PPPL-5224

Practicality of magnetic compression for plasma density control

Authors:  Renaud Gueroult and Nathaniel J. Fisch

Abstract:  Plasma densi fication through magnetic compression has been suggested for time-resolved control of the wave properties in plasma-based accelerators. Using particle in cell simulations with real mass ratio, the practicality of large magnetic compression on timescales shorter than the ion gyro-period is investigated. For compression times shorter than the transit time of a compressional Alfven wave across the plasma slab, results show the formation of two counter-propagating shock waves, leading to a highly non-uniform plasma density profi le. Furthermore, the plasma slab displays large hydromagnetic like oscillations after the driving fi eld has reached steady state.  Peak compression is obtained when the two shocks collide in the mid-plane. At this instant, very large plasma heating is observed, and the plasma β is estimated to be about 1. Although these results point out a densi fication mechanism quite di fferent and more complex than initially envisioned, these features still might be advantageous in particle accelerators.
_________________________________________________________________________________________________

Submitted to:  Physics of Plasmas
_________________________________________________________________________________________________

Download PPPL-5224 (pdf 4 MB 22 pp)
_________________________________________________________________________________________________