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A Predictive Model for the Greenwald Density Limit

Q. Teng,1 D.P. Brennan,1 L. Delgado-Aparicio,1 D.A. Gates,1 J. Swerdlow,1 and R.B. White1

1Plasma Physics Laboratory, Princeton University,

P.O. Box 451, Princeton, New Jersey 08543

(Dated: September 2, 2015)

Abstract

The Greenwald density limit is reproduced for the first time using a phenomenologically correct

model with experiment-relevant parameters. A simple model of equilibrium and local power bal-

ance inside the island during its evolution has been implemented to calculate the radiation-driven

thermo-resistive tearing mode growth and explain the density limit. Strong destabilization of the

tearing mode due to an imbalance of local Ohmic heating and radiative cooling in the island pre-

dicts the density limit within a few percent with reasonable assumptions for impurity densities.

Results are robust to a substantial variation in model parameters within the range of experiments.
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The tokamak density limit is a ubiquitous phenomenon found in all tokamak experiments.

The empirical scaling, known as the Greenwald density limit[1],

nG =
Ip

πa2
(1)

is well established, where nG is the line-averaged density in units of 1020 m−3, the plasma

current Ip is in MA and the minor radius a is in meters. Many attempts have been made

to explain the mechanism behind the density limit. Earlier works have correctly related the

density limit to the radiative collapse of the current profile and the emergence of magnetic

islands, though no previous work has explained the limit quantitatively using reasonable

parameters[2–4]. Recently D.A. Gates et. al. put forward a novel mechanism that explains

the phenomenon using a thermo-resistive tearing mode formalism[5, 6]. R. B. White et.

al. completed this model with a more profound understanding of tearing mode growth by

taking the crucial island asymmetry term into account[7]. D. P. Brennan et. al. reproduced

the exponential growth of the island, as predicted by the analytical cylindrical model, with a

3-D full MHD code DEBS[8]. Scanning the low- and high- Z impurity densities, L. Delgado-

Aparicio found that the radiative power density can be significantly enhanced while still

obtaining the experimental Zeff values well within its error bars [6, 9]. As pointed out by

Rebut et. al.[3], impurities in the magnetic island cool the island radiatively and counter the

Ohmic heating. The power balance sets the internal temperature profile of the island. As

plasma density is increased, the Ohmic heating typically decreases while the radiative cooling

increases. When radiation losses dominate, the temperature drop creates a negative current

perturbation inside the island. The current perturbation, coupled with the asymmetry of

the island, can cause substantial growth of the island and lead to disruption. The island

growth is very sensitive to radiative cooling and the cooling is sensitive to plasma density.

We will show that local power balance inside the island is a very accurate criterion for the

density limit.

In this work, we show that the thermo-resistive tearing mode model can explain the

density limit quantitatively. The scan of plasma density is from 2×1019 m−3 to 2×1020 m−3,

with the deviation from the density limit being only 3%. The stiffness of this model is also

shown by varying the parameters assumed in the model within the range of experiments.

This work is focused on island growth at the q = 2 surface, but the model is applicable to

the island on any rational surface. The magnetic island growth rate is calculated by the
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modified Rutherford equation (MRE) [7]

dw

dt
=

1

2

[
∆′(w) + ∆′δj(w) + ∆′A(w)

]
, (2)

where t is normalized to τR = µ0r
2
s/η, rs is the rational surface location normalized to minor

radius, w is island width normalized to minor radius. ∆′(w) is the classical term first derived

in [10]; ∆′δj(w) is the contribution of the current perturbation; ∆′A(w) is the contribution of

the island asymmetry. For small island width, approximate expressions of ∆′δj(w), ∆′A(w)

are derived [7],

∆′δj(w) = 16
〈δj1〉
ψ′′0

w

w2 + w2
F

, ∆′A(w) =
2j′(rx)

πψ′′0

w2

w2 + w2
F

AfF , (3)

where 〈δj1〉 is the current perturbation integrated over the island interior, ψ′′0 is the second

derivative of zeroth order helical flux, wF [11] is the Fitzpatrick critical island width ac-

counting for small island effect, rx is the location of x point, A = (rr−rx)/(rx−rl)−1 is the

island asymmetry, rl and rr are the left and right edges of the island at the maximum width,

and fF is the Fitzpatrick factor accounting for the degree of current profile flattening inside

the island (fF is chosen to be 1 in our calculation). As ψ′′0 and j′(rx) are always negative,

∆′δj(w) (for a negative 〈δj1〉) and ∆′A(w) are both destabilizing. The temperature profile

inside the island is determined by,

∂T

∂t
= ∇ · (χ⊥∇T ) + Pinput − Ploss, (4)

where χ⊥ is the cross field electron thermal diffusivity. As is shown in Ref. [7], in steady

state, this second order differential equation can be simplified to a first order differential

equation,

0 = χ⊥ψ
′′

0 (rs)
dT

dψ
+ Pinput − Ploss, (5)

where ψ is the helical flux. The boundary condition is set by the equilibrium temperature

at the separatrix of the island. Thus net power loss (input) in the island would cause a drop

(rise) in temperature. The temperature drop (rise) then causes a rise (drop) in resistivity

and a negative (positive) current perturbation, destabilizing (stabilizing) the island growth.

As has been shown in Ref. [7], a small amount of cooling power is enough to trigger a large

island leading to disruption.

To associate the local power balance criterion with the global Greenwald density limit,

a set of cylindrical tokamak-like equilibria is assumed. The current density profile is given
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by[12]

j(r) =
j0[

1 + (r/r0)2ν]1+1/ν
, (6)

and the safety factor profile is given by,

q(r) = q0

[
1 + (r/r0)2ν]1/ν , (7)

where j0 is the current density on the axis, r0 is the width of the current channel, ν is a

parameter controlling the peakedness of the current profile, q0 = 2Bφ/(µ0Rj0) is the safety

factor on the axis, Bφ is the toroidal magnetic field, R is the major radius. A parabolic

density profile is also assumed

ne = ne0

(
1−

(r
a

)2
)
, (8)

where ne0 the plasma density on the axis, a is the minor radius. In this simplified cylindrical

model, the equilibrium is set by three constraints. For each equilibrium, we choose a set

of q0, qedge and plasma density ne. The third parameter constraining the equilibrium ν

is calculated with an ad hoc relation between plasma density and internal inductance. In

cylindrical geometry, the internal inductance is defined as,

li =
2π
∫ a

0
B2
φ(r)rdr

πa2B2
φ(a)

(9)

= 2

[
1 +

(
a

r0

)2ν
]2/ν ∫ a

0

dr
r3

a4

[
1 +

(
r
r0

)2ν
]2/ν

, (10)

where r0 =
[(

qedge
q0

)ν
− 1
]−1/2ν

. In Figure 5 of Ref. [2], it is found experimentally (JET)

that when approaching the density limit, the internal inductance increases. The upper limit

of internal inductance at the density limit and the lower limit are fit by [5]

li,max = (0.12qedge · h+ 0.6) · h, (11)

li,min = (−0.08qedge · h+ 1.05) · h, (12)

where qedge = 2πa2Bφ(a)/(µ0RI) is the safety factor at the edge, h = (1 + κ2)/(2κ) ap-

proximates the modifications of internal inductance and safety factor due to elongation κ

(here κ=1.9). In order to simulate the equilibrium evolution with increasing plasma density,

we need the relation between internal inductance and plasma density which is not present
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in published literature. To mimic experiments we assume an ad hoc model to relate the

internal inductance and plasma density,

li(ne) =

 (li,max − li,min)ne/nG−0.7
0.3

+ li,min if ne/nG > 0.7

li,min if ne/nG ≤ 0.7
, (13)

An example of the ad hoc relation and four alternatives relations between internal inductance

and plasma density is shown in Fig. 1. Later in this work, it will be shown that the the

thermo-resistive model is robust to the internal inductance model. With q0, qedge and ne

chosen, ν and thus the equilibrium can be solved from Eq. (10-13).
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FIG. 1: The ad hoc and alternative models of internal inductance evolution with plasma density.

The solid line is the internal inductance model given by Eq. (11)-(13). The dashed lines are four

alternatives for comparison. In this case, qedge = 3.7.

Electron resistivity is calculated by η = E/j. Then the Spitzer resistivity formula is used

to calculate the electron temperature [13],

η =

√
2meZeffe

2lnΛ

12π3/2ε20T
3/2
e

× 1 + 1.198Zeff + 0.222Z2
eff

1 + 2.966Zeff + 0.753Z2
eff

, (14)

where the effective charge Zeff = (nD +
∑

Z nZ〈ZZ〉2)/ne is a function of Te, nD and nZ are

deuterium and impurity densities respectively, 〈ZZ〉 is the average charge state of impurities.

Fig. 2 shows the temperature at the rational surface decreases as plasma density approaches

the density limit. Auxiliary heating, which typically peaks in the center, is short-circuited

along the island’s separatrix and doesn’t influence the local power balance inside the island.
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FIG. 2: An example of the temperature at the rational surface evolution with plasma density

using the ad hoc model. The related parameters are the same as Fig. 4.

So the local power balance inside the island is dominated by Ohmic heating and radiative

cooling. The local input power density is simply given by,

Pinput = ηj2. (15)

Plasma is cooled through Bremsstrahlung continuum radiation as well as impurity line ra-

diation. Cyclotron radiation is ignored since a fusion plasma is normally optically thick for

this range of frequencies. The power loss is calculated by [9, 14],

Ploss = nenDLD(Te) +
∑
Z

nenZLZ(Te), (16)

where the cooling rate of deuterium LD = 5.35×10−37T
1/2
e [keV]W ·m3, and Lz is the cooling

rate of impurity species Z. It’s found that a small amount of high Z impurities can greatly

increase radiation power while not changing Zeff much. This is one of the reasons why this

thermo-resistive model is so robust.

Now consider a sequence of equilibria with increasing ne as well as fixed q0 and qedge. This

sequence is shown in Fig 3, which also shows the density limit as given by Eq. (11) and the

stability boundary of the tearing mode. As the density increases the current channel shrinks

(decreasing r0) and becomes more peaked (increasing ν). When the island is much smaller

than wF , the classical linear ∆
′

determines island growth. ∆′δj and ∆′A dominate only when

the island is sufficiently large. Thus our present cylindrical model requires a finite size seed

island, i.e. the island being linearly unstable or due to perturbation from other sources.
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The red line in Fig. 3 shows a characteristic equilibrium evolution path: when the plasma
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FIG. 3: A characteristic equilibrium evolution with increasing plasma density. a) The blue line:

the island stability boundary in equilibrium parameter space ν, r0, under which the island is

linearly unstable. b) The red line: a characteristic equilibrium evolution path with qedge = 3.7. c)

The black diamonds: equilibria with ne = 0.8, 0.9, 1.0, 1.1 respectively. d) The green line: the

density limit given by Eq. (11). In this case, q0 = 0.9.

density is increased towards the density limit, the island approaches the stability boundary.

To calculate experimentally relevant results, parameters are chosen as: major radius R =

1 meter, minor radius a = 0.33 meter, q0 = 0.9, qedge varied from 3.3 to 6, toroidal magnetic

field Bφ varied from 1 to 4 T, constant toroidal electric potential U = 1 V, carbon density

nc = 1%ne, iron density nFe = 1.1×10−4ne (referred to as the normalized impurity density in

this paper) and cross field electron thermal diffusivity inside the island χ⊥ = 0.13 m2/s[15].

Here iron represents the effect of all medium- to high-Z impurities; thus the density is larger

than actual iron density in experiments. Impurity densities are assumed to be proportional

to plasma density which may not necessarily be true. But it will be shown later in this work

that the dependence of the density limit on impurities is weak. The reduction of χ⊥ is due

to reduced turbulent transport inside the island.

A characteristic local power balance inside the island with increasing plasma density

under the parameters above except for qedge = 3.7, Bφ = 3 T is shown in Fig. 4. As ne

increases, the current channel shrinks thus j at the rational surface decreases, hence Pinput

drops. Meanwhile, Ploss is roughly proportional to n2
e and increases. So the net power is
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positive before reaching the density limit thereby suppressing the island growth. And it’s

balanced close to the density limit. When plasma density is above the density limit the net

power is negative thus enhancing the island growth.
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FIG. 4: An example of power balance with increasing plasma density using the ad hoc li model

and the normalized impurity density. a) The blue line: the radiative cooling. b) The red line: the

Ohmic heating. c) The light green line: the net input power.

In order to predict the density limit, a criterion for disruption has been chosen to be island

width growing above 20% of the minor radius. Results are insensitive to the choice of the

threshold island width because once island cooling occurs the island grows rapidly. A scan

of the plasma density is performed using the parameters mentioned above and the result is

shown in Fig. 5. Our choice of parameters covers the plasma density from 2 × 1019 m−3

to 2 × 1020 m−3, which includes the operation regime of most tokamaks. The local power

balance criterion (the blue triangles) and island width criterion (the blue squares) both

agree with the Greenwald density limit within 3%. The very sharp limit is determined

by the strong dependence of radiative loss on plasma density and the strong sensitivity of

island growth to local power balance. This explains why the Greenwald density limit is such

a robust phenomenon found across different tokamaks. Every tokamak includes impurities

causing radiative cooling and leading to disruption at some plasma density. The minimum

irreducible amount of impurities determines the upper limit of plasma density at which a

tokamak can operate.

The impact of impurity densities on the density limit is isolated by fixing the internal
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FIG. 5: Scans of the density limit. The squares are the density limit from the island width

criterion. The triangles are from the local power balance criterion. a) The blue points are

calculated with the normalized impurity density and the ad hoc li model given by Eq. (11)-(13).

b) The red points: 1.5 times the normalized impurity density. c) The light green points: 0.5 times

the normalized impurity density. d, e, f, g) The black, purple, yellow, green points: Alt 1, Alt 2,

Alt 3, Alt 4 li models.

inductance, shown in Fig. 6. In this case, the same parameters as above are used except for

qedge = 4, Bφ = 3 T. Changing impurity densities by an order of magnitude, the density limit

varies by no more than 2.5 times. This is because when impurity densities are increased,

Zeff increases and Te increases as η is fixed. The cooling rate LZ then decreases. This

effect is canceling the impact of impurity densities on radiation power. It’s the same when

impurity densities are decreased. Thus the dependence of the power balance as well as the

density limit on impurity densities is weaker than n0.5
Z . This leads to a universal density

limit scaling law spanning different tokamaks.

The stiffness of this thermo-resistive tearing mode formalism is checked by varying the

parameters we use. As shown in Fig. 5, the impurity densities is varied by 50%, and four

alternative internal inductance models are tested. Even in the most extreme cases, these

models still predict the density limit within 15% of deviation. This justifies the assumptions

of the impurity density and the ad hoc internal inductance model in this formalism by

showing its insensitivity to these assumptions.

In this work, we reproduced the Greenwald density limit with a deviation of ∼ 3% using
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FIG. 6: Impact of impurity densities on the density limit. Here we use the Alt 3 constant

internal inductance model. N represents the ratio of nc and nFe over their values in the

normalized impurities densities case.

representative experimental parameters. The thermo-resistive tearing mode model predicts

the robust onset of a 2/1 tearing mode, as observed in experiments. The power balance

criterion predicted by the model is a very accurate criterion for the density limit. The

robustness of this model is proved by its insensitivity to the parameters we used. However,

this model is still simplified and limited in many aspects. Future publications will explore

the effects of toroidal geometry, nonlinear mode coupling and turbulence effects on particle,

heat and impurity transport. The higher order islands may grow first from radiative cooling

since they are closer to the impurity sources and are in a low temperature region of the

plasma. The mechanism for rapid exponential island growth presented in this work should

be robust given any island of sufficient size, thus leading to an inward propagating collapse

and disruption.
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