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Abstract

The adjoint Fokker-Planck equation method is applied to study the runaway probability function

and the expected slowing-down time for highly relativistic runaway electrons, including the loss of

energy due to synchrotron radiation. In direct correspondence to Monte Carlo simulation methods,

the runaway probability function has a smooth transition across the runaway separatrix, which can

be attributed to effect of the pitch angle scattering term in the kinetic equation. However, for the

same numerical accuracy, the adjoint method is more efficient than the Monte Carlo method. The

expected slowing-down time gives a novel method to estimate the runaway current decay time in

experiments. A new result from this work is that the decay rate of high energy electrons is very

slow when E is close to the critical electric field. This effect contributes further to a hysteresis

previously found in the runaway electron population.
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It is well known that under an external electric field a superthermal electron in plasma

can run away from the bounds of the collisional force and get accelerated to very high

energy[1]. Runaway electrons can be produced in tokamak disruptions, which is an im-

portant issue for disruption mitigation on the International Thermonuclear Experimental

Reactor (ITER). Further studies have thus been motivated to address the dynamics of the

runaway electrons in momentum space[2–4]. Recently it has been shown that in the presence

of a magnetic field, the synchrotron radiation reaction force can play an important role in

the runaway electron dynamics[4–9]. Combined with pitch angle scattering, the radiation

force can produce additional stopping power[6]. The resulting effects include increase of the

critical electric field E0 (which will be above the Connor-Hastie field Ec)[5, 8], and modifi-

cation of the runaway electron growth and decay rate. In addition, the stopping power can

help form an “attractor” in electron momentum space, which can lead to a bump-on-tail

distribution[9]. Taking these into account, simulations[10] have produced results that quali-

tatively agree with experiment[11] for the electric field above which x-ray signals indicate a

runaway population is sustained. It is believed that other effects like bremsstrahlung radia-

tion and magnetic fluctuations can also influence the runaway growth and decay. To better

understand these effects it is very important to develop theoretical tools that complement

numerical simulations and can provide deeper physical insight into the phase-space structure

of runaway electrons.

In this paper we study the runaway electron dynamics in momentum space by solving the

adjoint Fokker-Planck equation (FPE) in momentum space, which is a general method that

offers significant conceptual and computational advantages. The homogeneous adjoint FPE

was first introduced to study the first passage problem[12]. It has been applied to calculate

the neutron generation probability[13], the response function of the current drive[14], and the

runaway probability[15]. Here we demonstrate that the adjoint FPE can be used not only to

study the probability function and its moments, as is often done, but also to calculate subtler

and experimentally relevant quantities like the slowing-down time for existing superthermal

electrons using the nonhomogeneous form of the FPE (see Appendix ). This method takes

into account all the terms in the kinetic equation, and improves upon the test particle

method which ignores the diffusion term[16, 17]. In addition, the adjoint method is much

more efficient than the Monte Carlo method since it can provide detailed information in all

of momentum space by solving a single partial differential equation (PDE) once. It can be
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more advantageous to study certain physical effects using the adjoint method, because the

adjoint FPE has a direct relation to the standard Fokker-Planck equation.

We demonstrate that the the runaway probability function shows a transition layer in

momentum space, which agrees with the separatrix found by the test particle method.

However, due to the effect of pitch angle scattering, the layer of finite width provides a

smooth transition rather than a discontinuous transition represented by a step function (in

momentum space). The expected slowing-down time we calculate characterizes the runaway

electron beam decay time, which gives a new perspective to the study of runaway current

decay in both the quiescent runaway electron (QRE)[11] and the plateau[18] regimes. The

result shows that the electric field must be well below E0 for significant decay to occur.

In the established model of runaway electron dynamics, when E is larger than the critical

electric field and the radiation effect is weak, electrons initially in the high energy regime

can continue to be accelerated and run away. On the other hand, electrons initially in the

low energy regime will be decelerated and fall back into the Maxwellian population. Thus

the destinations of electrons in the long time limit depend on their initial momentum. The

radiation force can be an additional source of stopping power, but it can only dominate the

electric force in the very high energy regime when E is much larger than the critical electric

field. The kinetic equation for relativistic electrons can be written as[7, 8, 18],
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where p is the electron momentum (normalized to mec), ξ is the cosine of the pitch angle,

Z is the ion effective charge, Ê = E/Ec where Ec is the Connor-Hastie critical electric

field Ec = nee
3 ln Λ/ (4πε20mec

2) and ln Λ is the Coulomb logorithm, t̂ = t/τ where τ is the

relativistic electron collision time τ = mec/ (Ece), τ̂r = τr/τ and τr is the timescale for the

synchrotron radiation energy loss τr = 6πε0m
3
ec

3/ (e4B2).

In the adjoint method, we define P (p0, ξ0) as the runaway probability function, which

means the probability for an electron that is initially at (p0, ξ0) to eventually run away. As

shown in Appendix , P satisfies the homogeneous adjoint equation of Eq. (1),

E [P ] + C [P ] + S [P ] +R [P ] = 0, (2)
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where

E [P ] = Ê
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where the four terms represent, respectively, the parallel electric field force, the drag force in

collision operator, the pitch angle scattering, and the synchrotron radiation reaction force.

The boundary conditions of P are set as P (p = pmin, ξ) = 0, P (p = pmax, ξ) = 1, where

pmin and pmax are two boundaries in momentum space that are located far from the transition

region. (The solution is checked to be insensitive to the boundary locations)

We solve Eq. (2) numerically using the finite difference method, which is similar to the

numerical method in Ref. 19. Figure 1 shows P for E/Ec = 6, Z = 1 and τ̂r = 100. The

separatrix calculated using the test particle method in Ref. 17 is also shown for reference.

Note that the separatrix lies in the transition region of P (P between 0 and 1). However,

we now have a smooth function that transtions from 0 to 1 rather than a step function. The

width of the transition region depends on the amplitude of the pitch angle scattering term,

which increases with Z. This transition region is not captured in the test particle method.

FIG. 1. The runaway probability for E = 6Ec, Z = 1 and τ̂r = 100. θ is the pitch angle. The red

dashed line is the separatrix calculated using the test particle method in Ref. [17].

Figure 2 shows the value of P as a function of p for ξ = 1 in the transition region. The

result is benchmarked with a Monte-Carlo simulation result, which is achieved by sampling a
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FIG. 2. The runaway probability function P for ξ = 1 (blue line), compared with the Monte-Carlo

simulation result (red dashed line) and the separatrix calculated by the test particle method (black

vertical line). The standard error of the Monte Carlo result is shown as error bars.

large number of electrons that start at one initial position and follow the equation of motion

that corresponds to the FPE Eq. (1). We then count the electrons that hit the low and

high energy boundaries after a certain time. The two results are close. Note that unlike the

Monte-Carlo method which can take significant computer time, our method is fast and only

requires solving the PDE once to obtain the probability function.[20]

P has an increasingly sharp transition from near zero to near unity as E increases to

large values, which indicates that an electron with initial momentum above the separatrix

is very likely to run away. However, as E decreases, the value of P above the separatrix

reduces and eventually approaches zero. For E sufficiently small P becomes a flat function

close to zero in most of momentum space, and only increases to 1 in a thin layer close to

pmax.[21] This is because the electric field is so weak that it is dominated by the combination

of the collisional drag and the radiation force. Thus, all electrons, regardless of their initial

energy, will slow down to the low energy regime in a finite time. This indicates the runaway

population converts from growth to decay.

In the decay phase the expected electron slowing-down time as a function of momentum,

as opposed to the runaway probability, characterizes the decay of the runaway electron

population. This can also be calculated using the adjoint method. Define T (p, ξ) as the

expected time for an electron initially at (p, ξ) to reach the low energy boundary pmin or the

high energy boundary pmax. Note 1/T = 1/Ts+1/Tr, where Ts is the expected slowing down

time and Tr is the expected time to run away. The ratio of the two terms is (1− P )/P . As
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shown in Appendix , T satisfies the nonhomogeneous adjoint FPE,

E [T ] + C [T ] + S [T ] +R [T ] = −1. (7)

The boundary conditions are T (p = pmin, ξ) = 0, T (p = pmax, ξ) = 0. Note that for

E < E0, the runaway probability is close to zero almost everywhere, so Tr → ∞ and

T ≈ Ts, except for the region near the high energy boundary.

Figure 3 shows the calculated Ts(p, ξ) for ξ = 1 by solving Eq. (7), for Ê = 1.5, Z = 1.

We see that Ts is a monotonically increasing function of p. For small radiation force (large

τ̂r) and E close to the critical field E0, Ts has a large jump between the low and high energy

regimes. This is because in the intermediate energy regime all the forces reach a balance and

the motion is dominated by the diffusion effect, therefore electrons take a very long time to

cross this barrier region through random walk. For large radiation force and E smaller than

E0 this jump is very small or non-existent because the radiation force is strong and always

dominates the electric field force.

We also calculate the effect of energy loss due to large angle collisions by including a

Boltzmann collision operator using the Møller scattering cross section[4, 22] in the adjoint

equation. The result (dashed line in Figure 3) shows a significant decrease of slowing down

time at the marginal case where E close to E0, while for E much smaller than E0 the result

does not change much. This decrease occurs because in the marginal case, the diffusion

barrier formed by the balance of forces is significant. The large angle collisions, however,

can help electrons cross the barrier since they can cause a high energy electron to lose a

large fraction of its energy and fall directly into the low energy regime. However, the jump

in Ts still exists.

The expected slowing-down time can be used to estimate the runaway electron beam

decay time in experiments, and help explain the runaway electron population hysteresis

and distribution. In both the QRE and current quench experiments, due to the decreasing

magnitude of E/Ec, the runaway electron beam will have a transition from growth to decay.

This means that at the beginning of the decay, there is already a population of high energy

electrons formed by previous growth. The expected slowing-down time for these electrons

determines the timescale for the runaway beam decay. In fact, if E is very close to E0,

the expected slowing-down time for the high energy electrons can be very long, due to the

jump in Ts. This leads to a stagnation stage for the high energy electrons. The electric field
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FIG. 3. The expected slowing-down time (normalized to τ) as a function of p at ξ = 1 for

E/Ec = 1.5, Z = 1 and 3 values of τ̂r. Dashed line is the results including large angle collision

effects with ln Λ = 30

required for a significant decay to happen is thus far lower than the critical electric field E0,

an effect first captured by this model. This can contribute to a hysteresis[8] for the runaway

electron population when the electric field is ramped up and down. Another indication from

the Ts solution is that, due to very fast decay of the low energy electrons and extremely

slow decay of the fast electrons, the electron population will tend to form a bump-on-tail

distribution in the decay phase, which is different from the monotonic distribution in the

growth phase[23]. Further investigations of the outcome of this distribution will be discussed

in future work.

Returning to the runaway probability P , as E is reduced P will suddenly change from a

smooth transition across the separatrix to a flat function near zero, indicating the cessation

of the runaway generation process. This sudden change in the structure of P can be used

to determine the critical electric field E0 for runaway electron growth, which is above Ec in

the presence of the radiation force. One should bear in mind that this critical value is not

an absolute threshold, given that P always smoothly transitions to 1 at pmax, in a thin layer

near pmax as E approaches E0. We can, however, define a criterion based on the presence

of a transition across the separatrix. For low Z the transition is rather abrupt, while for

high Z it is smoother. Here we choose the a precise (but somewhat arbitrary) criterion that

if P is above 0.005 in the region above the separatrix, which means an electron there has a

0.5% probability to run to the high energy boundary, then the runaway generation process

is active. We then obtain E0 from this criterion.
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We have calculated E0 for 1 ≤ Z ≤ 10 and 10 ≤ τ̂r ≤ 100, as shown in Figure 4. The

high energy boundary is chosen to be 30MeV. A convenient function that fits the result is

E0

Ec
= 1 + αxν , (8)

x =
Z + 1

(τr/τ)3/4
, α = 1.8587, ν = 0.6337. (9)

The error of the fitting function is less than 5%. We have also benchmarked our result with
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FIG. 4. E0 (solid line) plotted as a function of τ̂r for various Z. E0 from Ref. 8 (dashed line)

plotted for comparison.

E0 in Ref. 8 in Figure 4. The two results are close for small Z, while for large Z our result is

larger for small τ̂r but smaller for large τ̂r. The discrepancy is mainly due to the difference

in our definition of E0 and the uncertainty introduced by the smoother change of P for high

Z.

Note that this critical electric field may be different from experimental observations for

several reasons. If the electron temperature is very low or the pitch angle scattering is strong,

the critical energy required for an electron to run away (the least momentum above the

separatrix) is very high, which results in a growth rate too low to be observed. Additionally,

the observed electric field corresponding to the turning point of the signal in the QRE

experiments[11] can be higher than E0, due to the energy dependence of the diagnostic and

the redistribution of the runaway electron energy[7].

It is noteworthy that the the result of the adjoint method, especially the expected slowing-

down time, depends highly on the energy diffusion mechanism in the kinetic model. In

the results presented here, the model includes collisions and the synchrotron radiation re-

action force. However, the method can be easily extended to study the influence of other
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physics on runaway electron dynamics, including Bremsstrahlung radiation[24] and magnetic

fluctuations[25], by adding the corresponding operators into the adjoint FPE. In addition,

the adjoint FPE can be used to study any dynamical system that has a separatrix or a sin-

gular point, e.g. particle behavior close to the magnetic separatrix and the X-point. Future

applications of this method to other areas are promising.

We thank O. Embréus, I. Fernández-Gómez, N. Fisch, T. Fülöp, P. Helander, E. Hirvijoki,

J. Krommes, G. Papp and A. Stahl for useful discussions. The numerical calculations are

conducted on the PPPL Beowulf cluster. This work is supported by the U.S. Department

of Energy under Contract No. De-FG02-03ER54696.

Appendix: Adjoint Fokker-Planck equation. — Here we introduce the adjoint FPE

method, begining with the homogeneous adjoint FPE. Consider a test particle in a sta-

tionary stochastic system. Denote the particle’s coordinate as x with two boundaries xmin

and xmax. The equation of motion of the test particle in the stochastic system can be de-

scribed as δx = x(t+δt)−x(t) = v(x)δt+ξ(x), where ξ(x) is a random variable that satisfies

〈ξ(x)ξ(x)〉 =
√

2D(x)δt. The distribution function f(x, t) thus satisfies the FPE

∂f

∂t
= − ∂

∂x
[v(x)f ] +

∂2

∂x2
[D(x)f ] . (10)

Define P (x0) as the probability of a test particle with initial coordinate x = x0 to first

pass the boundary xmax rather than xmin. Note that because the system is stationary, P

is time-independent. P (x0) can be expressed using the random walk probability density in

terms of the particle’s next-step coordinate,

P (x0) =

∫
P (x0 + δx)G(x0, δx)dδx

=

∫ [
P (x0) +

dP (x0)

dx
δx+

1

2

dP (x0)

dx2
δx2
]

G(x0, δx)dδx, (11)

where G(x0, δx) is the probability density that the coordinate can have a change of δx in

δt if x = x0, and we expand in powers of δx in anticipation of taking the limit δx → 0.

G(x0, δx) satisfies the following properties∫
G(x0, δx)dδx = 1,

∫
G(x0, δx)δxdδx = v(x0)δt, (12)∫

G(x0, δx)δx2δx = v(x0)
2δt2 + 2D(x0)δt. (13)
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Using these equations, Eq. (11), and taking the limit δt → 0, we obtain the differential

equation for P (x),

v(x)
dP (x)

dx
+D(x)

d2P (x)

dx2
= 0, (14)

which is the adjoint equation of Eq. (10). According to the definition, the boundary con-

ditions obeyed by P (x) are P (x = xmin) = 0, P (x = xmax) = 1. The probability for

the particle to first pass the boundary at xmin can be obtained simply from the relation

Q(x0) = 1− P (x0). Note that Q also satisfies Eq. (14).

We next discuss the nonhomogeneous adjoint Fokker-Planck equation. Define T (x0) as

the expected time for a test particle that starts at x = x0 to first pass either boundary, xmin

or xmax. Similar to P , T can also be calculated through the random walk integral,

T (x0) =

∫
T (x0 + δx)G(x0, δx)dδx+ δt

=

∫ [
T (x0) +

dT (x0)

dx
δx+

1

2

dT (x0)

dx2
δx2
]

G(x0, δx)dδx+ δt. (15)

Taking the limit δt→ 0, T (x) is found to satisfy the differential equation

v(x)
dT (x)

dx
+D(x)

d2T (x)

dx2
= −1, (16)

which is analogous to Eq. (14) except the equation is now nonhomogeneous. The boundary

conditions for T are simply T (x = xmin) = 0, T (x = xmax) = 0.

Let us assume a particle source at x = x0. The rate for particles to pass one of the

boundaries can be expressed as r = 1/T . Note that r = r1 + r2, where r1 and r2 are the rate

to pass the boundary at xmin and xmax. Both r1 and r2 can then be calculated according to

the first passage probability, r1/r2 = Q/P .

It is important to point out that, though the derivation shown here is based simply on

finding the adjoint FPE, the adjoint method can also be applied to more general kinetic

PDEs. For example, to treat large angle collision effects one needs to use the Boltzmann

collision operator, in which case the kinetic equation is an integro-differential equation rather

than a differential one. However, one can still find the adjoint equation through integration

by parts, or from the first line in Eq. (11) and Eq. (15) without performing Taylor expansion.
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[20] Note that in the adjoint method we assume that physics quantities like Ê and τ̂r are time-
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