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Ion Cyclotron Emission Studies: Retrospects and Prospects∗

N. N. Gorelenkov

Princeton Plasma Physics Laboratory,
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Abstract

Ion Cyclotron Emission (or ICE) studies emerged in part from the papers by A.B. Mikhailovskii

in ′70s. Among the discussed subjects were electromagnetic compressional Alfvénic cyclotron in-

stabilities with the linear growth rate ∼
√

nα/ne driven by fusion products, α-particles which draw

a lot of attention to energetic paticle physics. The theory of ICE excited by energetic particles was

significantly advanced at the end of 20th century motivated by first DT experiments on TFTR and

subsequent JET experimental studies which we highlight. More recently ICE theory was advanced

by detailed theoretical and experimental studies on ST (or spherical torus) fusion devices where the

instability signals previously indistinguishable in high aspect ratio tokamaks due to high toroidal

magnetic field became the subjects of experiments. We discuss further prospects of ICE theory

applications for future burning plasma (BP) experiments such as those to be conducted in ITER

device in France where neutron and gamma rays escaping the plasma create extremely challenging

conditions fuison alpha particle diagnostics.
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manuscript, or allow others to do so, for United States Government purposes.
† ngorelen@pppl.gov

1



I. INTRODUCTION

The energetic particle physics research can be traced back several decades to publica-

tions on cyclotron excitation of Alfvénic instabilities by fusion alpha particles [1] and on

thermonuclear ‘drift’ instabilities, i.e., those which are caused by the spatial inhomogeneity

of alphas [2]. In those and later studies the fusion charged products driven instabilities in

general were dubbed as thermonuclear instabilities.

The cyclotron thermonuclear instabilities represent unique excitations due to the velocity

space gradient of the ion distribution function with direct access to the energy of fast ions.

Typically the excitation of such instabilities is treated theoretically in a perturbative manner.

This is justified by the relatively small density of energetic particles (EP) of fusion plasmas

in general [3],

nα/ne ≪ 1, (1)

and expected linear dependence of the cyclotron instability growth rate on EP density.

However, original studies indicated that the instability’s dependence on growth rates ∼
√

nα/ne was predicted for the cyclotron excitation in homogeneous plasmas [4, 5] (see Sec.II

for introduction of the strong instability theory). This stimulated a lot of interest due to

potentially strong growth and the dangerous effects on the plasma, since even small density

EP population may have deleterious consequences for the plasma discharge, as we discuss

below.

A serious interest was expressed theoretically and experimentally to the problem of cy-

clotron instabilities, which was motivated by observations of the Ion Cyclotron Emission (or

ICE) in tokamaks. ICE occurs when the magnetic field pick up coils measure the signal at

integer harmonics of thermal ion cyclotron frequency at the low field side of the tokamak.

ICE was commonly acknowledged as driven by the super-thermal fast ions such as beam ions,

ICRH minority ions, or fusion charged products. Perhaps the most convincing argument in

support of ICE excitation by fast ions was presented by Cottrell et al. [6] where the author

demonstrated that the intensity of ICE spectrum growth was linearly proportional to the

fusion product density for Ohmic and beam-heated discharges over six orders of magnitudes

of ICE (and fast ion) power. Similar correlation was reported by JT-60U, TFTR and LHD

groups. In more recent LHD experiments, NBI was applied perpendicularly to the direction

of the equilibrium magnetic field. In LHD ICE was timed with TAE excitations [7]. It is
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Cottrell’s publication [6] that brought the attention of the community to the problem of

ICE excitation wheras ICE theory was already available to great extend by that time (see

review [8]).

Nevertheless in TFTR DT plasmas the correlation between ICE and neutron signal did

not have such linear proportionality. It had more complicated dependences which is not

clearly understood as was pointed out in Ref.[9]. In Sec.II we review the growth rate nonlin-

ear dependence on the fast ion density coming from the strong instability theory γ ∝
√

nα/ne

and point out that ICE growth rate could have other power dependences.

At the beginning of the development of ICE theory, the analysis of the experimentally

observed instabilities was done in the homogeneous limit ignoring the mode structure, i.e.

assuming the oscillations have CA polarization such as dominantly parallel magnetic field

perturbation. It was also assumed that the perturbations were due to the plasma compress-

ibility and thus were coupled to the shear Alfvén branch. The EP/wave interactions were

considered with realistic drift ion motion in the presence of CA waves [10] (see also recent

publications on those interactions in Refs.[11, 12]). Nevertheless, this simplified homoge-

neous plasma limit allowed one to make the case for ICE diagnostic applications in ITER

burning plasmas [6, 13] (see also recent review with the summary and current understanding

of ICE [3]).

Important further developments occurred in the early 2000s in connection with ST (or

spherical torus) fusion experiments, where both high and ion subcyclotron frequency in-

stabilities of certain class cavity modes were observed. In particular in NSTX they were

identified as high frequency compressional Alfvénic (CA or fast magnetosonic) modes driven

by fast ions injected during the NBI heating [14–18].

This review is written in the introductory style. We are giving preference to understanding

the physics rather than to rigorous derivations of the underlying equations and refer the

reader to the original publication reference. The paper is organized as follows. We start

with the strong instabilities of the homogeneous plasma in Sec. II. Then in Sec.III we move

to observations of high frequency modes in STs which are very important for CA eigenmode

(CAE) validations. The current status of ICE instability theory is summarized in section IV,

which is followed by a short account of the nonlinear ICE studies in Sec V. We summarize

and discuss ICE theory development in section VI.
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II. HOMOGENEOUS PLASMA AND STRONG CYCLOTRON INSTABILITIES

Although the instabilities covered in this section were not reported for tokamaks their

theoretical discoveries motivated significant interest in EP physics in the late 60′s due to

predicted strong growth, γ/ω ∼
√

nα/npl, where ω is the frequency of the underlying in-

stability, nα and npl are the densities of energetic particles and the background plasma.

However, it turns out that in realistic plasmas the proposed thermonuclear instability is

stabilized because of the toroidal drift of fast ions. Let us highlight key theoretical aspects

of this problem by deriving the expression for their growth rate.

To introduce this instability, we adopt a homogeneous plasma approximation which can

be justified in realistic tokamak plasmas for the processes on a time scale faster than the EP

drift motion, i.e. they are justified if the growth rate is large enough for the oscillation to

grow faster than the particle drift across its localization region. Let us introduce the plasma

permittivity tensor, ǫ̂, in the familiar and convenient for our analysis form:

(ǫ̂− 1)E =
4πi

ω
j. (2)

(A concise derivation of the permittivity tensor expression can be found in B. B. Kadomtsev

textbook [19].) Here we made use of the standard notations for the electric field vector, E,

and the perturbed plasma current, j. From the derivation of Ref.[19] it follows that in the

low frequency limit, ω ≪ Ωi, the diagonal terms ǫ̂11 = ǫ̂22 ≃ c2/v2A are described by thermal

ions contributions, whereas the non-diagonal terms are primarily due to thermal electrons.

Here Ωi is the thermal plasma ion gyrofrequency. At low frequencies the non-diagonal terms

vanish, ǫ̂12 = ǫ̂21 ≃ 0, whereas they contribute to the mode dispersion at higher frequencies

comparable to Ωi.

The contribution by the fast ions can be readily computed expressing their perturbed

current via the EP distribution function jα = zα
∫

vfαdv. Thus, the fast ion tensor is

proportional to the fast ion density so that the dispersion relation after some algebra takes

the form

1− k2
⊥v

2
A

ω2
− nα

ne

v2A
v2α

ωJ2n (2k⊥vh/ωcα)

ω − nωcα
= 0, (3)

where EP density is small according to Eq.(1). It follows from this expression that the

fast ion contribution cannot be ignorable if the frequency is sufficiently close to thermal ion

cyclotron frequency.
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This dispersion in the limit of zero fast ion density results in the compressional or fast

Alfvén wave. At finite EP density Eq.(3) can be solved using the perturbation technique

and considering ω = ω0+ω1, where the plasma oscillations satisfy the compressional Alfvén

dispersion:

ω0 = nωcα = ωcA ≡ k⊥vA. (4)

For the perturbation correction, ω1, we find from Eq.(3)

(

ω1

ω0

)2

=

(

nα
2ne

)(

vA
vα

)2

J2n

(

2nvα
vA

)

. (5)

And since the Bessel function here changes sign, ω1 can be imaginary, which corresponds

to the cyclotron instability. One can see that the above expression gives the sufficiently

strong growth rate even when the EP density is small since ω1 ∼ n
1/2
α .

The dispersion relation, Eq.(4), is relevant for the so-called compressional Alfvén eigen-

modes or CAEs in STs in particular [15, 18]. As we pointed out in the introduction, CAE

instabilities are believed to be responsible for the Ion Cyclotron Emission (ICE) excited in

fusion tokamak plasmas. There are two known theoretical limits of ICE theory with respect

to the instability growth rate. The first one is the strong CAE instability theory when the

mode grows faster than the EP drift motion or the growth rate satisfies γ > ∆τ−1, where

∆τ = min
(

τres,ΘqR/v‖
)

is the characteristic time of wave-particle interaction, τres is the

time of particle interaction with the perturbation near the local resonance, ΘqR/v‖ is the

time which the particle spends in the localization domain of the unstable mode. Here we

followed the line of arguments of Ref. [15] where the example of NSTX plasma was used for

which ∆τ = 0.7 × 10−6s is found at Θ = 1, R = 100cm, q = 1, and χ = 0.5. The validity

condition for the strong instability theory in NSTX example is then:

γCAE
ω

> 0.1
ωcD
ω

.

The second limit is known as the slow instability limit. In it the EP drift motion should

be included in the wave-particle interaction. The cyclotron instability example considered

above is of the first type, i.e. it is the strong instability. The instabilities of this type

were proposed to explain ICE in TFTR and in JET DT tokamak experiments in Refs.

[20, 21]. In fact, in both papers a smooth transition from the linear or perturbative in EP

density dependence of the growth rate to square root dependence is found numerically at
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nα/ne ∼ 10−6. Such values and even higher ones for EP density were reported for TFTR

experiments but no clear picture of ICE signal transition to square root dependence was

demonstrated using the experimental data [9]. ICE signal delay shown in Fig.6 of Ref.[6]

clearly exhibits a linear dependence of ICE signal vs. nα/ne in JET DT plasmas.

Two seminal studies were begun with A. B. Mikhailovskii as the contributing author. In

the first one Kaladze and Mikhailovskii have started investigations of the cyclotron insta-

bilities by introducing trapped and passing particle dynamics [4]. The authors suggested

that the cyclotron instability of interest was due to the positive velocity space gradient or

bump on tail (BOT) of the EP velocity distribution. The difference in passing and trapped

particle drift motion dynamics on the cyclotron instabilities was included in their theory. In

particular, it was concluded that trapped ions can excite the compressional Alfvén waves in

tokamaks at k‖. It was also found that due to bounce period averaging the resulting growth

rate of the instability is significantly smaller then in the case of strong instability (see the

discussion in the previous paragraph).

The second noteworthy earlier paper by Mikhailovskii is Ref.[22] where the universal drive

or spatial gradient of EP distribution function excites the shear Alfvénic plasma oscillations.

For the sake of simplicity, Ref.[22] assumed the distribution function, which is Maxwellian in

velocity and isotropic in pitch angles. This low frequency excitation was considered earlier

for the first time in Ref.[2].

III. OBSERVATIONS OF HIGH FREQUENCY MODES IN ST SUPPORTED ICE

INTERPRETATIONS

Initial studies of cyclotron instabilities related to Ion Cyclotron Emission (ICE) in STs

were based on the analysis of the high frequency spectra of the Mirnov signal. It was shown

experimentally that the frequencies of the instability correlate with the Alfvén velocity.

This property was helpful to identify the magnetic activities as the instabilities of the Com-

pressional branch of Alfvénic Eigenmodes (CAEs, also called fast Alfvén or magnetosonic

eigenmodes) [20, 23–26]. We should note that another kind of high frequency instabilities

are often seen in that frequency range with different dispersion properties. These instabil-

ities correspond to the excitation of the global shear Alfvén eigenmode or GAE [27]. It is

now believed that the instabilities of GAE modes have subcyclotron excitations due to their
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dispersion, ωA = ωcAk‖/k⊥, whereas CAEs at higher eigenfrequencies (above the thermal

ion cyclotron frequency) are used to explain the ICE phenomena in tokamaks [20, 25, 26].

Here it makes sense to consider the excitation of CAE modes by beam ions and how their

instabilities are proposed to diagnose future burning plasma experiments.

Observations of CAEs in ST devices allowed measurement of the dispersion and the

polarization properties of each peak of ICE relevant instabilities, including their internal

structures. The main reason for this is the intrinsically low equilibrium magnetic field in

STs, so that the frequency spacing between the neighboring CAEs δf = vA/r is small

but measurable [14]. Let us construct the CAE localization heuristically following earlier

publications [24, 25]. In particular, in Ref. [24] the eigenmode equation was postulated

(later derived more rigorously in Ref.[25]) taking the relation (4) squared and making use

of the inequality k‖/k⊥ ≪ 1. For CAEs the dominant perturbed quantity is the parallel

component of the equilibrium magnetic field, δB‖, and we can readily write in the cylinder

1

r

∂

∂r
r
∂

∂r
δB‖ +

1

r2
∂2

∂θ2
δB‖ = − ω2

v2A (0)

n ((r)

n0

(1 + ǫ cos θ)2 δB‖, (6)

where the plasma density profile takes the form n (r) − n0 (1− r2/a2)
σi . The right-hand

side of this equation has a minimum that is a localized region of the mode structure as

we illustrate in Fig.(1). A radially localized normal mode solution of Eq.(6) can be found

by considering that the potential well is formed by its narrow radial width and its shallow

but long poloidal extension, i.e., short poloidal wavelength in comparison with the radial

wavelength. This justifies the choice of the eikonal for the CAE mode structure (cf. [24]):

δB‖ (r, θ) = b (r, θ) exp [−iωt+ im (θ + ǫ0 sin θ)− inϕ] , (7)

where ϕ is the toroidal angle, m is the poloidal mode number. The poloidal mode number

is assumed to be large so that the equation for CAE mode amplitude, b (r, θ), implies slow

variation in both directions but sill requiring ∂b/∂ ln r ≫ ∂b/∂θ. The envelop of CAE

mode structure can be found iteratively with the zeroth iteration allowing only the poloidal

variation in the eikonal (7). The first and second iterations produce the solution envelops

[28]

b (r, θ) = b0φk

(√
2θ2

Θ

)

φs

(√
2 (r − r0)

∆

)

, (8)

where φs is the Chebyshev-Hermite function and the characteristic widths of those functions

are ∆2/a2 = κ
√

2σi/ (1 + σi) (ǫ0 − α0)/ (2m+ 1) and Θ2 = 1/ (ǫ0 − α0) (m+ 1/2), where
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Figure 1. A schematic of the radial dependence of the CAE potential (RHS of Eq.(6) plus m2/r2

term) and how it is formed and is related to the density profile (ω2/v2A (r)).

α0 = B2
θ/2B

2
ϕ taken at r0 on LHS. The assumptions of Ref.[28] included m ≫ nq (r0) and

ε > 1− κ2.

A variational method of solving the eigenmode equation (6) was adopted in Ref. [29] and

assumes low values of the poloidal mode numbers m. While for ∆/a Ref. [29] has found a

similar expression to Eq.(8) the poloidal, localization was somewhat different, namely:

Θ−4 ≃ n2q2
(

κ2 − R0

R

)

,

where only the leading order terms in n2 are kept. Although the poloidal mode number

dependence, m ∼ nq, is the same in both treatments the numerical factors are somewhat

different due to the close to expected eikonal which was enforced by Eq.(7). Predictions

for the mode frequency as a function of the CAE mode numbers differed, with the domi-

nant reason the fact that the poloidal mode number m in Ref.[28] is consistent with used

approximations.

Because of the complexity of the above eikonal the realistic CAE dispersion that we will

see is difficult to analyze and compare with dedicated experiments. For example, in the

aforementioned papers [28, 29] used theoretical methods are rather approximate. Instead

a heuristic dispersion relation of CAEs adopted in Ref. [30] is worth mentioning here.

In analogy with the dispersion (4) the paper [30] finds the characteristic length and the

corresponding “quantum” numbers in each of three relevant directions: toroidal mode number

n with the major radius R as the characteristic length; radial mode number S with the radial

width of the effective potential in radial direction and the poloidal mode number M with
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the plasma minor radius, i.e., one can write

ω2

MSn ≃ v2A

(

M2

r2
+

S2

L2
r

+
n2

R2

)

. (9)

The numerical solutions obtained in Rev.[30] using the ideal MHD code NOVA agreed with

the dispersion relation (9) which is consistent with the eikonal (7). The above dispersion was

checked numerically only for n = 0, 1 due to strong coupling of the dominant compressional

Alfvénic polarization of CAEs and the shear Alfvénic harmonics at higher n numbers.

Another paper, Ref.[31], debated the validity of the presented approach that is based

on the eikonal Eq.(7), although the treatment of Ref.[31] is not suitable for large ellipticity

tight aspect ratio plasmas. More recent CAE studies were dealing with the ST plasmas

and managed to decouple the shear Alfvén and the compressional Alfvén plasma oscillations

[32]. The decoupled equations for CAEs in Ref. [32] completely ignore interactions with the

kinetic Alfvén waves (KAW) and thus ignore an important dissipation mechanism which was

recently considered as a way to channel the energy from the beam ions to thermal electrons

[33]. In that paper it was shown that for CAEs resonantly interacting with the fast ions it

is natural to have special spatial resonance with the shear Alfvén waves at some location in

the radius. KAWs, due their relatively short radial wavelength, k⊥ρi ∼ 1, are prone to have

a strong parallel electric field and thus a linear damping rate on electrons. We should note

that this mechanism was overlooked in the conventional ICE theory. The CAE to KAW

power channeling is a very important dissipation mechanism which has to be brought into

consideration in the codes targeting CAEs.

Nevertheless, the modeling of CAEs with the mentioned codes was very important for

the interpretation of the experimental results such as from NSTX and from MAST. CAE

dispersions of Eq.(9) was brought into consideration in Refs. [14, 18, 30]. The comparison

illustrated clear frequency separation for the modes at the subsequent “quantum” numbers

of CAEs according to Eq.(9). These CAE dispersion properties were validated after ST

experimental measurements of high frequency subcyclotron instabilities were interpreted

[14, 28]. Moreover, the CAE dispersion seems to be instrumental in helping experimentalists

identify the kind of the instabilities by following the mode frequency evolution, i.e. their

dispersions, without knowing the polarizations [34].

We show examples of CAE observed signals from NSTX and MAST devices in left and

right Figs. (2) respectively. In the left figure from NSTX, two CAE unstable peaks cluster
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clearly around 2MHz and 1MHz, which corresponds to the largest frequency separation, ∼
1MHz, associated with the radial mode number S (see Eq.(9)). Smaller frequency separation

is due to the poloidal mode number, M , ∆f ≃ 120kHz, whereas the smallest separation in

frequency could also be distinguished around each peak in the left figure (2). It is due to

the toroidal mode number n at ∆f ≃ 20kHz. Similar frequency separations were reported

in Ref.[29] which is mentioned above.

An experimental study of CAE modes from MAST was done in a similar manner and

is illustrated in the spectrogram of the right figure (2). Although the spectrogram shows a

low part of the frequency spectrum clear peaks indicated by their toroidal mode numbers

correspond to the ICE unstable CAEs at much higher frequencies. The values of those CAE

frequencies were recovered by assuming that measured signals are actually aliases of real

peaks. The inferred values of the frequency separation were similar to the values we see in

NSTX. That is, the poloidal mode number separation is on the order of 150kHz and, the

toroidal mode numbers are separated by ∆f = 10 − 15kHz, whereas the whole observed

band is estimated to be at the value of its frequency f = 1− 2MHz.

At first glance the spectra shown in Figs.2 resemble the harmonics of ICE: descrete

peaks in the Mirnov coil spectrum, almost equally spaced in frequencies. However the edge

cyclotron frequency of the background thermal deuterium ion was ∼ 2.2MHz in NSTX

and ∼ 2.5MHz in MAST in those shots which are much larger than the peak frequency

separation shown in the figures. Nevertheless the frequency separations corresponding to

various mode numbers as we highlighted above served as an important confirmation of CAE’s

dispersion and their theory. It allows potentially the development of the diagnostic tools to

study fusion plasmas and burning plasmas in particular as we will be discussing.

Due to this understanding the theory of CAEs helped to find its way for validations

in spherical tokamaks. Furthermore, recent theoretical investigations resulted in the pre-

scription for how to decouple CAE baseline eigenmode equations from the shear Alfvén

oscillations, allowing for a focus on CAE properties only [32]. A similar approach, but with

a slightly reduced model for the eigenmode equations, was further developed and applied to

the MAST plasma [35], where the modes co- and counter- propagating in the direction of

the plasma current were reported. As an illustration of those studies, we show the computed

CAE radial mode structures in Fig. (3). The CAE shown has a mode structure which is

similar to the one we used in this review (see Eq.(8)), although both theoretically [36] and
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Figure 2. CAE frequency spectra from two devices, NSTX (left), and MAST (right). Both spectra

were measured by the magnetic pick-up coils installed outside of the plasma near the equatorial

plane. On the right (MAST) figure the toroidal mode numbers and thus the smallest frequency split

corresponding to the toroidal mode numbers are indicated.

numerically [32] CAEs that were localized at the HFS were predicted as well.

A special study was undertaken in Ref.[32] which showed that the aspect ratio plays a

critical role in the poloidal localization of CAEs. In “tokamak” approximation, i.e., with high

aspect ratio, the poloidal localization hardly can be seen. On the other hand, in ST-like

devices with low aspect ratio such as R/a ∼ 1.3 found CAEs are well localized at the low

field side, which is similar to the results of the WHALES code shown in Fig.3.

Finally we summarize this section by stating that it is due to CAE observations in ST

devices and to theoretical advances that it became possible to understand the nature of

modes responsible for ICE. Let us examine the theory of ICE excitation in its current

understanding.

IV. ICE THEORY

The observations of ICE were done in tokamaks with the frequency spectrum signal having

peaks at the harmonics of the edge background ion cyclotron frequency [6, 37, 38] (see also

recent review paper by the author [3], Sec.4.2.3). In the previous section the CAE theory

was viewed using the ideal MHD eigenmode equations which are sufficient to interpret and

understand the experimental data from tokamaks and STs. It was shown more recently
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Figure 3. Contour map of CAE poloidal structure obtained by the WHALES code. Shown are the

real and imaginary values (as indicated) of ηψ variable representing the normal to the magnetic

surface component of the mode displacement. The depicted mode corresponds to n = 10 with the

mode frequency f = 2.23MHz. [35].

that for more accurate treatment of the modes the Hall term has to be included in the

CAE framework to compute the dependence of the solutions on the poloidal phase velocity

[26, 39, 40]. One particular consequence of this is the shift of the eigenmode frequencies

away from each other, depending on the sign of m. For the plasma cross section with the

ellipticity κ the eigenfrequencies of CAEs were found to have the asymmetry in the poloidal

mode number sign as follows (using the notations of Ref.[26])

ωCAE = k (κ) vA∗





σmvA (lnn)′

2ωB (κ)
+

√

1 +

(

vAn′

2ωB (κ)n

)2





r∗

, (10)

where the location of the eigenmode is given by

2 + r (lnn)′ − σm
vA

ωB (κ)

(

r (lnn)′
)′

√

1− 2 + r (lnn)′
(

r (lnn)′
)′ . (11)

Other notations here are: k (κ) = |m|
√

1+k−2

2
/r is the poloidal wave vector, ωB (κ) =

eB
Mc

√

1+k2

2
is the cyclotron frequency, and σm = m/ |m| is the sign of the poloidal wave

number. Further analytic and numerical treatment of the CAE eigenproblem can be found in
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Ref.[36]. As we point out in the discussion section VI the dispersion 10 should be important

in applications of ICE for diagnostics of burning plasmas since this will affect the stability

of the CAE modes.

The stability theory of CAEs in applications to ICE is developed for various cases. We

highlight its main elements following the author’s earlier work [25, 41] which was strongly

influenced by A.B. Mikhailovskii reviews on cyclotron instabilities by fast ions and in partic-

ular by Ref. [8]. We should say that a similar approach to CAE instabilities was developed

in Ref. [42], where the slow instability limit was implied although no applications to ICE

in experiments was made. Other papers dealing with ICE instabilities were limited to the

strong instability as discussed above [20, 21] (see also recent publications on those inter-

actions in strong instability limit Refs.[11, 12] and in earlier papers [10, 13]). More recent

formulations of CAE growth rates in applications to STs analyze the growth rate expres-

sions accounting for EP drift frequency contributions which carefully address not only the

cyclotron but EP drift frequencies [43, 44].

Let us outline the formulation of CAE growth rates derivation. The growth rate is

computed via the anti-Hermitian part of the permeability tensor of a specie j, ǫ̂Aj :

γ ≃ −ω

2

∑

j ℑ
∫

E∗
1 ǫ̂
A
j11E1d

3r
∫

E2
1 |ǫ̂11| d3r

, (12)

where E1 is the component of the perturbed electric field in the direction of the mode

propagation which is expected to be in the poloidal direction if kθ ≫ kr, and the integration

is taken over the plasma volume occupied by the mode. The permeability tensor appears in

the above expression for the anti-Hermitian part of the perturbed current, j̃
A
, of the plasma

specie j which in its turn can be expressed via the perturbed distribution function:

∫

E∗
1 ǫ̂
A
j11E1d

3r =
4iπ

ω

∫

E∗ · j̃Ad3r = 4iπ

ω
e

∫

E∗
1 · v⊥f̃jd

3vd3r, (13)

where v⊥ is the vector of the perpendicular particle velocity. Then after some algebra one

arrives at (for more complete derivation we refer to Ref.[41])

∫

E∗
1 ǫ̂
A
j11E1d

3r = −8π2e2B

ωcω2T

∫

dPϕdµdEτb
∑

l,p

F ′∗
lp

(

ω − ωT∗
)

Flp

ω − lω̄c − ω̄D − pωb
fj , (14)

where we made use of the set of COM (constants of motion) variables, E - particle energy, Pϕ

- toroidal canonical momentum, µ - adiabatic moment, τb is the ion drift bounce frequency,
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fj is the equilibrium distribution function of the fast ions, and the functions F ′
lp account

for the wave particle interactions[41], the set of frequencies in the denominator includes

CAE eigenfrequency, cyclotron, drift and drift bounce frequencies. A similar expression

was obtained earlier by Mikhailovskii[8] in the limit of zero banana width for well-trapped

and strongly passing ions. As in Ref.[8], this equation contains the sum over the bounce

resonances to account for slow growth of the unstable CAE mode. The bounce resonances

were summed in the following novel way [41].

The resonant denominator in Eq.(14) is expandable into the integrable form involving

the delta function of the resonance condition:

1

ω − lω̄c − ω̄D − pωb
=

P
ω − lω̄c − ω̄D − pωb

− iπδ (R) . (15)

The delta function is allowed to transform and integrate the sum over the bounce harmonic

index p. Finally the expression for the growth rate of the CAE becomes

γ

ωc
=

ω3

ω2
pω

2
c

√
2ecB√

π∆r0R0

∑

l,σ

∫

dPϕdEdµI2
E2

1

E2
0

µlJ2
l

z2

[

∂

∂E +
lωc
ωB

∂

∂µ

]

f̃j ,

where ωp is the plasma frequency, E1 = E0f (r, θ) is the CAE structure in the poloidal cross

section required for proper averaging of the local growth rate expression, ∆ is its radial width,

I2 = 8π/
∣

∣

d
dt
(lωc + ωD)

∣

∣ is to be taken at the point where the ion has the cyclotron resonance

with the mode, Jl is the Bessel function of order l with the argument k1ρL, and ρL is the

Larmor radius of the fast ions. The resonance condition is then ω− lωc (r, θ)−ωD (r, θ) = 0

which is to be evaluated along the EP drift trajectory.

An important element of the ICE theory is the quest for the damping mechanisms which

can shape the spectrum of unstable CAEs in linear regimes. Several damping mechanisms

were considered in recent publications on the alpha channeling [45], including thermal elec-

tron and ion Landau cyclotron resonant dampings. However, as we said above in Sec.(III),

an important and often dominant damping mechanism in simulations which were not previ-

ously studied is the coupling of the KAW structures to CAEs [33]. KAW damps on thermal

electrons due strong parallel electric field.

In connections with CAE dampings we would like to note that the instabilities of CAEs

do not necessarily lead to ICE. They can occur at arbitrary frequencies between the integer

harmonics of plasma ion cyclotron frequency, ω 6= lωci. A substantial discussion on allowed

CAE eigenfrequencies from the point of view of the mode damping is presented in the other
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author paper Ref.[45]. In particular it was shown that in STs CAEs could be excited at low

frequencies ω < ωci such as shown in figures 2. This is because the thermal electron Landau

damping is small near lωci in conventional tokamaks whereas it is large away from ω = lωci.

V. CAE NONLINEAR EVOLUTION

There are known publications where the nonlinear aspects of CAE evolution were con-

sidered as we briefly list in this section. A pioneering study was done in Ref.[46] (its main

results are summarized in Ref.[8]). The study was focused on the trapped fast ion excitation

of some compressional mode characterized by the magnetosonic polarization. The evolution

of the CAE mode was considered for the initial stage of the instability in which the EP

velocity distribution function is given by the source distribution, which represents a shifted

Maxwellian distribution in velocities. Because of this assumption, the considered case can

be applicable to the initial stage of the discharge or to when the plasma is heated quickly

and alphas do not slow down. The authors concluded, based on numerical results, that the

thermal broadening of the α-particle source grows logarithmically with time. The consid-

ered scenario is not directly applicable to the burning plasmas which are designed for slow

evolutions, so that the α-particle distribution function remains nearly slowing down at all

times[47].

In another publication we would like to highlight, a set of quasilinear (QL) diffusion

equations considered[48] for the case in which the resonance between the oscillations and

the fast ions is cyclotronic with and without contributions from the EP bounce resonances.

The resonance’s overlap due to Coulomb collisions was also considered. The performed

theoretical analysis is applicable to the ICRH problem according to that paper and could

be used in developing the ICE nonlinear simulations.

Relatively recent studies of ICE in both linear and nonlinear regimes have been done

numerically [49, 50]. In those publications particle-in-cell simulations address ICE evolu-

tion using the hybrid model computations where ion drift motion is advanced numerically

while thermal electrons are treated as a fluid. Simulation allowed the authors to more ac-

curately model both stages of ICE in experiments. In particular, the frequency dependence

of expected CAE instabilities had a shape similar to those observed for ICE in JET DT

experiments.
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VI. DISCUSSION AND SUMMARY

We overviewed the ICE theory in its present status. We noted that the ICE linear

theory seems to be well developed and can be developed further focusing on its potential

application to the present and future experiments. It had been theoretically predicted,

and now observed, that many CAE instabilities with narrow spectrum peaks will overlap

and form a broader peak near each ion cyclotron frequency harmonic. The main difference

between the more recent observations from STs and those of earlier studies is that the

frequency spectrum of the observed CAE instabilities in high toroidicity plasma is discrete,

so that properties of each mode can be and was measured separately [14, 34, 51].

From previous studies it is known that, due to high magnetic fields in tokamaks, the ICE

frequency spectrum is populated more densely by the unstable modes. This makes the ST

plasma very attractive for studying the properties of individual CAE modes and for verifying

the theoretical predictions. In particular, NSTX presents a unique opportunity to study

mode numbers, structure, polarization, amplitude etc. We note that, based on the CAE

observations on NSTX, one would expect that ICE spectrum contains more complicated, fine

structures than previously reported [6, 52] perhaps in plasmas with intermediate values of

the equilibrium magnetic fields. In addition one should look for the ICE-like high harmonics

of the ion cyclotron frequency features in the magnetic activity of STs.

Three important problems associated with ICE could be of interest for the fusion com-

munity.

First, developing an understanding of ICE for diagnostic purposes in burning plasma

conditions makes a perfect case for both the linear and nonlinear development of ICE the-

ory. This was considered in several recent publications, see Refs.[11, 12], and in a recent

review [3] in which the summary and current understanding of ICE theory and experiments

were included. A pioneering observational analysis from JET by Cottrell pointed out at

the proportionality of the ICE signal to the neutron flux over six orders of magnitude of its

amplitude[6]. Another example was discussed recently on the ICE activity in DIII-D exper-

iments in which its signals were observed in clear correlation with the off-axis fishbones [53].

Such correlations serve as a compelling case for using ICE for fusion products diagnostics

(see Fig.15 f with the Mirnov pick-up coil data in that paper).

Second is the idea of the anomalous thermal ion heating, energy channeling, pointed out in
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Ref.[54]. In that paper, CAEs were proposed as mediators for energy channeling from the fast

ions to thermal ions. In this mechanism, fast ions excite the CAE modes during NBI heating

as demonstrated in NSTX. The modes in turn stochastically transfer their wave energy to

thermal plasma ions due to the cyclotron damping. Recently, some dedicated studies use

the special CAE to KAW decoupling technique [55] to verify the theoretical predictions.

Using model parameters, the paper demonstrates the feasibility of this technique and states

that more detailed experimental observations of CAE internal amplitudes are required for

validations of this idea.

One similar idea of thermal ion anomalous energy diffusion and associated plasma heating

is behind the so-called “alpha channeling” [56] when certain plasma oscillations are excited

by the external antennae. Recently, CAEs were suggested to explain strong fast ion energy

diffusion in TFTR [57] which was required for alpha channeling to work [45, 58]. This argu-

ment pointed to further experiments, even on existing devices, that might verify and further

extend this very unusual, but possibly extremely useful, alpha-channeling effect. Moreover,

the demonstration of the role played by these modes, together with their theoretical descrip-

tion, carries significant implications for how this effect might be extrapolated with confidence

to achieve significant improvements in the tokamak reactor concept. Since this mechanism

could mean a big reduction in the cost of electricity produced by fusion, the newly inspired

confidence in extrapolating these results may lead to important follow up experiments.

Third, the already mentioned coupling of CAEs to KAW [33] could explain the anomalous

electron thermal transport observed in NSTX [59]. The deficit of heating the thermail

electrons could account for up to 30−40% of the total NSTX electron transport. In the core

of Ref.[33] explanation is the heating power channeling by means of CAE/KAW coupling

of thermal electrons. The short wavelength KAW is prone to have a strong parallel electric

field and thus very effectively heat thermal electrons. The KAW was found to be localized

poloidally on the high field side (HFS) and is in local resonance with CAEs. The radial

width of the KAW is comparable to the beam ion Larmor radius. The eigenfrequency of

CAE modes satisfies the following dispersion relation, which includes the contribution from

beam ions: ω2 = k2

‖v
2
A [1 + (nα/ne) (3k

2
⊥ρ

2
α/4− ω2/ω2

c )]. Although the coupling of CAEs

and KAWs is demonstrated there is no theoretical explanation of this effect which could be
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used in the plasma simulation codes like TRANSP.
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Response to the referee comments

The author thanks the referee for thoughtful comments. Addressing them will hopefully

improve the paper and after the resubmission.

Following is my point by point response to the referee report. I also put my amendments

in blue color to find them easily.

(i) The paper deals mainly with the theory of CAE instabilities. Although presumably

the CAE modes are responsible for the ICE, the CAEs do not necessarily lead to

ICE. It is necessary to explain when the destabilization of compressional Alfven

waves leads to the radiation with the peaks at ω = lωc from the plasma.

The manuscript is corrected and a statement is added at the end of Sec.IV on

p.14 about the role of thermal electron damping in shaping the ICE spectra.

(ii) It is not clear whether the experimental results shown in Fig. 2 are relevant to

ICE. What were the gyrofrequencies in NSTX (left panel in Fig. 2) and MAST

(right panel)? Do the peaks of δBθ correspond to harmonics of the beam ion

gyrofrequency or plasma ion gyrofrequency?

This point is good to discuss as indeed it clears some potential confusion coming

from Fig.2 on p.11 which I did not notice working on the draft. This point is

discussed on p. 10.

(iii) The intensity of the ICE spectrum is linearly proportional to the fusion product

density. A question arises, why so much attention in the paper is paid to insta-

bilities with the growth rate γ ∝ √
nα ?

Section II takes only 2.5 pages of the draft which is about 22 pages in total.

Besides I believe that because the whole cyclotron instability study and thus

ICE theory started with the strong instability theory it deserves such attention.

We discuss this on p.3, second paragraph.

(iv) It is necessary to change the Abstract. The current Abstract does not reflect the

fact that the theory of CAE instabilities is reviewed in the paper.

The abstract is rewritten reflecting the content more accurately, in particu-

lar pointing out at the CAE theory review.
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In addition, it is not clear why Mikhailovskij’s research is highlighted in the

Abstract and which his pioneering papers on ICE the author means. This should

be explained in the paper.

This part of the abstract is also rewritten more accurately. The abstract makes

more clear connection with Mikhailovskii works.

My opinion is that it were experimental observations (first of all, by Cottrell

et al [6]) rather than any theory, that attracted attention to the ICE phenomenon.

I agree that ICE attracted most of the attention after Cottrell’s publication.

However even before that publication papers by Mikhailovskii, such as his re-

view of ′86, contained the theoretical formalism sufficient for ICE theory to

develop. I used it myself a lot when i was publishing the ICE formalism in

Ref.[25]. I make this point clear on p.3 first paragraph.

Concerning theory, I have to say that Refs. [4], [5] were not pioneer works

on fast-ion induced instabilities. In addition, Refs. [4], [5] and other cited works

by Mikhailovskij were carried out at the end of 70s, not in 60-70s, as the author

claims.

Parts of the paper citing [4,5] are made more clear and accurate. Also years of

publications are corrected.

(v) I cite from p.3: “The EP/waves interactions were then considered with realistic

drift ion motion in the presence of CA waves”. In which works? I suggest to cite

the original works.

I meant to cite Dendy’s earlier work immediately following Cottrell paper.

I added it to the draft.

(vi) The last two paragraphs in p.16 are not clearly written. In particular, it is dif-

ficult to understand what effects are “very unusual” and what the author means
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saying about “deficit”.

Those two paragraphs are rewritten and hopefully address concerns by the

referee.

(vii) It is necessary to remove misprints. In particular, to replace “satisfy” with “sat-

isfies” in p. 17 and the year (1995) with (1968) in Ref. [2].

The resubmitted draft includes corrections noted and suggested by the referee.
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