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Resonance in Fast-Wave Amplitude in a Low-Density Peripheral Plasma

R. J. Perkins and J. C. Hosea and N. Bertelli and G. Taylor and J. R. Wilson
Princeton Plasma Physics Laboratory, Princeton, NJ 08540

Wave propagation across inhomogeneous plasma is a critical issue for high-power plasma heating
systems using waves in the ion cyclotron frequency range. Efficient coupling across the low-density
scrape-off layer (SOL) has been especially challenging on the National Spherical Torus eXperiment
(NSTX), where a large fraction of the wave power is lost to the divertor along SOL field lines. Using
a cylindrical cold-plasma model, we demonstrate a special class of modes that carries a large fraction
of the wave energy along the peripheral plasma. The modes occur when the radial fast-wave phase
difference across the SOL is roughly π/2, leading to a pronounced increase in wave amplitude. Such
modes could be important in explaining the loss of fast-wave power on NSTX. They also demonstrate
how a small layer of diffuse plasma can drastically alter the global wave solution.

Wave propagation across inhomogenous plasma is a
broad topic of importance to the magnetosphere [1], the
solar corona [2], and the ionosphere [3]. It is crucial
for magnetically confined fusion experiments that em-
ploy multi-megawatt heating systems based on waves in
the ion cyclotron range of frequencies (ICRF). Such sys-
tems are a leading candidate for heating burning plas-
mas due to proven wave physics in the core plasma and
readily available high-power sources in this frequency
range. However, the key challenge is coupling waves
across a steep density gradient: the density rises from
below 1017 m−3 at the launching antenna near the outer
edge to intermediate values of the order of 1018 m−3 in
the scrape-off layer (SOL), and then to values of order
1019 m−3 as one enters the core. ICRF waves typically
transition from being radially cutoff at the antenna to
fully propagating somewhere in the SOL. This transition
is critical in high-harmonic fast-wave (HHFW) heating
on the National Spherical Torus eXperiment (NSTX),
where up to 60% of the coupled HHFW power is hypoth-
esized to be lost to waves propagating in the SOL but
never penetrating the core [4]. Full-wave simulations of
NSTX using the AORSA code [5], with the solution do-
main extended to include the SOL [6], show that the RF
electric field grows large in the SOL when the density at
the antenna exceeds the right-hand cutoff density [6, 7].
However, interpretation of the AORSA results is compli-
cated by vessel and magnetic geometry [8], and the fun-
damental reason for these losses was not fully understood.
This limits our ability to mitigate the losses, which limits
the operational scenarios available to the NSTX program.
It also limits predictive capability regarding the potential
impact of such losses on future fusion experiments, such
as the multi-billion dollar ITER project [9].

We use a cylindrical cold-plasma model to demonstrate
a special type of mode that conducts significant wave
power in the low-density peripheral plasma. We refer
to these modes as annulus resonances due to their en-
hanced amplitude and unique radial distribution of wave
power. This is a resonance of a radially bounded sys-
tem, not to be confused with the unbounded wave res-
onance condition k → ∞. Annulus resonances occur

when the phase difference across the SOL approaches π/2
and demonstrate how a small region of diffuse plasma
can drastically alter the global solution; similar modes
might conceivably arise in applications outside of fusion.
These resonances are strong candidates for explaining
the SOL losses observed on NSTX and for explaining
why AORSA computes large amplitude RF fields in the
SOL in some scenarios but not others. The model is
based upon that in Refs. [10–12], where similar results
regarding edge wave propagation were found for ion cy-
clotron waves (slow waves) below the ion cyclotron fre-
quency [12]. The present results are for fast waves above
the ion cyclotron frequency. The cylindrical model is
computationally inexpensive and allows a detailed study
of individual modes, which is important for the identifi-
cation of the annulus resonances. Understanding these
modes may help minimize SOL losses on NSTX-U, as in-
dicated below, and guide work with full-wave codes to
predict ICRF coupling on burning plasma devices such
as ITER.

The model geometry, shown in Fig. 1, consists of three
radial regions: a core plasma, a lower-density annulus,
and an outer vacuum region. The core extends to radius
rc with constant density nc. The annulus extends from
r = rc to ra with constant density na. The vacuum region
extends from r = ra up to a conducting wall of radius rw.
A uniform axial magnetic field is used throughout. The
antenna is modelled as current straps in the θ direction
at r = rs with a Faraday screen at r = rF . We chose
NSTX-like parameters: nc = 5×1019 m−3, f = 30 MHz,
B = 0.32 T (approximate field at the edge for a 0.55 T
on-axis field), rc = 0.515 m, ra = 0.575 m, rF = 0.600
m, rs = 0.650 m, and rw = 0.700 m.

A “mode” refers to global solution which satisfies the
wave equation in each region and which is matched
at interfaces. Modes assume the form Ẽz(r,m, k∥) =

Ẽz(r) exp(imθ + ik∥z − iωt), implying Fourier analysis
in the axial and azimuthal directions. With k∥ given, k⊥
is fixed in each region by the cold-plasma dispersion, with
the slow-wave and vacuum k⊥ always cutoff. Radial pro-
files are found by the method detailed in Ref. [13]. Each
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FIG. 1. Model geometry and radial density profile.

region admits four independent solutions. In plasma,
there are two fast-wave solutions and two (cutoff) slow-
wave solutions; in vacuum there are exponentially de-
caying and growing Ez (transverse magnetic) and Hz

(transverse electric) modes. Four boundary conditions
are required at each interface: namely, continuity of Ez,
Hz, Eϕ, and Hϕ. The twelve total coefficients can be re-
duced to four by the following: (i) continuity at the core-
annulus interface specifies the four annulus coefficients in
terms of the core coefficients, (ii) the fields must remain
finite at r = 0, which requires setting two core coefficients
to zero, and (iii) Ez must vanish at the Faraday screen
and Eϕ at the vessel wall, eliminating two vacuum coeffi-
cients. We are left with four coefficients αi, with i = 1 the
core fast wave, i = 2 the core slow mode, i = 3 the vac-
uum Ez mode that vanishes at the Faraday screen, and
i = 4 the vacuum Hz mode whose Eϕ component van-
ishes at the vessel wall. To formulate the final boundary
condition, continuity at the annulus-vacuum interface,
we form column vectors (Ez,Hz, Eϕ,Hϕ) of the fields re-
quired for continuity. Let vi be the column vector of
form factors that, when multiplied by αi, give the field
components of that solution evaluated at r = ra. For
instance, (Efast

z ,H fast
z , Efast

ϕ ,H fast
ϕ )r=ra = α1v1. Conti-

nuity at r = ra is then expressed as

α1v1 + α2v2 = α3v3 + α4v4 + So, (1)

where So is an inhomogenous source term introduced by
the antenna current whose exact form does not concern
us here. In the absence of any antenna current (So = 0),
modes only exist when det(v1,v2,v3,v4) = 0. Define the
system dispersion function F (k∥) = det(v1,v2,v3,v4) so
that modes exist at the roots of F (k∥).
With an antenna current (So ̸= 0), the coefficients αi

are given by Cramer’s rule, e.g.,

α4 =
det(v1,v2,v3,So)

det(v1,v2,v3,v4)
, (2)

and thus have simple poles at the k∥ values of the modes.
Therefore, upon inverse Fourier transform to find the to-
tal field,

Eθ =
∑
m

∫
Ẽθ(r,m, k∥)Jant(m, k∥)e

imθ+ik∥zdk∥, (3)

the integral reduces to a sum of residues, one for each
mode. In Eq. (3), Jant(m, k∥) is the antenna spectral

current density and Ẽθ the azimuthal electric field per
unit antenna spectral current density. The amplitude of
each mode is thus given by two factors: (i) the amplitude
of Jant(m, k∥) at the k∥ of the mode, and (ii) the size
of the residue, which is proportional to (dF (k∥)/dk∥)

−1.
We show that the annulus resonance is due to a near
vanishing of dF (k∥)/dk∥.
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FIG. 2. (a) Loading resistance of m = 2 modes for various
annulus densities na. Antenna spectra for model twelve-strap
antenna with 21 cm inter-strap spacing and 90◦ and 150◦

phasing are plotted for reference. (b) Percentage of wave
power conducted by each mode in the core (black), annulus
(red), and vacuum (blue) regions for the na = 3 × 1018 m−3

case of (a).

The annulus resonances have enhanced amplitudes
compared to other modes and carry significant power in
the annulus region. Mode amplitude is measured by the
total wave power P , calculated by integrating the axial
Poynting flux over the cylinder cross-section. We express
this as a loading resistance R such that P = (1/2)RI2ant,
with Iant the antenna current. The annulus resonances
are the peaks in loading resistance in Fig. 2.a. The k∥ of
the peak depends on the annulus density and can be thus
move onto or off of an antenna spectral peak, consistent
with the experimental observation that the NSTX SOL
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losses are strongly dependent on SOL density [4]. Two
resonances appear at high enough density such as the
na = 1.0 × 1019 m−3 curve in Fig. 2.a. m = 2 was cho-
sen for illustration purposes; Fig. 2.a is similar for other
m. To study the loading curve without complications
from any particular antenna spectrum, the calculations
in Fig. 2 use a single-strap antenna Jant(z) = Iantδ(z),
which gives equal weight to all modes. The large modes
at very low k∥ are spurious coaxial modes discussed be-
low. Figure 2.b plots the partition of wave power among
the different regions; the axial Poynting flux is inte-
grated over the core, annulus, and vacuum cross-sections.
Whereas most modes conduct nearly 100% of their wave
power in the core, the annulus resonance conducts 47%
in the core, 45% in the annulus, and 8% in the vacuum,
while the coaxial mode conducts power entirely in the
vacuum region. The term “annulus resonance” is ra-
tionalized by the sharp change in radial distribution of
Poynting flux shown in this figure.

The very low-k∥ modes in Fig. 2.a can be identified as
coaxial modes [14, 15], which are distinct from the annu-
lus resonance in several ways. The low-k∥ mode resem-
bles the m = 2 TEM (transverse electromagnetic) modes
found in the coaxial cable formed by replacing the plasma
with a conductor. One such mode appears for every m
except for m = 0, as the m = 0 TEM mode has zero Eθ

and does not couple to the antenna. Fig. 2.a shows that
the k∥ of this mode is insenstive to the annulus density,
and Fig. 2.b shows that the fields are largely excluded
from the plasma and are confined to the vacuum. Despite
the enormous loading resistance, this mode is typically
considered spurious and removed from analysis [14, 16].
This is because such TEM modes are ordinarily cutoff for
k∥ > ω/c, but the Faraday screen permits propagation
by allowing a current sheet to flow in the axial direction.
However, the Faraday screen does not extend to z = ±∞,
so the mode cannot propagate power from the antenna.
The annulus resonance is distinct from coaxial modes in
several regards. It is not a TEM mode, since it has a sub-
stantial Hz component. From Fig. 2.b, the wave fields do
penetrate substantially into the core plasma, and the k∥
value of the annulus resonance is sensitive to the annulus
density. Nor does this mode meet the second criterion of
Ref. [14], kr ≈ 0, in any region. Finally, coaxial modes
do not appear for m = 0 but the annulus resonance does.

The annulus resonance appears roughly when a quarter
wavelength in the radial direction (π/2kfast⊥,a) fits into the
annulus, although this description is not exact. Figure 3
shows Eθ(r) for the two annulus resonances seen in the
na = 1.0×1019 m−3 case of Fig. 2.a. While this density is
larger than actual densities observed in the NSTX SOL,
we use it for illustrative purposes. For the resonance at
k∥ = 25.5 m−1, Eθ undergoes approximately one quar-
ter of a cycle over the annulus (and one half cycle over
the annulus plus vacuum regions), while the resonance at
k∥ = 11.2 m−1 undergoes approximately three quarters
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FIG. 3. (a) Eθ(r) for the annulus resonance at k∥ = 25.5 m−1

for na = 1.0× 1019 m−3. (b) Eθ(r) for the annulus resonance
at k∥ = 11.2 m−1 for na = 1.0 × 1019 m−3. (c) kfast

⊥ for the
different annulus densities in Fig. 2.a, which changes gradually
about the quarter wavelength condition.

of a cycle over the annulus and one full cycle over the
annulus plus vacuum. Figure 3.c plots kfast⊥,a for each na

used in Fig. 2.a and indicates the locations of the annu-
lus resonances. While the k∥ of the annulus resonance

changes strongly with na, k
fast
⊥,a changes only gradually.

Changing the core density does not alter the k∥-value of
the annulus resonance.

The quarter-radial-wavelength condition allows the RF
fields from the annulus to match fields in the core in a
unique fashion. Typical modes have a particular core
fast-wave phase at the core-annulus interface; Fig. 4 plots
the core fast-wave fields at r = rc as a function of k∥, and
most modes fall primarily at the peaks of Hϕ and Eϕ and
the nodes of Hz and Ez. The Eθ and Hθ radial profiles
typically contain an integral number of half wavelengths
plus a quarter. The annulus resonance, however, occurs
for a core fast-wave phase 90◦ out of phase with the other
modes and falls at a node for Hϕ and Eϕ and a peak for
Hz and Ez. It contains an integral number of half wave-
lengths in the core. The unique fast-wave phase of the
annulus resonance at the core-annulus interface explains
the high loading resistance of this mode when the core
fast-wave fields are propagated to the annulus-vacuum
interface. This is done by solving for the four annulus co-
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efficients that match a pure core fast wave and evaluating
the fields at r = ra; these fields are precisely the compo-
nents of v1. Figure 5 shows the annulus resonance falls
at maxima in Hϕ and Eϕ and very close to the maxima
in Hz and Ez at r = ra. Recall that the mode amplitude
is inversely proportional to dF/dk∥, which is dominated
by the term det(dv1/dk∥,v2,v3,v4), because v1 changes
on the scale of the core fast-wave (since the core-slow-
wave dependence is cutoff and exponentially growing,

dv2/dk∥ =
∣∣∣kslow⊥,c

∣∣∣v2, and det(v1, dv2/dk∥,v3,v4) ≈ 0

when evaluated at a mode). From Fig. 5, dv1/dk∥ is
small for the annulus resonance because it lies very near
a local maximum for all fields, giving a large loading re-
sistance.
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We propose that the annulus resonances, which appear
only when a quarter radial wavelength fits inside the an-
nulus, cause the enhanced RF field amplitude in the SOL

of AORSA simulations and the loss of fast-wave power to
the divertor of NSTX. This refines the original hypothe-
sis that the losses occur when the density at the antenna
exceeds the right-hand cutoff density and would explain
why AORSA calculates large RF fields amplitude in the
SOL for NSTX and DIII-D for certain SOL densities but
not for Alcator C-Mod and EAST even when the antenna
density exceeds the cutoff [8]. The annulus resonance
occurs when kfast⊥ (ra − rc) ≈ π/2, which generalizes to∫
kfast⊥ dr = π/2. Assume dne/dr = ne/λn, with λn the

SOL density width. There is a critical value, λn,c, above
which the quarter-wavelength condition is satisfied:

λn,c =
π/2∫ nLCFS

nco
(k⊥/ne)dne

. (4)

We integrate using the cold-plasma dispersion from the
cutoff density nco to the density at the last closed flux
surface, nLCFS. In Table I, λn,c is computed for each
case in Ref. [8]. The largest λn,c occur precisely for C-
Mod and EAST and greatly exceed those of NSTX and
DIII-D; such λn,c is too high to be obtained in a reason-
able SOL. For the nϕ = 12 case of NSTX, λn,c is only
marginally above the H-mode SOL density width deter-
mined in Ref. [17], but, for the nϕ = 21 case, λn,c is
significantly larger. This is consistent with experimental
observations that (i) the nϕ = 21 phasing has reduced
losses, and (ii) the nϕ = 12 heating efficiency can match
that of nϕ = −21 for sufficiently low antenna density but
can be much reduced otherwise [4]. Finally, scaling the
on-axis field from 0.55 T in NSTX to 1.0 T in NSTX-
Upgrade increases λn,c for nϕ = 12 to 3.8 cm, meaning
that, on NSTX-U, nϕ = 12 phasing, used for current-
drive, may enjoy the same low-loss regime as nϕ = 21
phasing on NSTX but with the greater coupling that ac-
companies lower phasing. The SOL density and density
width are highly fluctuating quantities [17, 18]; a detailed
study of the phase accrued is needed that accounts not
only for the mean profile but for the high-density excur-
sions.

Machine nϕ f [MHz] BT [T] ne,LCFS [1019 m−3] λn,c [cm]

NSTX 12 30 0.55 0.8 1.8

DIII-D 15 90 1.4 1.0 2.0

DIII-D 15 60 1.4 1.0 3.3

NSTX 21 30 0.55 0.8 3.5

EAST 12 27 1.95 1.0 [19] 7.8

C-Mod 10 80 5.41 1.9 11

TABLE I. λn,c for the cases analyzed in Ref. [8]. nϕ = k∥/R
is the toroidal mode number with R the major radius.
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