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Formation of current singularity in a topologically constrained plasma
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1Plasma Physics Laboratory and Department of Astrophysical Sciences,
Princeton University, Princeton, New Jersey 08543, USA

2Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
(Dated: September 25, 2015)

Recently a variational integrator for ideal magnetohydrodynamics in Lagrangian labeling has
been developed using discrete exterior calculus. Its built-in frozen-in equation makes it optimal for
studying current sheet formation. We use this scheme to study the Hahm-Kulsrud-Taylor problem,
which considers the response of a 2D plasma magnetized by a sheared field under mirrored sinusoidal
boundary forcing. We obtain equilibrium solutions that preserve the topology of the initial field
exactly, with a fluid mapping that is non-differentiable. Unlike previous studies that examine the
current density output, we identify a singular current sheet from the fluid mapping. The results are
benchmarked with an unconventional Grad-Shafranov solver.

Introduction. Current sheet formation has long been
an issue of interest in plasma physics. In toroidal fusion
plasmas, closed field lines exist at rational surfaces. It
is believed that current singularities are inevitable when
rational surfaces are subject to resonant perturbations
[1–10], which jeopardizes the existence of 3D equilibria
with nested flux surfaces. In the solar corona, field lines
are tied into the boundaries and do not close on them-
selves. Yet Parker [11, 12] argued that there would still
be current sheets forming frequently, and the subsequent
field line reconnections can lead to substantial heating.
This theory has stayed controversial to this day [13–26].

Albeit inherently a dynamical problem, current sheet
formation is usually treated by examining magnetostatic
equilibria for simplicity. The justification is, if there ex-
ists no smooth equilibrium for an initially smooth mag-
netic field to relax to, current sheets must form during
the relaxation. In this context the plasma is supposed to
be perfectly-conducting, so the equilibrium needs to pre-
serve the topology of the initial field. This topological
constraint is difficult to explicitly describe and attach to
the magnetostatic equilibrium equation, and to enforce it
is a major challenge for studying current sheet formation,
either analytically or numerically.

It turns out this difficulty can be overcome by adopt-
ing Lagrangian labeling, where the frozen-in equation is
built-in to the equilibrium equation, instead of the com-
monly used Eulerian labeling. Analytically this was first
shown by Zweibel and Li [14]. Numerically, a Lagrangian
relaxation scheme has been developed using conventional
finite difference [27], and extensively used to study cur-
rent sheet formation [22–26, 28]. It has later been found
that its current density output can violate charge conser-
vation (∇ · j = 0), and mimetic discretization has been
applied to fix it [29, 30].

Recently, a variational integrator for ideal magneto-
hydrodynamics (MHD) in Lagrangian labeling [31] has
been developed using discrete exterior calculus [32]. It
is derived in a geometric and field-theoretic manner such
that the many of the conservation laws of ideal MHD are

automatically inherited. Here we present the first results
of applying this novel scheme to studying current sheet
formation.

We consider a problem first proposed by Taylor and
studied by Hahm and Kulsrud (the HKT problem from
here on), where a 2D plasma in a sheared magnetic field
is subject to mirrored sinusoidal boundary perturbation
[3]. It was originally designed to study forced magnetic
reconnection induced by resonant perturbation on a ra-
tional surface. In the context of studying current sheet
formation, we refer to finding a topologically constrained
equilibrium solution to this problem as the ideal HKT
problem in this paper. Zweibel and Li’s [14] linear so-
lution to this problem contains a current sheet, but also
discontinuous displacement which is unphysical. It has
remained unclear whether the nonlinear solution to the
problem is ultimately singular or smooth.

We study how the nonlinear numerical solution to the
ideal HKT problem converges with increasing spatial res-
olution, and find the fluid mapping along the neutral line
non-differentiable. This is strong evidence that there ex-
ists no smooth solution to the ideal HKT problem. Un-
like previous studies that depend heavily on the current
density diagnostic that is more vulnerable to numerical
inaccuracies [22–26, 28], we identify a singular current
sheet from the quadratic fluid mapping normal to the
neutral line. Stimulated by these results, we adopt an un-
conventional Grad-Shafranov solver with the guide field
advected rather than prescribed [19] to benchmark on
the problem.
The HKT problem. The HKT problem originally con-

siders a 2D incompressible plasma magnetized by an
equilibrium field By = εx with constant shear ε. The
boundaries at x = ±a are then subject to mirrored si-
nusoidal perturbation so that x = ±(a − δ cos ky). Two
branches of solution to the new equilibrium were obtained
by solving the magnetostatic equilibrium equation,

(∇×B)×B = ∇p, (1)

where B is the magnetic flux density and p the pressure.



2

The one with no magnetic islands along the neutral line
x = 0 reads

By = ε[x+ sgn(x)kaδ cosh kx cos ky/ sinh ka]. (2)

Note that the sign function sgn(x) introduces a jump in
By, namely a current sheet at the neutral line. However,
it can be shown that this solution in fact introduces resid-
ual islands with width of O(δ) on both sides of the neutral
line [7, 8], therefore the field line topology of this solution
is different from that of the initial field. This highlights
the difficulty in enforcing the topological constraint when
one studies current sheet formation with Eq. (1).

However, the topological constraint can be naturally
enforced if one adopts Lagrangian labeling, which traces
the motion of the fluid elements in terms of a continu-
ous mapping from the initial position x0 to the current
position x(x0, t). In this formulation, the advection (con-
tinuity, adiabatic, and frozen-in) equations are [33]

ρd3x = ρ0 d3x0 ⇒ ρ = ρ0/J, (3a)

p/ργ = p0/ρ
γ
0 ⇒ p = p0/J

γ , (3b)

Bi dSi = B0i dS0i ⇒ Bi = xijB0j/J, (3c)

where xij = ∂xi/∂x0j , J = det(xij) is the Jacobian, and
ρ0 = ρ(x0, 0), p0 = p(x0, 0), B0 = B(x0, 0) are the initial
mass density, pressure and magnetic flux density respec-
tively, and γ is the adiabatic index. They reflect the fact
that in ideal MHD, mass, entropy, and magnetic flux
are advected by the motion of the fluid elements. These
equations are built-in to the ideal MHD Lagrangian and
the subsequent Euler-Lagrange equation [33],

ρ0ẍi −B0j
∂

∂x0j

(
xikB0k

J

)
+

∂J

∂xij

∂

∂x0j

(
p0
Jγ

+
xklxkmB0lB0m

2J2

)
= 0. (4)

This is the momentum equation, the only ideal MHD
equation in Lagrangian labeling. Without time depen-
dence it becomes an equilibrium equation. Unlike Eq. (1),
it automatically satisfies the topological constraint re-
quired in studying current sheet formation. The problem
simply becomes whether there can be singular solution
to such equilibrium equation, given smooth initial and
boundary conditions. If the initial magnetic field B0 is
smooth, any singularity in the equilibrium field B should
trace back to that in the fluid mapping x(x0).

Zweibel and Li [14] first adopted the advantageous La-
grangian labeling to study current sheet formation. Their
linear solution to the ideal HKT problem reads

x = x0 −A
sinh kx0
x0

cos ky0, (5a)

y = y0 −A
(

sinh kx0
kx20

− cosh kx0
x0

)
sin ky0, (5b)

where A = sgn(x0)aδ/ sinh ka. This solution agrees with
Eq. (2) linearly and also contains a current sheet. But at
the neutral line x is discontinuous, which means the fluid
is either overlapped or torn up, but neither scenario is
consistent with the ideal MHD model. The failure at the
neutral line is expected from the linear solution since the
linear assumption breaks down there.

It is worth mentioning that instead of enforcing incom-
pressibility (J = 1), Zweibel and Li used a guide field
B0z =

√
1− ε2x20 such that the unperturbed equilibrium

is force-free. Their solution (5) turns out to be linearly
incompressible. In fact, even near the neutral line, the
plasma should still be rather incompressible since the
guide field dominates there. Therefore the physics of the
ideal HKT problem will not be affected by such alteration
in setup, which we shall adopt in our numerical studies.

Numerical results. The numerical scheme we use is a
recently developed variational integrator for ideal MHD
[31]. It is obtained by discretizing Newcomb’s Lagrangian
for ideal MHD in Lagrangian labeling [33] on a moving
mesh. Using discrete exterior calculus [32], the momen-
tum equation (4) is spatially discretized into a conserva-
tive many-body form Miẍi = −∂V/∂xi, where Mi and xi
are the mass and position of the ith vertex respectively.
The Verlet method is then used for temporal discretiza-
tion such that the scheme is symplectic and momentum
preserving [34]. The scheme inherits built-in advection
equations from the continuous formulation, so error and
dissipation associated with solving them are avoided. It
has been shown that the scheme can handle prescribed
singular current sheets without suffering from artificial
field line reconnection. Such capability of enforcing the
frozen-in law makes it an optimal tool for studying cur-
rent sheet formation. In order to obtain topologically
constrained equilibria, friction is added to the momen-
tum equation to dynamically relax the system.

For the ideal HKT problem, we choose a symmetri-
cally structured triangular mesh. Thanks to the mirror
symmetry of the problem, we only need to simulate a
quarter of the domain, [0, a] × [0, π/k]. At x0 = a it is
constrained that x = a − δ cos ky. The vertices are al-
lowed to move tangentially along but not normal to the
boundaries. These boundary conditions are exactly con-
sistent with the original HKT setup. The parameters we
choose are ε = 1, ρ0 = 1, a = 0.5, k = 2π, and δ = 0.1.
We use a large perturbation so that the nonlinear effect
is more significant and easier to resolve. The vertices are
distributed uniformly in y but non-uniformly in x to de-
vote more resolution to the region near the neutral line.
The system starts from a smoothly perturbed configura-
tion consistent with the boundary conditions and relaxes
to equilibrium. In Fig. 1 we plot the field line configura-
tion of the equilibrium.

An observation from Fig. 1 is that By(x, 0) becomes a
finite constant approaching the neutral line. To better
illustrate the origin of such tangential discontinuity, we
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FIG. 1. Equilibrium field line configuration in the vicinity of
the neutral line, and the entire domain (inset). The field lines
are equally spaced along y = 0 near the neutral line.

review a simple yet instructive 1D problem [28], where an
exact nonlinear solution with current sheet is available.
Consider the same sheared field B0y = εx0 as in the HKT
problem, but the plasma is compressible, and there is
no guide field or pressure. The boundaries at x0 = ±a
are perfectly conducting rigid walls. The system is not
in equilibrium and will collapse towards a topologically
constrained equilibrium with a quadratic fluid mapping,
x = x0|x0|/a. The Jacobian J = 2|x0|/a is zero at the
neutral line, where the equilibrium field By = B0y/J =
εa sgn(x)/2 yields a current sheet. As we shall show next,
the current sheet in the ideal HKT problem develops from
the same ingredients, sheared initial field and quadratic
fluid mapping.

We check how the equilibrium solutions converge with
increasing spatial resolution, from 642 to 1282, 2562, and
5122. For solutions with higher resolution, we only show
the part in the vicinity of the neutral line, since they
converge very well away from it. In Fig. 2(a), we plot
the equilibrium fluid mapping normal to the neutral line
at y0 = 0, namely x(x0, 0). For the part the solutions
converge near x0 = 0, quadratic power law x ∼ x20 can
be observed. As discussed the 1D case above, together
with a sheared field B0y ∼ x0, such a mapping leads to a
magnetic field By = B0y/(∂x/∂x0) ∼ sgn(x0) (note that
J = (∂x/∂x0)(∂y/∂y0) at y0 = 0) which is discontinuous
at x0 = 0, as plotted in the inset of Fig. 2(a).

Despite the remarkable resemblance on the mechanism
of current sheet formation, there is a key distinction be-
tween the 1D collapse and the ideal HKT problem. For
the former, the plasma is infinitely compressible at the
neutral line, and the equilibrium fluid mapping is contin-
uous and differentiable. In fact, if there is guide field or
pressure, no matter how small, to supply finite compress-
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FIG. 2. Numerical solutions of x(x0, 0) (a), By(x, 0) (inset of
a) and ∂y/∂y0|(x0,0) (b) for different resolutions (dotted lines).
The converged parts agree with the results obtained with an
unconventional Grad-Shafranov solver (dashed lines). Near
the neutral line x(x0, 0) shows quadratic power law, By(x, 0)
becomes discontinuous, while ∂y/∂y0|(x0,0) shows x−1

0 power
law. The solutions do not converge for the few vertices closest
the neutral line. In the inset of (b), the final versus initial
distance to (0, 0.5) for the vertices on the neutral line, i. e.
0.5−y(0, y0) vs. 0.5−y0 for different resolutions are shown to
not converge.

ibility that prevents the Jacobian from reaching zero, the
topologically constrained equilibrium would be smooth
with no current sheet [28]. In the ideal HKT problem,
the plasma is (close to) incompressible. This is confirmed
by our numerical solutions which show J ≈ 1 + O(δ2).
As a result, the equilibrium fluid mapping turns out to
be non-differentiable.

At y0 = 0, the converged power law x ∼ x20 suggests
that ∂x/∂x0 ∼ x0 would vanish as x0 approaches 0. To
ensure incompressibility, there should be ∂y/∂y0 ∼ x−1

0
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which would diverge at x0 = 0. This is shown in Fig. 2(b).
Physically, this means the fluid elements on the neutral
line are infinitely compressed in the normal direction (x),
while infinitely stretched in the tangential direction (y).

However, it is improbable to numerically resolve a di-
verging x−1

0 power law at x0 = 0. As a result, the nu-
merical solutions x(x0, 0) and ∂y/∂y0|(x0,0) both deviate
from the converged power law for the few vertices closest
to the neutral line. This deviation does not disappear
with increasing resolution. From the inset of Fig. 2(b)
it can be seen that the vertices on the neutral line get
more packed at (0, 0.5) as the resolution increases, show-
ing that the solutions do not converge on the neutral
line. For solutions with higher resolution, we only show
the part closest to (0, 0.5).

These numerical results are benchmarked with the so-
lutions from a Grad-Shafranov (GS) solver. In this solver
the guide field is determined self-consistently from flux
conservation [19], unlike conventional ones where it is
prescribed as a flux function. This feature makes the
solver capable for studying the ideal HKT problem. As
shown in Fig. 2, the GS results are in excellent agree-
ment with the converged part of those obtained with the
Lagrangian scheme. Since the fluid mapping is inferred
rather than directly solved for, the GS solver is able to
achieve better agreement with the x−1

0 power law shown
in Fig. 2(b). However, it should be pointed out that the
applicability of the GS solver is limited to 2D problems
with nested flux surfaces, whereas the Lagrangian scheme
can be readily generalized to 3D problems with complex
magnetic topology.

Discussion. A most straightforward conclusion we can
draw from the numerical solutions to the ideal HKT
problem is that there exists no smooth equilibrium fluid
mapping. However, this does not necessarily conclude
whether there is genuine current singularity. In the con-
text of studying current sheet formation, one needs to
take the extra step and confirm that. This is exactly
what we have done in this paper for the ideal HKT prob-
lem, by identifying a singular current sheet from the nu-
merical solutions.

In previous studies that use similar Lagrangian relax-
ation methods [22–26, 28], current singularities are iden-
tified by examining whether the maximum current den-
sity diverges with increasing spatial resolution. However,
involving second-derivatives, the output of current den-
sity is generally far less reliable than that of the fluid
mapping, especially where the mesh is highly distorted.
Since any singularity in current density should trace back
to that in the more fundamental fluid mapping, we choose
to identify current singularities by examining the latter.
In this paper, the current sheet we find originates from
the quadratic fluid mapping normal to the neutral line.
In this sense, we consider our numerical evidence for cur-
rent sheet formation in 2D to be the strongest in the
extant literature.

It is also worthwhile to compare our result with the re-
cent work of Loizu et al. that also studies the ideal HKT
problem [10], but in the context of finding well-defined
ideal MHD equilibria with nested flux surfaces. For the
original HKT setup, they find no such equilibrium. Then
they introduce an alternate formulation to the problem,
which in our terminology is equivalent to making the ini-
tial magnetic field discontinuous, B0y = ε[x0+sgn(x0)α],
where α is a non-zero constant. Analytically, this would
make the linear solution (5) continuous, such that smooth
equilibrium fluid mapping becomes possible. We are able
to get converged numerical solutions as well when such
formulation is adopted. However, the results in this pa-
per differ from those of Ref. [10] in that we begin with a
smooth initial condition, rather than one with disconti-
nuity, so as to observe the emergence of a current sheet.

Zweibel and Li [14] studied the ideal HKT problem
as a variation of Parker’s original model which considers
a uniform field in 3D line-tied configuration [11]. Since
a sheared field can be realized from a uniform field by
sheared footpoint motion, it is more closely related to
Parker’s model than other variations that involve more
complicated field topology such as magnetic-nulls [24–
26]. The dynamics also stay simple since there are no
violent instabilities like the coalescence instability [15].
Now that we have confirmed that there indeed is a cur-
rent sheet in the 2D problem, naturally our next step is
to find out whether it survives in 3D line-tined configu-
ration. In fact, in Ref. [14] it is conjectured that current
sheets would not form in the 3D ideal HKT problem.

We acknowledge helpful discussions with S. Hudson,
C. Liu, J. Loizu, J. Squire, J. Stone, and E. Zweibel. This
research was supported by the U.S. Department of En-
ergy under Contract No. DE-AC02-09CH11466.
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