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Determination of Broken KAM Surfaces for Particle Orbits in

Toroidal Confinement systems

R. B. White1

1Plasma Physics Laboratory, Princeton University,

P.O.Box 451, Princeton, New Jersey 08543

Abstract

The destruction of KAM surfaces in a Hamiltonian system is an important topic in nonlinear

dynamics, and in particular in the theory of particle orbits in toroidal magnetic confinement sys-

tems. Analytic models for transport due to mode-particle resonances are not sufficiently correct to

give the effect of these resonances on transport. In this paper we compare three different methods

for the detection of the loss of stability of orbits in the dynamics of charged particles in a toroidal

magnetic confinement device in the presence of time dependent magnetic perturbations.

PACS numbers: 52.25.Fi, 52.25.Gj
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I. INTRODUCTION

Only through resonance can orbits be significantly modified in an integrable conservative

dynamical system. Without resonance the trajectories in phase space occupy Kolmogorov

Arnold Moser[1] (KAM) surfaces that prohibit diffusion without particle collisons, and in the

presence of collisions only relatively slow neoclassical diffusion results. Isolated resonances

modify particle distributions by phase mixing in islands and overlapping resonances allow

stochastic transport. Often individual perturbations of an integrable system are so small

that the system is very far from Chirikov overlap, and thus the destruction of the last

KAM surface is not a good paradigm for the examination of diffusive transport. Even if

nearby resonances overlap the random phase approximation is not well suited to describe

the transport in many cases. It can be necessary to understand the domains of broken KAM

surfaces for each perturbation separarately, and to find the resulting transport due to the

action of all modes together. In this work we compare three methods of determining the

stability of orbits in a Hamiltonian system, the method of frequency analysis[2–4], that of

the fast Lyapunov indicator[5] (FLI) and that of phase vector rotation[6, 7].

Although the methods apply to any conservative Hamiltonian system, we consider here

the dynamics of charged particles in an axisymetric toroidal magnetic confinement system,

perturbed by time dependent magnetohydrodynamic (MHD) modes of a given spectrum.

As well as providing an interesting Hamiltonian system of two variables, it is of important

practical interest in the pursuit of controlled thermonuclear fusion. In the absense of pertur-

bations the system is integrable, the orbits forming a phase space of invariant tori with two

degrees of freedom, corresponding to poloidal and toroidal motion in a topological torus.

Typically in experiments several small amplitude modes are present, each with a different

frequency and toroidal and poloidal mode numbers[8]. The modes are driven unstable by

the free energy of a high energy particle distribution such as fusion produced alpha particles

and thus are expected in any magnetic fusion experiment. Although Poincaré sections can

be made for each mode individually, such plots are often well below Chirikov threshold[9],

individual modes not producing diffusion because of the Nekhoroshev theorem[10] and only

the synergistic action of the collection of modes leads to particle transport[6, 7].

Using the guiding center drift approximation a particle orbit in an axisymmetric toroidal

system is completely described by the values of the toroidal canonical momentum Pζ , the
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energy E and the magnetic moment µ. Particle spatial coordinates are given by ψp, θ, ζ,

respectively the poloidal flux coordinate, a label of the unperturbed topologically toroidal

flux surfaces, and the poloidal and toroidal angles. The magnetic field is given by

~B = g∇ζ + I∇θ + δ∇ψp. (1)

where g(ψp), I(ψp) and δ(ψp, θ) are functions determining the form of the equilibrium.

The toroidal field strength is given by g, the poloidal field by I, and δ is related to the

nonorthogonality of the coordinate system. The guiding center Hamiltonian is

H = ρ2

‖B
2/2 + µB + Φ, (2)

where ρ‖ = v‖/B is the normalized parallel velocity, v‖ is the particle velocity parallel to the

magnetic field, µ is the magnetic moment, and Φ the electric potential. The field magnitude

B and the potential may be functions of ψp, θ and also ζ if axisymmetry is broken. We

consider perturbations with the frequency well below the cyclotron frequency and ignore

particle collisions, so µ is conserved and may be considered a constant parameter. The

construction of equilibrium fields involves the solution of the Grad-Shafranov equation and

is well known. The equilibrium used for most of this paper is a simple circular large aspect

ratio equilibrium with the field line helicity q = dθ/dζ quadratic in the minor radius and

with q on axis of 0.8 and q = 4 at the plasma edge. The major radius is 100 cm, the minor

radius 25 cm and the magnetic field on axis is 20 kG. The details of the equilibrium and the

high energy particle distribution determine the mode spectrum. In the following we will use

a simple ad hoc mode spectrum, sufficient to display the properties of each method.

Canonical momenta are

Pζ = gρ‖ − ψp, Pθ = ψ + ρ‖I, (3)

where ψ is the toroidal flux, with dψ/dψp = q(ψp), the field line helicity. The equations of

motion in Hamiltonian form are

θ̇ =
∂H

∂Pθ

Ṗθ = −
∂H

∂θ

ζ̇ =
∂H

∂Pζ

Ṗζ = −
∂H

∂ζ
. (4)

Hamiltonian equations for advancing particle positions in time, also in the presence of time

dependent flute-like perturbations of the form δ ~B = ∇ × α~B with ~B the equilibrium field
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and α =
∑

m,n αm,n(ψp)sin(nζ −mθ−ωnt) can easily be derived [11]. Since the equilibrium

is axisymmetric, the toroidal mode number n is well defined, so the mode frequency ωn

depends only on n. Each mode normally possesses several poloidal harmonics given by m.

The eigenfunctions of the perturbation αmn(ψp) have the dimensions of length, and are zero

at the axis and the plasma edge. We will cite amplitudes giving the maximum value in

terms of the major radius R. The guiding center equations including MHD perturbations

are realized using a fourth order Runge-Kutta algorithm in the code ORBIT[12]. The units

are conveniently defined by the on-axis cyclotron frequency ω0 (time) and the major radius

R (distance). Another characteristic time is the toroidal transit time for a particle of a

particular energy and µ = 0 at the magnetic axis.

The variables E and Pζ are constant in an unperturbed system, but Pζ and Pθ are not

action variables so dθ/dt and dζ/dt are not constant in time. However, in an axisymmetric

system, without perturbations, the system is integrable, and orbits close in the poloidal

plane in a time Tθ, which depends on the values of E and Pζ and thus because of the

toroidal precession, frequencies of the system are given by ωθ = 2π/Tθ, and ωζ = ∆ζ/Tθ,

with ∆ζ the toroidal motion of the orbit in time Tθ. One can also use the the helicity of a

particle orbit in the mode frame, h = (∆ζ − ωnt/n)/∆θ, where ∆ζ and ∆θ are the toroidal

and poloidal angles traversed in time t, and the time is taken to be large compared to Tθ,

useful because it must be equal to a low order rational for a resonance to occur. An orbit

closing upon itself after a finite number of poloidal and toroidal transits is a necessary but

not sufficient condition for resonance to occur. In Fig. 1 is shown a mapping of points

in the Pζ , E plane describing confined orbits into the plane of ωθ, ωζ , demonstrating the

topological equivalance of these variables to action angle variables within this range. The

energy is in units of keV . The frequencies are normalized to the toroidal transit frequency

of an on-axis particle with energy 12 KeV and µ = 0. In the equilibrium used they have a

value of 10 kHz. The introduction of symmetry breaking perturbations destroys the one to

one character of the map from the Pζ , E plane into the plane of ωθ, ωζ , normally producing

folds along singular surfaces.

In section II we discuss kinetic Poincaré plots as a means of examining the destruction

of KAM surfaces and give two cases to be examined with the three methods. Section III

considers the method of frequency analysis, section IV, the fast Lyapunov indicator, first

introduced in the analysis of the stability of the solar system, and section V that of phase

4



0 0.5 1

10

20

30

40

50

FIG. 1: Mapping of the Pζ , E plane into the frequency plane, showing that the variables Pζ , E

are topologically equivalent to action angle variables.

vector rotation. Conclusions are given in section VI.

II. KINETIC POINCARÉ PLOT

We are interested in the case of the interaction of particles of arbitrary pitch with low

amplitude modes of nonzero frequency. It is fairly easy to assess the effect of a particular

mode of a single n, ω, but possibly with many poloidal harmonics m, on a particle distribu-

tion by examining a Poincaré plot for a particular choice of either co-moving and trapped

or of counter-moving particles, which we refer to as a kinetic Poincaré plot to distinguish it

from a plot of the magnetic field. Points are plotted in the poloidal cross section whenever

nζ − ωnt = 2πk with k integer.

The toroidal motion then gives successive Poincaré points in the poloidal cross section

ψp, θ, or better, since Pζ and E are constant in the absence of perturbations, the Pζ , θ plane

or the E, θ plane. Pζ , E, and ψp are simply related for a mode of a single frequency and

toroidal mode number. Individual modes produce islands in the phase space of the particle

orbits, which through phase mixing produce local flattening of the particle distribution. In

addition, overlap of these islands, the Chirikov criterion, leads to stochastic transport of
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particles[9, 13]. Such a plot shows the canonical division of orbits into those following good

KAM surfaces, isolated islands bounded by separatrices, and stochastic domains.

To obtain a kinetic Poincaré plot the orbits must be initiated with a fixed value of µ

and ωnPζ − nE = c. Here E − ωnPζ/n is simply the particle energy in the frame of the

rotating mode and is conserved in the presence of this mode, an orbit moving in the Pζ , E

plane only along a line with this slope. A plot of orbits with fixed µ and energy E does not

give a coherent plot; it contains intersecting surfaces, since it is really an overlaying of plots

with different values of c. Thus a plot can be obtained only for a perturbation consisting

of modes with a single value of ω/n, typically meaning only a single frequency and n value,

although it may contain many poloidal harmonics m.

Orbits in a general toroidal equilibrium are classified according to whether they are

poloidally trapped or passing, whether they circle the magnetic axis, and the direction in

which they circle toroidally, dividing the space of Pζ , E, µ into distinct domains[11]. In the

following we will restrict ourselves for simplicity to a single domain, that of co-moving passing

orbits. We take a simple example, consisting of a perturbation with a single harmonic, with

m = 6, n = 5, a frequency of 10 kHz, and a simple global radial structure for α. We will

examine first KAM stability along a single line in the Pζ , E, µ volume, with µB0 = 5keV ,

ωnPζ − nE = c and the energy chosen to be 12 keV at the plasma edge, ψp = ψw. This

simple example will serve as a test case for the three methods of determining the breaking

of KAM surfaces in the space of particle orbits.

The resulting Poincaré maps are shown in Fig. 2, spanning almost the full domain of

confined orbits along this line in the Pζ , E, µ volume, determined by the value of Pζ .

Principal island chains are seen at the resonances given by sin(m′θ − nζ) with, starting

from the right, m′/n = 6/5, 7/5, 8/5, 9/5, 10/5, and 11/5. The range of q covered does not

include q = 1, otherwise there would also be visible a m′/n = 5/5 island on the far right. In

between these island chains there are also higher order Fibonacci sequence chains, obtained

from modes m/n and m′/n′ through (m + m′)/(n + n′) not always visible without using

higher resolution Poincaré plots. Clearly seen is only the 19/10 resonance between 10/5 and

9/5. The quantity m′ is used to distinguish the number of islands in the chain from the

poloidal mode number m of the perturbation, m = 6.

This plot illustrates the difficulty in analytically predicting resonance location and

strength in this system. Conventional wisdom has it that a perturbation with poloidal
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FIG. 2: Kinetic Poincaré plot showing all confined orbits with ωnPζ − nE = c, with energy at

the plasma edge of 12 keV, and µB0 = 5keV , and with a perturbation of a single harmonic with

m/n = 6/5, frequency of 10 kHz, α = 5 × 10−5R.

and toroidal mode numbers m/n will produce resonances due to the m = 1 character of the

orbital shift due to drift motion with islands at m′/n = (m± 1)/n. We see that the actual

situation is much more complex, with m′ ranging from 6 to 11 even with the perturbation

far from Chirikov overlap, and with these resonance islands all practically of the same order

in size. Resonance locations can be found by numerical integral methods, [14],[15],[16], but

while these methods give the location, they do not provide the resonance width and thus

the extent of the effect of the mode on transport.

The second case, shown in Fig. 3 has the same perturbation but a larger amplitude, by a

factor of 8, producing some chaotic domains with remnant islands imbedded in them. The

perturbations used are smooth and global radially, not localized, so they overlap everywhere.

Although some good KAM surfaces still exist, transport in such a system is very complicated.

In addition, as has been well demonstrated in simple systems[17], transport even well above

the breaking of the last KAM surface involves many long time correlations, and is not well

described by a random phase approximation. The transport is characterized by Levy flights,

and can be of the form r2 ∼ tβ with β < 1 subdiffusive or β > 1 superdiffusive[18]. However

in the present case the domains of broken KAM surfaces are too small to allow significant
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FIG. 3: Kinetic Poincaré plot showing all confined orbits with ωnPζ−nE = c, energy at the plasma

edge of 12 keV, and µB0 = 5keV , α = 4 × 10−4R.

long time averages. Probably the only useful measure is the time necessary for the flattening

of a distribution in the domain, given by the island rotation frequency.

These examples are sufficient for the examination of methods for the determination of

broken KAM surfaces, containing resonant islands of various size, regions of unperturbed

surfaces, regions with highly perturbed surfaces with no islands, and stochastic domains. A

Poincaré plot is useful for a single line in the Pζ , E, µ volume, but not useful to characterize

points in the volume according to whether they belong to good KAM surfaces or are broken,

as it depends on visual inspection and gives information along one line at a time.

Both the method of frequency analysis and FLI given in the references had the luxury

of knowing the phases of the O-points in the Poincaré plots of the system, and therefore

being able to choose initial conditions for orbits so that they intersected the O-points at

the resonant values of the action variable. This provides for a very clear demarcation of a

resonance and of the Arnold web because it is impossible to miss the center of the resonance.

This is not the case in general, where one cannot know these phases, as is clear from the plot

of the resonances in Figs. 2 and 3. Higher order Fibonacci resonances will not in general

appear at the same phases as the principal ones. We compensate for this lack of knowledge

where possible by initiating orbits with different phase values, to maximize the probability
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FIG. 4: Frequency analysis, with different phases between the node and the particle trajectory.

The width of the parameter range in which h is constant gives the width of the island at the point

of intersection of the orbit with the mode.

of intersecting the resonance.

III. FREQUENCY ANALYSIS

The works of Laskar[2–4] discuss various averaging means of obtaining frequencies asso-

ciated with orbits. Since we are interested in resonances, the orbit helicity h is a quantity

which is heuristically useful. Orbits are initiated along a single line in the Pζ , E, µ volume,

with µB0 = 5keV , ωnPζ − nE = c and the energy chosen to be 12 keV at the plasma edge,

ψp = ψw, ie the same set of orbits used for the kinetic Poincaré plots shown above. If an

orbit is followed for a sufficient length of time the bounce motion of a particle trapped in

an island is negligible, and the observed helicity of the orbit is simply the helicity of the

resonance. The interior of an island thus produces a range of parameter values in which h is

constant. At the edges of this domain there is a jump in the value of h and hence an easily

observed singularity in the second derivative. In our case µ is fixed and the initial value of

Pζ characterizes the orbit. We typically used a total of one thousand orbits, spanning the

range of confined orbits in the system used in Fig. 2, and a time of one thousand transits.
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FIG. 5: Frequency plot for poloidal rotation in the presence of the perturbation. Shown is the

helicity h vs Pζ with the perturbation shown in Fig. 2, with α = 5 × 10−5R. The red lines are at

helicities of n/m′ = 5/6, 5/7, 5/8, 5/9, 5/10, 5/11, in excellent agreement with the flat domains

of the function h.

The results of this method depend on the phase between the orbit trajectory and the

mode phase. In Fig. 4 is shown how the results vary for a single resonance, with plots made

with different phases between orbit and mode. If the trajectory intersects the mode at an

elliptic point the range of constant h is as broad as the island width, but if it intersects

the island at a hyperbolic point it has zero width. For a given phase the plot of helicity

is approximately symmetric about the rational surface. The phase dependent island width

shown by this method complicates the analysis if the mode phases are not known or if they

vary from resonance to resonance, giving widths of regions with constant h that do not

represent the maximum island width for all resonances.

A. Case I

In Figs. 5, 6 are shown the results for the same orbits shown in Fig. 2. Following

Laskar, we varied the number of orbits used, and hence the spacing in Pζ as well as the

the time step in the integration process to obtain good results. Flat domains of h are
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FIG. 6: Frequency plot for poloidal rotation in the presence of the perturbation. Shown is the

numerical second derivative δδh with the perturbation shown in Fig. 2, with α = 5 × 10−5R..

seen for the major island chains, and the numerical second derivative of the helicity [δδh =

h(k+1)+h(k− 1)− 2h(k)] clearly indicate the edges of major island chains as well as three

of the first order Fibonacci chains. The red lines in Fig. 5 are at helicities of n/m′ = 5/6,

5/7, 5/8, 5/9, 5/10, 5/11, in excellent agreement with the flat domains of the function h. In

the domains of good unperturbed KAM surfaces h(Pζ) is seen to be very smooth. The only

drawback of this method is that the flat regions of h do not give the full island width unless

the orbit happens to intersect the island at an elliptic point. We have managed to choose a

phase so that the islands are well indicated, so the widths are apparent. Note that the same

phase must be used for all orbits, using random values of phase for each point would make

h practically a random function of Pζ .

B. Case II

In Figs. 7, 8 are shown the results for the same orbits shown in Fig. 3, with α = 4×10−4R.

In this plot h is flat at most of the remaining imbedded islands and also at higher order

Fibonacci islands in between them. Island 8/5 is missing although present in the Poincaré

plot, only an extended chaotic domain is seen. The numerical second derivative of the
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FIG. 7: Frequency plot for helicity h in the presence of the perturbation. Shown is the helicity h

vs Pζ with the perturbation shown in Fig. 3. α = 4 × 10−4R.

helicity [δδh = h(k + 1) + h(k − 1) − 2h(k)] shows the remaining large islands as well as

Fibonacci islands in between each of the principal resonances, with large resonances at 10/13

and 10/19. There are three clear domains of chaos visible, near Pζ/ψw = .05, from 0.1 to

0.2, and from 0.24 to 0.27, surrounding the remaining isolated islands.

IV. FAST LYAPUNOV INDICATOR

The fast Lyapunov indicator (FLI) is another means to determine the destabilization of

orbits[5]. Consider two very nearby orbits and examine the distance d between them in the

Pζ , θ plane. The normal Lyapunov is the limit of ln(d)/t for large time t. The FLI is the

value λ = ln(d) at fixed time t, which keeps track of the topological differences between

resonant regular motion and KAM tori. Using the usual Lyapunov number, for t→ ∞ both

domains give zero, but at finite time the linear dependence of d on time for points at good

KAM surfaces distinguishes these points from island interiors, where d remains relatively

constant. To account for the fact that the phase location of the islands is unknown, several

different orbit pairs were used for each value of Pζ with different phase with respect to the

mode and the minimum value λ taken for each Pζ . Thus the value of λ is given with the
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FIG. 8: Frequency plot for helicity h in the presence of the perturbation. Shown is the numerical

second derivative δδh with the perturbation shown in Fig. 3. α = 4 × 10−4R.

inital conditions of the orbit closest in phase to being at an island elliptic point. The time

t was chosen to optimize the resolution of the calculation. The pair separation was chosen

to be dψp = 2 × 10−4ψw, limiting the detection of islands to those larger than this.

A. Case I

Shown in Fig. 9 is the fast Lyapunov indicator for the perturbation shown in Fig. 2.

Five orbit pairs were initiated at each value of Pζ , and the minimum value of the separation

betwen the points taken for λ. We find the distance between the points d to be a more

sensative indicator than the logarithm of d. The islands are seen as regions where the

indicator is near zero. Domains with good KAM surfaces show linear separation of the orbit

pairs in time and thus nonzero λ. This method roughly indicates the width of the islands,

but not exactly because there is also some spread of orbit pairs located inside an island due

to relative rotation rates about the island elliptic point.
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FIG. 9: The Fast Lyapunov indicator for case I

B. Case II

Shown in Fig. 10 is the fast Lyapunov indicator for the perturbation shown in Fig. 3.

This indicator gives only a very qualitative indication of the stochastic domains and remnant

islands. One can roughly make out regions where the remnant islands exist, but with very

limited accuracy.

V. PHASE VECTOR ROTATION

Another method for numerically determining the existence of or the destruction of good

KAM surfaces can be obtained using the method of phase vector rotation[6, 7]. Consider

following two orbits located nearby one another. Examine a Poincaré section in Pζ , θ and

define the angle χ to give the orientation of the vector joining them in this plane. If good

KAM surfaces exist χ can change by at most an angle of π, due to their relative velocity in

the angular coordinate.

However two orbits within an island rotate around one another with χ increasing with

the rotation about the island, also referred to as the bounce frequency of a particle trapped

in the wave, which increases with the size of the island. The rate of change of χ is a function

of distance from the island O-point, dropping to zero at the separatrix. Pairs of orbits are

14



FIG. 10: The Fast Lyapunov indicator for case II

FIG. 11: The Pζ , θ plane showing a single m = 1 resonance island, and vectors between nearby

points on good KAM surfaces and in the island. On nearby KAM surfaces the phase vector can

rotate by at most π, whereas a phase vector in an island rotates through 2π with a period given

by the trapping bounce time. (Reprinted from [6])

15



illustrated in Fig. 11, showing vectors between the nearby points in the Pζ , θ plane on good

KAM surfaces and in a resonance.

Thus we determine the nonexistence of good KAM surfaces by examining nearby pairs

of orbits, looking for phase vector rotation χ exceeding π. Because local perturbation of

orbits can cause χ to excede π by some small amount, whereas χ continues to rotate in

an unbounded manner in an island, we record the time at which |χ| = 2π, thus giving the

rotation frequency ωχ as a function of the initial position of the orbit. The pair separation

was chosen to be dψp = 2 × 10−4ψw, limiting the detection of islands to those larger than

this, and the time used was 500 toroidal transit times, making the minimum observable

frequency to be ωχ = 2 × 10−3, normalized to the toroidal transit frequency. The results

depend on the phase relation of the orbit with respect to the mode, but using this method

one can simply launch a few pairs of orbits at a given value of Pζ with different phases and

select the maximum value of ωχ, corresponding to the pair which is closest in phase to the

island elliptic point.

A. Case I

Results are shown in Fig. 12 for a perturbation amplitude of α = 5×10−5R. This method

clearly indicates the presence of phase space islands. In addition to the major resonances

seen in Fig. 2 the first order Fibonacci resonances, 13/10, 15/10, 17/10, and 19/10 are

all visible. The magnitude of the phase vector rotation ωχ gives the time scale for phase

mixing of orbits trapped inside the island. Note that for larger islands one even obtains the

internal profile of the rotation frequency. To achieve this several orbit pairs are necessary,

with different phases with respect to the mode, as was used for the FLI. Note that the

phase vector rotation and the FLI are obtained with the same calculation. 2000 orbits, 500

transits.

B. Case II

Results are shown in Fig. 13 for the larger perturbation. The major remnant islands

are seen, and it is also possible to see overlap of these chains by noting that there is no

region in which ωχ = 0 in between some chains, indicating that the island is surrounded
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FIG. 12: Vector rotation plot showing rotation frequency vs Pζ . The frequency is in units of the

on-axis transit frequency, largest islands exhibiting the fastest phase mixing. Mode amplitude is

α = 5 × 10−5R.

by a stochastic sea, with no intervening KAM surfaces. Note that the frequencies for phase

mixing are three times as rapid as in the lower amplitude case shown in Fig. 12, scaling as

the square root of the perturbation amplitude. It is interesting that the stochastic domains

do not produce more rapid phase vector rotation than the coherent rotation present in

the remnant island centers. Taking the maximum values of ωχ over the mode-orbit phase

relations always clearly shows the centers. The edge of the remnant islands can even be

inferred by the minimum values of ωχ surounding it, where overlap with another island

chain and chaos intervenes. Again for these calculations 1000 orbits were followed for 500

transits.

The Arnold web consists of resonances in the plane of the action variables. It is an open

set, dense but with small measure if the perturbations are small. In many cases the resonant

lines form complicated web like patterns in this plane. Arnold diffusion is diffusive motion

along a resonance line this plane.

Examples of Arnold web construction for the methods of frequency determination and

FLI are given in the cited references, so we will not reproduce these methods here. The

analysis of the single line in the Pζ , E plane given in the preceding sections is sufficient
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FIG. 13: Vector rotation plot showing rotation frequency vs Pζ for a perturbation amplitude of

α = 4×10−4R. The frequency is in units of the on-axis transit frequency, largest islands exhibiting

the fastest phase mixing.

to judge the capabilities and shortcomings of the methods without examining the whole

plane of the Arnold web. In the system under study the Arnold web is simpler than in

many Hamiltonian systems, consisting almost entirely of nonintersecting lines of resonances,

occasionally broken in intervals. However there are often several perturbations present of

different frequencies, which thus cannot be observed in a single Poincaré plot, and the

action of these modes together produces significant chaotic transport. In the present work

the resonances are always observed to be nearly vertical in the plane of Pζ , E, almost parallel

to the bounding surfaces, given on the left by contact with the plasma boundary, and on the

right by the magnetic axis. No resonance lines with nearly constant energy E are observed.

Thus in the particular system of particle orbits in a toroidal confinement device, the Arnold

web does not lead to the possibility of significant transport. It could provide some movement

in the energy variable, but nothing leading to paticle loss or profile flattening.
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VI. CONCLUSION

Resonance is the only means by which modes can modify particle distributions, through

Landau mixing and stochastic motion due to the overlap of resonances. Thus the deter-

mination of the location and extent of resonances due to perturbations is important for

understanding induced transport. Three methods of determining the destruction of KAM

surfaces were compared, that of frequency analysis, that of the fast Lyapunov incicator, and

that of phase vector rotation. The method of phase vector rotation appears to be a more

efficient and reliable means of finding resonances. It contains more information, giving the

extent of island structures, even when immersed in a stochastic sea, and also gives a measure

of the mixing time within the islands. The mixing time, given by 2π/f directly gives the

time scale for profile flattening within the domain of broken KAM surfaces, and thus pro-

vides transport information even when other quantitative measures such as diffusion rates

are lacking.
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