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Magnetohydrodynamics for Collisionless Plasmas

from the Gyrokinetic Perspective

W. W. Lee

Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543

Abstract

The effort to obtain a set of hydromagnetic equations for a magnetized collisionless plasma

started nearly 60 years ago by Chew, Goldberger and Lowe. Many attempts have been made

ever since. Here, we will show the derivation of a set of collisionless MHD equations from

the gyrokinetic perspective. This set of equations is energy conserving and, in the absence of

fluctuations, recovers the usual MHD equilibrium. Furthermore, the corresponding plasma

pressure balance can be modified by the finite-Larmor-radius (FLR) effects in the regions

with steep pressure gradients. The present work is an outgrowth of the paper on ”Alfven

Waves in Gyrokinetic Plasmas” by W. W. Lee and H. Qin [Phys. Plasmas 10, 3196 (2003)].

The search for a set of one-fluid hydromagnetic equations for collisionless plasmas from the

Boltzmann equation started sixty years ago by Chew, Goldberger and Low (CGL) [1]. This at-

tempt was made because the usual fluid equations were derived from collisional considerations [2].

The CGL work was followed by Kulsrud [3] as well as Frieman, Davidson and Langdon [4]. How-

ever, the work on this interesting subject has not received much attention over the years, since the

use of ideal MHD, based on usual MHD equations, applied to collisionless plasmas, has been

proven empirically to be very useful. In the present paper, we will show the derivation of a set

of collisionless MHD equations by applying the gyrokinetic ordering [5] on the Vlasov-Maxwell

equations. The main ingredient of this connection is the contribution of the ion polarization drift on

the quasineutality condition [6], which we will explain. An initial attempt based on this method-

ology was made more than ten years ago [7].

Let us first re-visit the subject of the gyrokinetic approximation,

ω/Ω ∼ (k⊥ρi)e(φ− v ·A)/Te ∼ k‖ρi ∼ o(ε),

for the Vlasov-Maxwell equations [5, 8], where ω is the frequency of interest, Ω is the cyclotron

frequency, φ and A are the perturbed electrostatic and vector potentials, respectively, k‖ and k⊥
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are the wave vectors parallel and perpendicular to the zeroth-order magnetic field, respectively,

and ε is a smallness parameter. The paper is closely related to that of Lee and Qin [7], but involves

a new way of deriving the governing gyrokinetic equations as well as the new physics insight in

terms of gyrokinetic MHD equations arising from finite-Larmor-radius (FLR) effects.

The governing gyrokinetic Vlasov-Maxwell equations used in the present paper can be derived

by first changing the original Vlasov equation,

∂Fα
∂t

+ v · ∂Fα
∂x

+
q

m

[
E +

1

c
v × (B0 + δB)

]
· ∂Fα
∂v

= 0, (1)

where Fα ≡ Fα(x,v, t) is the distribution function in six dimensional phase space, α denotes

species,

E = −∇φ− (1/c)∂A/∂t,

δB = ∇×A,

and B0 is the equilibrium background magnetic field. Making use of the Lagrangian,

L =
1

2
mv2 − qφ+

q

c
v ·A.

as described, for example, by Corben and Stahle [9], we then obtain

∂Fα
∂t

+ (v +
qαA

mαc
) · ∂Fα

∂x
+

q

m

[
−∇(φ− 1

c
v ·A) +

1

c
v ×B0

]
· ∂Fα
∂(v + qαA/mαc)

= 0,

where φ and A are the perturbed scalar and vector potentials, respectively. Alternatively, by

changing the phase variables, we can re-write the equation as

∂Fα
∂t

+v·∂Fα
∂x

+
q

m

[
−∇(φ− 1

c
v⊥ ·A⊥)− 1

c

∂A‖
∂t

+
1

c
v × (B0 + δB⊥)

]
· ∂Fα
∂(v + qαA⊥/mαc)

= 0,

where the subscripts ‖ and ⊥ denote the direction parallel and perpendicular to B0, respectively,

and the approximation of

v⊥ +
qαA⊥
mαc

≈ v⊥,

for qαφ/Tα ∼ qαv⊥A⊥/cTα � 1 is used.

To derive the gyrokinetic Vlasov-Maxwell equations, one could follow the procedures used in

Ref. [6] or, more formally, those of Ref. [10] based on the Lie transform and a non-canonical

perturbation theory. For the present purpose, we derive them using the simplified method of Ref.

[7] by applying the drift kinetic approximation for the velocities associated with the v · ∇ and
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v × (B0 + δB⊥) terms in the above equation. The corresponding guiding center approximation

becomes

v ≈ v‖b +
c

B0

E× b, (2)

where

E = −∇(φ− v⊥ ·A⊥/c)− (1/c)∂A‖/∂t,

b = b̂0 + δB⊥/B0,

b̂0 = B0/B0,

and

δB⊥ = ∇×A‖.

This drift kinetic approximation for the velocities is consistent with the formulations given in

Refs. [6, 10]. It can then be shown that the governing gyrokinetic equations based on the Darwin

approximation [7, 11], including both scaler potential, φ, and vector potentials, A‖ and A⊥, in

slab geometry take the form of

∂Fα
∂t

+
[
v‖b−

c

B0

∇(φ− v⊥ ·A⊥/c)× b̂0

]
·∂Fα
∂x
− q

m

[
∇(φ− v⊥ ·A⊥/c) · b +

1

c

∂Ā‖
∂t

]
∂Fα
∂v‖

= 0,

(3)

where

∇2φ+
ω2
pi

Ω2
i

∇2
⊥φ = −4π

∑
α

qα

∫
F̄αdv‖dµ, (4)

∇2A− 1

v2A

∂A⊥
∂t2

= −4π

c

∑
α

qα

∫
vF̄αdv‖dµ, (5)

µ ≡ v2⊥/2 ≈ const.,

and the bar quantities denote gyrophase averages. The derivations of the gyrokinetic Poisson’s

equation, Eq. (4), and Ampere’s law, Eq. (5), based on the longitudinal ion polarization drift of

vLp = −(mic
2/eB2)(∂∇⊥φ/∂t)

and the transverse ion polarization drift of

vTp = −(mic/eB
2)(∂2A⊥/∂

2t),

respectively, can be found, for example, in Ref. [7]. These additional terms associated with the

density and current responses are the result of the gyrokinetic approxmation for the distribution
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function, Fα, in Eq. (1), which brakes up to three different parts as given by Eqs. (3), (4) and

(5), respectively. Equation (3) is in agreement with the slab version of the equation used in Refs.

[12] and [13]. Assuming Fα in Eq. (3) is independent of the gyrophase angle associated with the

rotation of v⊥, based on the gyrokinetic ordering argument, the gyrophase-averaged quantity of

v⊥ ·A⊥, becomes [12]

v⊥ ·A⊥ = − 1

2π

eB0

mc

∫ 2π

0

∫ ρ

0
δB‖rdrdθ,

where ρ = v⊥/Ω and Ω = eB/mc. The energy conservation of the system becomes

d

dt

〈∫
(
1

2
v2‖ + µ)(meFe +miFi)dv‖dµ+

ω2
ci

Ω2
i

|∇⊥Φ|2

8π
+
|∇A‖|2

8π

〉
x

= 0, (6)

where Φ ≡ φ− v⊥ ·A⊥/c and 〈· · ·〉x denotes spatial average. Here, the approximation of

v · v ≈ v‖ · v‖ + v⊥ · (v⊥ + 2
qα
mαc

A⊥)

has been used to calculate the particle kinetic energy. Thus, the energy conservation to the

quadratic order in the perturbed potentials are independent of A⊥, where δB‖ ≈ ∇⊥ × A⊥ for

k‖ � k⊥. For comparison, using the guiding-center approximation of Eq. (2), we obtain, from

Eq. (1), the governing drift kinetic equation as

∂Fα
∂t

+

[
v‖b−

c

B0

(∇φ+
1

c

∂A⊥
∂t

)× b̂0

]
· ∂Fα
∂x
− q

m

[
∇φ · b +

1

c

∂A‖
∂t

]
∂Fα
∂v‖

= 0,

which gives the same energy conservation, Eq. (6), in the low frequency limit. We prefer the

formulation given by Eq. (3) here, since, in the limit of ρi → 0, we can simply argue that the

system is independent of A⊥. As one can see, in the limit of ρ → 0, A⊥ does not appear in Eq.

(3) together with φ̄ → φ, Ā‖ → A‖, and F̄ → F , respectively, they then become the starting

equations in Ref. [14].

For the general toroidal geometry, the gyrokinetic Vlasov equation can be re-written as, e.g.

Ref. [15],
∂Fα
∂t

+
dR

dt
· ∂Fα
∂R

+
dv‖
dt

∂Fα
∂v‖

= 0, (7)

dR

dt
= v‖b

∗ +
v2⊥

2Ωα0

b̂0 ×∇lnB0 −
c

B0

∇Φ̄× b̂0,

and
dv‖
dt

= −v
2
⊥
2
b∗ · ∇lnB0 −

qα
mα

(
b∗ · ∇Φ̄ +

1

c

∂Ā‖
∂t

)
,
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where

Fα =
Nα∑
j=1

δ(R−Rαj)δ(µ− µαj)δ(v‖ − v‖αj),

Ωα0 ≡ qαB0/mαc, b∗ ≡ b + (v‖/Ωα0)b̂0 × (b̂0 · ∇)b̂0, and b = b̂0 + ∇× Ā/B0. Again, the

variables with subscript ”0” represent equilibrium quantities.

Now let’s look at the gyrokinetic current density for the gyrocenters. For k⊥ρi ∼ 1, we have

J(x) = J‖(x) + JM⊥ (x) + Jd⊥(x)

=
∑
α

qα〈
∫
Fα(R)(v‖ + v⊥ + vd)δ(R− x + ρ)dRdv‖dµ〉ϕ,

where

vd =
v2‖
Ωα

b̂× (b̂ · ∂
∂R

)b̂ +
v2⊥

2Ωα

b̂× ∂

∂R
lnB.

For k⊥ρi � 1, they can be written as [7]

JM⊥ (x) = −
∑
α

∇⊥ ×
cb̂

B
pα⊥

and

Jd⊥ =
c

B

∑
α

[
pα‖(∇× b̂)⊥ + pα⊥b̂× (∇lnB)

]
,

where

pα⊥ = mα

∫
(v2⊥/2)Fα(x)dv‖dµ,

and

pα‖ = mα

∫
v2‖Fα(x)dv‖dµ.

Now, the current density takes the form of

J⊥ = JM⊥ + Jd⊥

=
c

B

∑
α

[
b̂×∇pα⊥ + (pα‖ − pα⊥)(∇× b̂)⊥

]
≈ c

B

∑
α

b̂×∇pα

for pα = pα‖ ≈ pα⊥.

With the gyrokinetic Poisson’s equation of

ω2
pi

Ω2
i

∇2
⊥φ = −4πρ (8)
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and the parallel Ampere’s law for the electrons of

∇2A‖ = −4π

c
J‖ (9)

by ignoring A⊥, we obtain a simple set of gyrokinetic MHD equations for collisionless plasmas

with

J⊥ =
c

B
b̂×∇p (10)

as the current density associated for a given pressure profile, where p ≈ pi with

d

dt
∇2
⊥φ− 4π

v2A
c2
∇ · (J‖ + J⊥) = 0 (11)

as the vorticity equation, which can be obtained from Eqs. (7), (8) and (9), together with parallel

Ohm’s law of the form

E‖ ≡ −
1

c

∂A‖
∂t
− b · ∇φ ≈ −Te

e

1

pe

∂pe
∂x‖
→ 0, (12)

which can be derived by using Eqs. (3) and (5) as shown earlier by Ref. [3], as well as the

incompressible adiabatic equation of state of

dp

dt
= 0, (13)

implying that the energy and mass convect together, where

d

dt
≡ ∂

∂t
− c

B
∇φ× b · ∇,

and pe = neTe for the electrons. With J‖ given by Eq. (9), Eq. (10) - (13) are the governing

gyrokinetic MHD equations, which conserve energy, for E‖ → 0, as

∂

∂t

∫ 1

8π

(
|∇⊥φ|2 +

v2A
c2
|∇A‖|2

)
dx = −v

2
A

c2

∫
E⊥ · J⊥dx,

and reduce to MHD equilibrium, when φ→ 0, as

∇ · (J‖ + J⊥) = 0. (14)

Thus, we have finally accomplished what Strauss [16] and [17] set out to do and beyond, but with-

out using the aspect ratio (a-minor radius/R-major radius) expansion for a tokamak. It should be

noted that the pioneering work by Strauss using the fluid approach mentioned here has inspired
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many researchers in this area for years. The difference here is that our approach is purely ki-

netic in nature similar to those of Chew-Goldgerger-Low [1], Kulsrud [3] and Frieman-Davidson-

Langdon [4]. Note that Eq. (11) now includes the term, which was absent in Eq. (32) of Lee and

Qin [7], and, in turn, gives us the MHD equilibrium of Eq. (14).

Another interesting aspect of finite Larmor radius gyrokinetics is the existence of the equilib-

rium zonal flows associated with zeroth-order inhomogeneity. Lets us elaborate. As first pointed

out by Lee [6], the zeroth-order inhomogeneity also contributes to an extra ion particle density

in addition to the ion gyrocentrer density as given by Eq. (40) in that paper. A more complete

expression is given by Eq. (17) in Ref. [18], as well as those in Ref. [19], and can be written as

ni|particle
ni

= 1 +
1

2
ρ2i

1

pi
∇2
⊥pi,

where pi ≡ niTi and ρi ≡ vti/Ωi is the ion gyroradius and vti is the ion thermal velocity. From the

gyrokinetic Poisson’s equation, Eq. (8), it gives rise to an equilibrium E×B velocity of

vE×B ≈ −
1

2

∇⊥pi
pi

cTi
eB

b̂× x̂,

where x is the direction of the zeroth-order inhomogeneity. The corresponding current is given by

JE×B⊥ (x) =
∑
α

qα〈
∫

vE×B(R)Fα(R)δ(R− x + ρ)dRdµdv‖〉ϕ.

Consequently, by taking into account the difference between the electrons and the ions for the

E × B drift due to the finite Larmor radius effects, we obtain a new pressure balance equation

modified by the current associated with the equilibrium zonal flows as

J⊥ =
c

B
b̂×∇p+ eni

ρ2i
2

[
∇2
⊥vE×B +

vE×B
pi
∇2
⊥pi

]
,

which can then be simplified to

J⊥ ≈
c

B
b̂×∇p

[
1− 1

4
ρ2i
∇2
⊥p

p

]
. (15)

by assuming that ∇2
⊥vE×B ≈ 0 and letting pi ≡ p. Thus, Eq. (15) should be used instead of Eq.

(10) in the regions with steep pressure gradient. The corresponding plasma pressure balance from

Ampere’s law now becomes

∇
[
B2

8π
+ p

(
1− 1

4
ρ2i
∇2
⊥p

p

)]
= 0.
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Thus, we have shown in this paper, that the Darwin gyrokinetic model of Eqs. (3), (4) and

(5) can indeed be reduced to a set of MHD equations in the collisionless limit, a pursuit started

sixty years ago based on the Vlasov-Maxwell equations [1]. The key to such a connection is the

presence of the ion polarization density density in the gyrokinetic Poisson’s equation, Eqs. (4) and

(8), which was first identified by Lee [6]. Not surprisingly, this set of equations are different from

the conventional MHD equations, notably the absence of the compressional Alfven waves, which

can be ignored through the ordering argument with the present formulation. Nevertheless, it can

still recover the conventional MHD equilibrium, Eq. (14). Furthermore, the present paper also

points out the corrections to these equations due to FLR effects.

In the future, it would be interesting to include the higher order fluid moments, such as heat

fluxes and etc., as well as the compressional components of the Alfven waves in these gyrokinetic

MHD equations. Moreover, the connection between these gyrokinetic equations and the MHD

equilibria as shown in the present paper suggests that it is feasible to devise an iterative scheme

between a gyrokinetic code and an MHD equilibrium code with the purpose of minimizing turbu-

lence and anomalous transport in tokamaks based on an iterative procedure, which first decouples

the transport problem from the equilibrium problem, and then couples them through global pa-

rameter exchanges [20].

The author wishes to thank Prof. Russell Kulsrud of Princeton University for his interest in

this work and his critical comments, also to Dr. Peter Porazik and Dr. Stuart Hudson of PPPL for

useful discussions. This work is supported by US DoE Grant DE-AC02-09CH11466.
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