially
weights modes towards the edge, where the n = 2 ratio-
nal surfaces are closely packed. Despite these subtleties,
all the RCD modes are concentrated in a relatively com-
pact range of poloidal mode numbers between 4 and 12.

As consequence of this concentration, the fields applied
in the experimental phasing scan contain significant drive
for all the RCD modes.
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Figure 8. The RCD matrix singular values for the multi-modal
reference equilibrium.
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Figure 9. The 8 RCD matrix right singular vectors (rows)
sorted on the vertical axis from largest (top) to smallest (bot-
tom) singular value. The amplitudes of each row sum to unity
(the vectors are unit vectors).

The RCD basis is a significant reduction of the external
e-flux space that efficiently isolates and captures the drive
for resonant physics. As such, it is a powerful tool for
predictive optimization of external fields in multi-modal
plasmas when the resonant response dominates the im-
pact. As reported in Refs. [38] and [9], the coupling of the
external field to the dominant RCD mode is correlated
with ELM suppression and with the energy and density
pump-out, which have single mode model dependencies
on the phasing despite the multi-modal plasma response.

The multi-modal nature of the measured response,
however, makes it difficult to assess the RCD coupling
without performing a full perturbed equilibrium calcula-
tion. This is evident in the fact that the coupling met-
ric reported in Ref. [38], and reproduced in Fig. 3, is
not perfectly correlated with either the LFS or HFS am-
plitudes. It is more correlated with the HFS than LFS,
which suggests the hypothesis that the HFS amplitude
is dominated by the resonant response and could be a
experimental metric for optimizing the applied fields for
ELM suppression.
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Figure 10. Top: Relative error of the HFS (blue) and LFS
(green) magnetics signal produced by isolating a cumulative
number of RCD modes. Middle: The full HFS signal (black,
bold) calculate by IPEC and the cumulative contributions of
all 8 (indicated by color) RCD modes. Bottom: The corre-
sponding full and partial signals for the LFS sensors.

This hypothesis that the HFS signal is dominated by
the resonant response is, unfortunately, disproven by iso-
lating the RCD mode contributions to the calculated per-
turbed equilibrium. Figure 10 shows the synthetic sensor
signal as a function of phasing cumulatively including the
isolated contribution of each RCD mode from the largest
to smallest singular value. Including all eight RCD modes
includes the entirety of resonant current drive from the
external fields throughout the phasing scan. Counter to
the speculation of preferential HFS sensitivity to the res-
onant response, Fig. 10 shows that the amplitude of the
HFS signal is not recovered when including the full reso-
nant response. The remaining HFS signal must be coming
from the components of the external field driving com-
pletely nonresonant perturbations. The LFS, despite dis-
parate dependence on the phasing, contains a large con-
tribution from the first mode. Its synthetic signal quickly
converges to a good approximation of its value in the full
perturbed equilibrium calculation: matching the maxima
phasing within 16◦ and amplitude within 2% of it’s full

value.
Active control of the resonant current drive physics

of interest using external magnetic sensors is ambiguous
from the RCD coupling basis description alone. The LFS
signal is composed almost entirely of the resonant re-
sponse, but is a combination of all the edge and core
modes obscuring the dominant RCD mode needed to op-
timize for edge density transport or ELM suppression.
The HFS signal is amplified by a similar external field
structure as that best coupled to the dominant RCD
mode, but is not composed of the response to that mode
alone. It is sensitive to an additional nonresonant re-
sponse, outside of and not described by the RCD modes.
Neither measurement, then, can be generally extrapo-
lated as a metric for optimization of ELM control in new
equilibria or machines.

IV. IDENTIFICATION USING A PLASMA RESPONSE
FIELD BASIS: THE PLASMA RELUCTANCE EIGENSPACE

This section presents an alternative basis of external
fields derived from and ranked by the plasma reluctance.
The reluctance, ρ, is a property of the plasma long since
identified1,14,34,48 but little used in application. It de-
scribes the degree of difficulty with which one can pass a
magnetic field through the plasma. In the control surface
matrix-vector framework of IPEC, the reluctance defines
the linear relationship between the effective perturbed
surface current, Ip, required to describe the plasma re-
sponse field outside the plasma and the external flux,

Ip = ρ ·Φx, (10)

and can be written in terms of the plasma and surface
inductance as,

ρ = L−1 ·
(
Λ · L−1 − 1

)
. (11)

Here the surface current, Ip, is a virtual current that can
be used to uniquely define the field outside the surface
produced by perturbed currents throughout the plasma
volume.

The energy normalized current and flux used in the
previous sections are related to each other by,

Ĩp = % · Φ̃x, (12)

where the normalized reluctance,

% = W · ρ ·W, (13)

is again a Hermitian matrix. The eigenvectors of this ma-
trix span the complete space of external e-flux and are
ranked according to the effective plasma current power
per unit line energy of external field.

The reluctance basis is arguably the best physics ba-
sis with which to rank modes by their observability on
external magnetics. These measurements are of the flux
through a diagnostic coil, Φd, which is linearly coupled
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to the effective surface current by a mutual inductance
Mdp such that the plasma response measurement is,

Φd = Mdp · Ip = Mdp ·W · % · Φ̃x. (14)

Here the the mutual inductance and area weighting ma-
trices are fully determined by the geometry of the sensor
and plasma surface and do not depend on the plasma
physics. They are specific to every machine and diagnos-
tic system. The reluctance, however, contains the plasma
physics that determines whether or not there will be any
observable magnetic response outside the plasma for a
given external field.
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Figure 11. The reluctance matrix eigenvalues for the multi-
modal reference equilibrium.
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Figure 12. The reluctance matrix eigenvectors (rows) sorted
on the vertical axis from largest (top) to smallest (bottom)
eigenvalue. The amplitudes of each row sum to unity (the
eigenvectors are unit vectors).

Figures 11 and 12 show the eigenvalues and eigenvec-
tors of the reluctance matrix % for the equilibrium mod-

eled in Sec. II. The eigenvalues are positive and negative.
The squared values give the effective current power per
unit energy in the external field on the control surface,
which is related to the energy in the diagnostic coils as
discussed above. For positive eigenvalues, the effective
current of the corresponding eigenmode is in phase with
the external field, and the plasma amplifies the field. Re-
luctance eigenmodes with negative eigenvalues have ef-
fective currents in the opposite direction, diminishing the
external magnetic field.

Figure 13 shows the isolated first two (most positive)
and following two (most negative) reluctance eigenmode
components of the external field produced by 0◦ phas-
ing and the resulting perturbed equilibrium fields at the
control surface if only these modes were applied. The
two positive modes are the two first modes shown in fig-
ures 11 and 12, and their linear combination will provide
the synthetic diagnostic signal for the first two modes as
before. The next two reluctance eigenvalues are negative,
and their corresponding external e-flux eigenvectors have
been similarly combined before calculating the corre-
sponding perturbed equilibrium. The final field is clearly
larger than the applied field in the case of the positive
eigenvalue modes and lower than the applied field in the
case of the negative eigenvalues. This is a clear demon-
stration of the amplifying/shielding dichotomy. These ex-
trema and the other eigenmodes of large magnitude re-
luctance are predominantly composed of low magnitude
poloidal mode numbers within the range of the applied
fields from the experimental phasing scan. These longer
wavelength modes are also the most likely to be mea-
sured by external magnetics displaced radially from the
plasma (the field would fall off as ∆r−m in a cylinder)
as well as the fields thought to be of the most physical
importance (see, for example the dominant modes of the
previous section).

The poloidal Fourier spectra for these two amplifying
and two shielding modes are shown explicitly in Fig. 14.
Again, the amplification/shielding of the external field
(dashed lines) is readily apparent. The modes amplified
are concentrated in the usual kink resonant harmonics
(m >∼ nq95) mentioned in previous sections, while the
shielding modes encompass a spread of poloidal harmon-
ics from very low to pitch-resonant m. Interestingly, both
amplifying and shielding modes contain significant low
magnitude poloidal harmonics with the opposite helicity
as that of the equilibrium field lines. These contributions
are purely nonresonant and the resulting plasma response
would thus not be captured by, for example, the RCD
modes.

Figure 15 shows that the reluctance eigenmodes ef-
ficiently describe the observed plasma response for the
equilibrium modeled in Sec. II. The plots, like those of
the previous section, show the sensor signal from the full
perturbed equilibrium and perturbed equilibria isolat-
ing the response to a cumulative number of eigenmodes.
Here, reluctance eigenmodes are used in order of their
eigenvalue magnitude. Unlike the previous sections, the
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Figure 13. The e-flux applied on the IPEC control surface us-
ing 1kA n = 2 I-coil waveforms with zero degree phasing (top)
and the isolated components aligned with the largest two pos-
itive eigenvalue modes combined (a) and largest two negative
eigenvalue modes combined (b). The perturbed equilibrium
e-flux calculated using only the isolated positive (c) and neg-
ative (d) eigenvalue drives show amplification and shielding
of the driving e-flux respectively.

relative error between the full and isolated signals quickly
decreases for both the HFS and LFS sensor arrays. Us-
ing only 8 reluctance eigenmodes to describe the applied
field, the HFS(LFS) signal maxima are matched within
13(18) degrees and 3(9)% of their full magnitude. That
this convergence should take place for an ideal sensor
set follows from the very definition of the reluctance, but
Fig. 15 is the first application of the reluctance eigenbasis
for describing actual sensor data in a real tokamak with
complete experimental geometry.
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Figure 14. The poloidal spectrum of the largest two posi-
tive eigenvalue modes combined (red) and largest two neg-
ative eigenvalue modes combined (blue) isolated from the ap-
plied zero degree phasing (dashed) and the corresponding per-
turbed equilibrium (solid) showing amplification and shield-
ing respectively.

A. Relation between the Reluctance and Performance
Ranked Bases

This section has shown that the reluctance succeeds
where previous metrics failed to efficiently describe the
plasma response measured by magnetic sensors external
to the plasma. The previously prevalent metrics are, how-
ever, still of great relevance to the performance of the
plasma in the presence of 3D perturbations. This section
thus details the relationship between the reluctance and
the stability and RCD bases.

The reluctance is rigorously related to the stability by
Eq. (11). In a single mode model, the reluctance and each
of its composite matrices can be reduced to scalars such
that,

ρL = −1 + s

s
. (15)

Here s = −δW/δWv is the common stability metric used
previously. Two features of this relationship are imme-
diately apparent. First, in the marginal stability limit
s → 0 the reluctance approaches infinity asymptotically
as −1/s. This says that the reluctance of a plasma will be
dominated by the marginally stable mode as the plasma
approaches the stability boundary for a given n. Second,
very stable modes with −s � 1 contribute finite nega-
tive reluctance. These are the shielding modes discussed
above, and the lower bound of -1 in Eq. (15) an expres-
sion of the fact that the plasma will never “shield” more
flux than is applied. In this infinitely stable limit, the
plasma acts like a superconductor and perfectly shields
the applied flux at the control surface.

In any true tokamak equilibrium, the full matrices of
Eq. (11) couple multiple modes together and analysis is
not quite as clean. Even in the clearly multi-modal plas-
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Figure 15. Top: Relative error of the HFS (blue) and LFS
(green) magnetics signal produced by isolating a cumulative
number of reluctance eigenmodes. Middle: The full HFS signal
(black, bold) calculate by IPEC and the cumulative contribu-
tions of progressively larger numbers (indicated by color) of
eigenmodes. Bottom: The corresponding full and partial sig-
nals for the LFS sensors.

mas discussed here, however, the single mode relation-
ship provides a powerful guide to the relationship be-
tween reluctance and energy. Figure 16 shows the sta-
bility metric calculated for each reluctance eigenmode
of the reference experimental equilibrium as a function
of the eigenvalue normalized by the vacuum energy. The
stability of the reluctance eigenmodes roughly follows the
single mode curve given by Eq. (15). The reference equi-
librium with βN of 2.0 is bounded in stability between
-3.5 and -0.5 and in normalized reluctance between -0.5
and 1.5. This provides the explanation for why the most
sensitive modes failed to efficiently describe the plasma
response: the perturbed plasma current induced by very
stable modes is comparable to that of the least stable
modes.

A similar plasma with higher βN of 2.8 and L-mode
βN of 0.5 are also shown in Fig. 16. The higher pres-
sure plasma is closer to the n = 2 stability boundary.
Its plasma response is beginning to be dominated by the

least stable, most amplifying mode. This demonstrates
the convergence of these metrics near marginal stability,
where single mode EF models are expected to be valid.
The L-mode plasma is the most stable, and contains no
larger amplification than it does shielding in terms of the
normalized reluctance. This emphasizes the importance
of including stable modes in the interpretation of any
plasma response measured by external magnetics.
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Figure 16. The stability of reluctance eigenmodes as a func-
tion of their normalized eigenvalue for the reference βN = 2.0
equilibrium (blue, square), as well as similar βN = 2.8 H-
mode (purple, upper-triangle) and βN = 0.5 L-mode (yellow,
lower-triangle) equilibria. All points lie near the single mode
trend line (black) given by Eq. (15).

No analytical definition directly relates the reluctance
(or energy) eigenmodes to the IPEC RCD right singular
vectors. Still, two trends can be deduced from what has
been presented above. First, similar to the reluctance-
energy relation, the dominant RCD mode is expected to
converge with the dominant reluctance eigenmode at high
βN . Second, the stable shielding modes of the plasma
response are expected to have non-negligible resonant
coupling away from the single mode limit. Indeed, the
resonant currents must perfectly shield the resonant per-
turbation at each respective rational surface in the ideal
MHD equilibrium. Figure 17 confirms both of these trend
are reproduced in the modeling. It shows the IPEC domi-
nant RCD overlap metric calculated for each of the reluc-
tance eigenmodes in the reference, high βN , and L-mode
plasmas. As expected, the total RCD is dominated by
the largest reluctance mode at high βN . At lower βN the
negative reluctance modes contain RCD overlaps on the
same order as or even higher than (in the L-mode) the
most positive reluctance modes. This shows that away
from the n > 1 stability boundaries there is a class of
highly stable modes that drive a significant fraction of
the resonant current in the plasma. These modes can be
identified in the plasma response by virtue of their large
reluctance, and might be used to control RCD indepen-
dent of stability.
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Figure 17. The IPEC dominant mode resonant current drive
metric calculated of the reluctance eigenmodes as a function of
their normalized eigenvalue for the reference βN = 2.0 equi-
librium (blue, square), as well as similar βN = 2.8 H-mode
(purple, upper-triangle) and βN = 0.5 L-mode (yellow, lower-
triangle) equilibria.

V. DISCUSSION AND CONCLUSIONS

The performance metrics used in single mode error
field correction accurately predicted the impact of ap-
plied n = 2 fields in the studied plasmas, despite the
multi-modal plasma response. The reference βN = 2.0
plasma was far from the ideal MHD n = 2 stability
boundary, and thus global instabilities were not projected
to be the major impact. Indeed, the largest effects were
observed to be induced pedestal transport and ELM sup-
pression. These effects, thought to be dependent on the
resonant current drive in the edge, were well correlated
with the maximization of the IPEC dominant RCD mode
metric. This represents a powerful continuity between the
commonly single mode n = 1 EFC and n > 1 EF ap-
plication for ELM suppression despite the multi-modal
response and disparate consequences of the nonaxisym-
metric fields.

The signals from the external magnetics, however, were
not comprised of either the response to resonant drive
fields or the response to the most sensitive external field
structures as determined by global energy considerations.
This was demonstrated in this paper by the lack of con-
vergence or slow convergence of approximated IPEC syn-
thetic sensor signals to the full response signal. The lack
of convergence including all the resonant coupling modes
showed that the magnetic sensors signals contain a sig-
nificant nonresonant plasma response component. The
slow, non-monotonic convergence in the energy-ranked
gain basis showed that very stable modes contribute to
the plasma response. This confounds the interpretation
of magnetic diagnostics for possible feedback on the per-
formance metics when the plasma is not near the stability
limit for the toroidal mode number of interest (in which
case, amplification of a single mode dominates). The cor-

relation of the HFS magnetic signal with the RCD metic,
for example, must be considered a coincidence of this par-
ticular case since the dominant RCD mode is responsible
for only half the HFS signal.

The plasma reluctance provides a ideal MHD eigenba-
sis that efficiently describes both the external magnetics
and the performance metrics. The reluctance is a fun-
damental plasma property relating external flux to the
perturbed plasma current, and contains all the plasma
physics requisite to describe the plasma response field ex-
ternal to the plasma. A small number of the largest mag-
nitude reluctance modes can be used to approximate the
measured multi-modal response. The same small num-
ber of modes have been shown to contain the least stable
mode as well as the resonant coupling. This enables in-
terpretation of the measured response in terms of the
expected impact on performance.

To understand the import of these results, consider two
practical applications: ELM control feedback and opti-
mal sensor design. In the first application, the ELMs are
considered to be impacted by the dominant RCD mode.
A small number, l <∼ 10, of reluctance eigenmodes are
known to dominate the effective perturbed current. These
modes are thus the only ones that external magnetics
have a chance of measuring and require l + 1 poloidally
distributed sensor arrays to constrain using the signals
Φd. Feedback can then be performed on the scalar RCD
metric δIr defined as,

δIr = Φ̃
C
1 · %−1l · Φ̃d, (16)

where %−1l is the pseudo-inverse of the reluctance using
the first l eigenmodes. This provides a model based pa-
rameter for feedback control of the applied 3D fields to
maintain a certain level of drive for the dominant mode,
resonant current in the edge, and thus ELM suppression.

This first application motivates the second, which is
the optimization of sensor set design using the reluc-
tance. A least squares fit of l basis modes using a set of
poloidally distributed magnetic sensor arrays is the solu-
tion of A · x = Φd for the coefficient vector x given by
multiplying both sides of the equation by the left-inverse
of the basis matrix A. A common choice of basis functions
are the sinusoidal bases Ajk = exp [i (nkφj −mkθj)], but
knowledge of what responses are expected to create large
fields outside the plasma would allow a more intelligent
basis Ajk = Φ̃

%

k (θj , φj). The previous application pro-
vides an example of the utility of this basis. Of course,
any real sensor set would have to include the mutual in-
ductance between plasma and sensors here and in Eq.
(16). Optimizing the distribution of the arrays within en-
gineering constraints to minimize the condition number
of this basis matrix would then provide the best sensor set
for measuring the plasma response fields. This is beyond
the scope of the current paper, but is recommended as a
practical application of the new multi-modal framework
developed here.

This paper identifies the multi-modal plasma response
observed in DIII-D using the reluctance to interpret mag-
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netic sensor signals and relate them to the physics of in-
terest. This is a fundamentally multi-modal framework,
in contrast to the single mode model EFC for which ex-
ternal signals were directly correlated with impact on
plasma performance. With the additional complexity,
however, comes new insight and opportunities for im-
proved optimization of applied fields. The resonant cur-
rent drive of very stable modes might be used, for ex-
ample, to induce ELM suppression while using EFC to
minimize the drive of the least stable kink. Such mul-
tifaceted EF optimization is possible when one mode is
not dominating the perturbed equilibrium, and the re-
luctance provides the best plasma physics basis for in-
terpreting measurements of these equilibria. Understand-
ing how external measurements correspond to impact on
plasma performance empowers optimization to maximize
the benefits while minimizing the cost of 3D fields in toka-
maks.
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