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A Predictive Model for the Tokamak Density Limit

Q. Teng, D.P. Brennan, L. Delgado-Aparicio, D.A. Gates, J. Swerdlow, R.B. White

Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ, USA

Abstract

The Greenwald density limit, found in all tokamak experiments, is reproduced for

the first time using a phenomenologically correct model with parameters in the range

of experiments. A simple model of equilibrium evolution and local power balance

inside the island has been implemented to calculate the radiation-driven thermo-

resistive tearing mode growth and explain the density limit. Strong destabilization

of the tearing mode due to an imbalance of local Ohmic heating and radiative

cooling in the island predicts the density limit within a few percent. The density

limit is found to be weakly dependent on impurity densities. Results are robust to

a substantial variation in model parameters within the range of experiments.

I Introduction

Toroidal confinement devices always observe an upper limit on the operational plasma

density. The exact formulation of this limit evolved as better measurements became

available [1, 2, 3, 4]. The most successful empirical scaling law of the density limit is

known as the Greenwald density limit [5, 6],

n̄G[1020m−3] =
Ip[MA]

πa2[m2]
, (1)

where n̄G is the line-averaged plasma density, Ip is the plasma current and a is the minor

radius of plasma. This limit is ubiquitous among different machines with various con-
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figurations. A schematic graph showing the operational region on tokamaks is shown in

Figure. 1. Detailed measurements are available in Figure 3 of Ref. [6]. As experiments ap-
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Figure 1: The blue dashed line is the the Greenwald density limit. The shaded region is the

operational region of tokamaks.

proach the density limit, a series of phenomena take place including: MARFEs, diverter

detachment, poloidal detachment, the H-L mode transition, current channel shrinking,

and finally they end by the appearance of a magnetic island usually with poloidal mode

number m = 2 and toroidal mode number n = 1, and a major disruption [6]. Magnetic

islands are topologically isolated flux domains created by magnetic reconnection at ratio-

nal surfaces [7]. An example of a 2/1 island in cylindrical geometry is shown in Fig. 2.

Many attempts have been made to explain the physics behind the density limit. Ex-

periments show that the Greenwald density limit can be exceeded by increasing the core

density, suggesting the limit to be a local limit [8]. It’s also widely recognized that the den-

sity limit is associated with cooling of the edge plasma and radiation [9, 10]. In Ref. [11],
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Figure 2: An example of a 2/1 island. The three blue circles are the inner edge of the island,

rational surface, and outer edge of the island respectively. The brighter colors denote higher

values of ψ. The asymmetry is revealed by the different lengths of the blue and purple arrows.

Rebut suggested a thermal island model to explain the limit. Cooling of the island may

trigger significant growth of the island and change the topology of the magnetic con-

figuration, leading to disruptions. This model explains the limit qualitatively. Ref. [12]

extended the Rutherford equation with a radiation term and predicted exponential growth

of the island, which is confirmed by experiments on Rijnhuizen Tokamak Project (RTP)

in [13]. But no previous work has explained the density limit quantitatively with the

correct phenomenology [14, 15].

Recently D.A. Gates et al. proposed a mechanism that explains the density limit

using a thermo-resistive tearing mode formalism [16, 17, 18, 19]. R. B. White et al.

completed this model by adding a crucial island asymmetry term [20]. D. P. Brennan

et al. reproduced the exponential growth of the island, as predicted by the analytical

cylindrical model, with a 3-D full MHD code DEBS [18, 21]. Scanning the low- and
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high- Z impurity densities, L. Delgado-Aparicio found that the radiative power density

can be significantly enhanced while still obtaining the experimental Zeff values [18, 22].

Since the magnetic island is thermally isolated from the surrounding plasmas, its power

balance is dominated by radiative cooling and Ohmic heating. The local power balance

sets the internal temperature profile of the island. As plasma density is increased, the

Ohmic heating typically decreases while the radiative cooling increases. When radiation

losses dominate, the temperature drop creates a negative current perturbation inside the

island. The current perturbation, coupled with the asymmetry of the island, can cause

substantial growth of the island and lead to disruption. This mechanism sets an upper

limit on the operational plasma density. As the island growth is sensitive to radiative

cooling and the cooling is sensitive to plasma density, the density limit is a very robust

phenomenon.

II The tearing mode model

We show that the thermo-resistive tearing mode model can explain the density limit

quantitatively. The scan of plasma density is from 2×1019 m−3 to 2×1020 m−3, with the

deviation from the density limit being a few percent. The stiffness of this model is shown

by varying the parameters assumed in the model within the range of experiments. This

work is focused on island growth on the q = 2 surface, where q is the safety factor denoting

the local field line helicity, but the model is applicable to the island at any rational surface.

The island growth rate is calculated by the modified Rutherford equation (MRE) [20]

dw

dt
= 1.66

η

µ0

[∆′classic(w) + ∆′rad(w) + ∆′A(w)] , (2)
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where w is island width. ∆′classic is the classical term first derived in [23]; ∆′rad is the

current perturbation term caused by radiation; ∆′A is the island asymmetry term. For

small island width, approximate expressions of the last two terms are derived [20],

∆′rad(w) =
16µ0〈δj1〉

ψ′′0

w

w2 + w2
F

, ∆′A(w) =
2µ0j

′(rx)

πψ′′0

w2

w2 + w2
F

AsfF , (3)

where 〈δj1〉 is the current perturbation integrated over the island interior, ψ′′0 is the second

derivative of zeroth order helical flux, wF is the Fitzpatrick critical island width [24, 25],

rx is the location of the X-point, As = (rx − rl)/(rr − rx) − 1 is the island asymmetry,

rl and rr are the left and right edges of the island at the maximum width, and fF is the

Fitzpatrick factor accounting for the degree of current profile flattening inside the island

(fF is chosen to be 1 in our calculation). As ψ′′0 and j′(rx) are always negative, ∆′rad (for

a negative 〈δj1〉) and ∆′A are both destabilizing. An example of the three ∆′ terms with

q0 = 0.9, qedge = 3.7 is shown in Fig. 3. When the island width is much smaller than wF

(about 0.01a), ∆′classic dominates the island growth. ∆′rad and ∆′A dominate only when the

island is sufficiently large. Thus our present cylindrical model requires a finite size seed

island, i.e. the island being linearly unstable or due to perturbation from other sources.

The temperature profile inside the island is determined by

3

2

∂(neT )

∂t
= ∇ · (χ⊥∇(neT )) + Pinput − Ploss, (4)

where χ⊥ is the cross field electron thermal diffusivity inside the island. As shown in

Ref. [20], in steady state, this equation can be simplified to a first order differential

equation,

0 = χ⊥ψ
′′

0 (rs)ne(rs)
dT

dψ
+ Pinput − Ploss, (5)
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Figure 3: Characteristic ∆′ evolution with island width w.

where ψ is the helical flux. The boundary condition is set by the equilibrium temperature

at the separatrix of the island.

III Equilibrium evolution model

To associate the local power balance criterion with the global density limit, a set of

cylindrical tokamak-like equilibria is assumed. The current density profile and safety

factor profile are given by [26]

j(r) =
j0[

1 + (r/r0)2ν]1+1/ν
, q(r) = q0

[
1 + (r/r0)2ν]1/ν , (6)

where j0 is the current density on the axis, r0 is the width of the current channel, ν is

a parameter controlling the peakedness of the current profile, q0 = 2Bφ/(µ0Rj0) is the

safety factor on the axis, Bφ is the constant toroidal magnetic field, and R is the major

radius. A parabolic density profile is also assumed

ne(r) = ne0

(
1−

(r
a

)2
)
, (7)
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where ne0 the plasma density on the axis. In this simplified cylindrical model, the equi-

librium is set by three constraints. For each equilibrium, we choose a set of q0, qedge and

line-averaged plasma density n̄e. The third parameter constraining the equilibrium, ν, is

calculated with an ad hoc relation between n̄e and normalized internal inductance li. In

cylindrical geometry, li is defined as

li =
2π
∫ a

0
B2
φ(r)rdr

πa2B2
φ(a)

= 2

[
1 +

(
a

r0

)2ν
]2/ν ∫ a

0

dr
r3

a4

[
1 +

(
r
r0

)2ν
]2/ν

, (8)

where r0 =
[(

qedge
q0

)ν
− 1
]−1/2ν

· a. In Ref. [10], it is found experimentally (JET) that

there is an upper and a lower limit on li. The upper limit of li corresponds to the density

limit that we aim to investigate in this work. The limits are fitted with [16]
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l i

 

 

li, max
li, min

Figure 4: Schematic stability diagram for JET. The upper limit shows the density limit

disruptions. The lower limit is the kink and double tearing region. The shaded region is

the operational region.

li,max = (0.12qedge · h+ 0.6) · h, li,min = (−0.08qedge · h+ 1.05) · h, (9)
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where qedge = 2πa2Bφ(a)/(µ0RI) is the edge safety factor, and h = (1 + κ2)/(2κ) ap-

proximates the modifications of li and qedge due to elongation κ (here κ=1.9). To mimic

experiments we assume an ad hoc model to relate li and n̄e,

li(ne) =


(li,max − li,min) n̄e/n̄G−0.7

0.3
+ li,min if n̄e/n̄G > 0.7

li,min if n̄e/n̄G ≤ 0.7

. (10)

An example of the ad hoc relation and four alternative relations are shown in Fig. 5. Later

in this work, it will be shown that the thermo-resistive tearing mode formalism is robust

to the choice of this relation. With q0, qedge and n̄e chosen, ν and thus the equilibrium

can be solved from Eq. (8-10). Now consider a sequence of equilibria with increasing
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Figure 5: The ad hoc and alternative relations of li and ne. The solid line is the li model given

by Eq. (10). The dashed lines are four alternatives for comparison. In this case, qedge = 3.7.

n̄e as well as fixed q0 = 0.9 and qedge = 3.7. This sequence is shown in Fig. 6, which

also shows the density limit as given by li,max and the stability boundary of the tearing

mode. As n̄e increases the current channel shrinks (decreasing r0) and becomes more

peaked (increasing ν). The red line in Fig. 6 shows a characteristic equilibrium evolution
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Figure 6: a) Blue: the island stability boundary under which the island is linearly unstable. b)

Red: a characteristic equilibrium evolution path. c) Black diamonds: equilibria with n̄e/n̄G =

0.8, 0.9, 1.0, 1.1 respectively. d) Green: the density limit.

path: when n̄e is increased towards the density limit, the island approaches the stability

boundary.

Electron resistivity is calculated by η = E/j. Then the Spitzer resistivity formula is

used to calculate the electron temperature [27],

η =

√
2meZeffe

2lnΛ

12π3/2ε20T
3/2
e

× f(Zeff ), f(Zeff ) =
1 + 1.198Zeff + 0.222Z2

eff

1 + 2.966Zeff + 0.753Z2
eff

, (11)

where the effective charge Zeff = (nD +
∑

Z nZ〈ZZ〉2)/ne is a function of Te, 〈ZZ〉 is

the average charge state of impurities, nD and nZ are deuterium and impurity densities

respectively. An example of equilibrium profiles of j, q, η and Te is shown in Figure. 7,

using the parameters that would be explained in detail in section V, and specifically for

this case choosing qedge = 3.7, B = 1T.
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(c) resistivity profiles
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Figure 7: An example of equilibrium profiles with different plasma densities.
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IV Power balance inside the island

Auxiliary heat, typically deposited in the plasma center, flows along the island’s separatrix

and doesn’t influence the power balance inside the island [24]. So the power balance inside

the island is dominated by Ohmic heating and radiative cooling. The local input power

density is simply given by

Pinput = ηj2. (12)

Plasma is cooled through Bremsstrahlung continuum radiation as well as impurity line

radiation. The power loss is calculated by [22]

Ploss = nenDLD(Te) +
∑
Z

nenZLZ(Te), (13)

where the cooling rate of deuterium LD = 5.35 × 10−37T
1/2
e [keV]W ·m3, and Lz is the

cooling rate of impurity species Z. The cooling rates of two representative impurities car-

bon and iron in corona equilibrium are shown in Fig. 8 [28]. In this range of temperature,

iron dominates the radiation. Ref. [18] shows that a small amount of high-Z impurities
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Figure 8: The cooling rate of carbon and iron. Note the cooling rate of iron is about 400 times

greater than that of carbon.
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can greatly increase radiation power while not changing Zeff much. The density limit

turns out to be a local limit, determined by power balance: Prad < Pinput, i.e. [18]

ne(rs)[1020m−3] < FD,Z · j[MA/m2] (14)

FD,Z =

√
0.61Zefff(Zeff ) · lnΛe,D

T 2
e [keV] · P̂rad

(15)

where lnΛe,D ≈ 14.1, P̂rad = Prad/(n
2
eLD). The function FD,Z with different impurity

densities is plotted in Fig. 9. FD,Z is roughly constant except for when the temperature

is below 100eV. This explains why the density limit is not sensitive to the temperature.
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Figure 9: FD,Z with different impurity concentrations. cZ is defined as nZ(rs)/ne(rs).

A characteristic power balance inside the island with increasing n̄e, using the param-

eters explained in section V, and specifically for this case choosing qedge = 3.7, Bφ = 3

T and the normalized impurity densities, is shown in Fig. 10. As n̄e increases, j(rs) de-

creases, hence Pinput drops. Meanwhile, Ploss is proportional to n2
e(rs) and increases. So

the net power is positive before reaching the density limit thereby suppressing the island

growth. When n̄e exceeds the density limit the net power is negative thus enhancing

the island growth. Fig. 11 shows that the saturated island width is very sensitive to the
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plasma density when approaching the density limit. Fig. 12 shows that the temperature

differential between O point and X point is small before the island grows very large.
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Figure 10: An example of local power balance inside the island.
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Figure 11: Island width evolution

V Reproduce the density limit

To mimic experiments, parameters are chosen as: major radius R = 1 meter, a = 0.33

meter, q0 = 0.9, qedge varied from 3.3 to 6, Bφ varied from 1 to 4 T, constant toroidal
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Figure 12: Temperature evolution

electric potential U = 1 V, carbon density nc(rs) = 1%ne(rs), iron density nFe(rs) =

1.1×10−4ne(rs) (referred to as the normalized impurity densities in this paper) and χ⊥ =

0.13 m2/s [29, 30]. Here iron represents the effect of all medium- to high-Z impurities;

thus the density is larger than actual iron density in experiments. Impurity densities are

assumed to be proportional to ne(rs) which may not necessarily be true. But it will be

shown later in this work that the dependence of the density limit on impurities is weak.

The reduction of χ⊥ is due to reduced turbulent transport inside the island.

In order to predict the density limit, a criterion for disruption has to be chosen. We

choose the criterion of island width growing above 20% of the minor radius. Results are

insensitive to the choice of the threshold island width criterion because once island cooling

occurs the island grows rapidly. A scan of the plasma density is performed using the

parameters mentioned above and the result is shown in Fig. 13. Our choice of parameters

covers n̄e from 2 × 1019 m−3 to 2 × 1020 m−3, which includes the operational regime of

most tokamaks. The local power balance criterion and island width criterion agree with

the density limit within 3%. The sharp limit is determined by the strong dependence
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of radiative loss on plasma density and the strong sensitivity of island growth to local

power balance. This explains why the density limit is such a robust phenomenon. Every

tokamak includes impurities causing radiative cooling and leading to disruption at some

plasma density. The minimum irreducible amount of impurities determines the upper

limit of plasma density at which a tokamak can operate.
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Figure 13: Variation of the density limit with varying assumptions. a) The blue triangles are

the density limit from the island width criterion using the ad hoc li model normalized impurity

density. b) The asterisks use the same model as a) except using the local power balance criterion.

c) The light green/black triangles use 2/0.5 times the normalized impurity densities. d) The

purple/yellow/green/light blue triangles use Alt 1/Alt 2/Alt 3/Alt 4 li models.

The effect of varying the current profile peakedness on the density limit is shown in

Fig. 14. In this case qedge = 3.7, B=1T. This figure shows that if li is kept small, the

maximum achievable density can be increased by 50%. However, generally in experiments,

li increases as n̄e is increased. Thus plasma follows the green trajectory and reaches the

maximum achievable density at n̄G. The impact of impurity densities on the density limit
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Figure 14: Density limit on the li− n̄e plane showing the effect of current profile variation

within experimental bounds on the achievable density.

is isolated by fixing li, shown in Fig. 15. In this case qedge = 4, Bφ = 3 T. Changing

impurity densities by an order of magnitude, the density limit varies by no more than

2.5 times. This is because when impurity densities are increased, Zeff increases and Te

increases as η is fixed. The cooling rate LZ then decreases. This effect is canceling the

impact of impurity densities on radiation power. Thus the dependence of the density

limit on impurity densities is weaker than n−0.5
Z as one would expect from Eq. 15. This

explains why the density limit scaling law is the same for all tokamaks. It also implies

that the density limit can’t be improved much by reducing the impurity densities.

VI Summary

In this work, we reproduced the Greenwald density limit quantitatively using represen-

tative experimental parameters. The thermo-resistive tearing mode model predicts the

robust onset of a 2/1 tearing mode, as observed in experiments. The power balance crite-
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Figure 15: Impact of impurity densities on the density limit. N is the ratio of nc and nFe over

their values in the normalized impurity densities.

rion predicted by the model is an accurate criterion for the density limit. The density limit

is found to be weakly dependent on the impurity densities in tokamaks. The robustness

of this model is proved by its weak dependence on the parameters we used. However, this

model is still simplified and limited in many aspects. Future publications will explore the

effects of toroidal geometry, nonlinear mode coupling and turbulence effects on particle,

heat and impurity transport. The higher order islands may grow first from radiative cool-

ing since they are closer to the impurity sources and are in a lower temperature region

of the plasma. The mechanism for rapid island growth presented in this work should be

robust given any island of sufficient size, thus leading to an inward propagating collapse

and disruption.
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