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Electromotive force due to magnetohydrodynamic fluctuatims in sheared rotating turbulence

J. Squiré and A. Bhattacharjee
Max PlancikPrinceton Center for Plasma Physics, Department of Astysfaal Sciences
and Princeton Plasma Physics Laboratory, Princeton Ursitgr Princeton, NJ 08543, USA

This article presents a calculation of the mean electraradtirce arising from general small-scale magneto-
hydrodynamical turbulence, within the framework of thes®t:order correlation approximation. With the goal
of improving understanding of the accretion disk dynanffeas arising through small-scale magnetic fluctu-
ations, velocity gradients, density and turbulence gitation, and rotation, are included. The primary result,
which supplements numerical findings, is that &lddagonal turbulent resistivity due taagnetic fluctuations
can produce large-scale dynamo action — the magnetic amalafgghe “shear-current’féect. In addition, con-
sideration ofx effects in the stratified regions of disks gives the puzzlinglteékat there is no strong prediction
for a sign ofa, since the fects due to kinetic and magnetic fluctuations, as well asetldos to shear and
rotation, are each of opposing signs and tend to cancel éheh o

I. INTRODUCTION these fects can be important in some way, and this will also
be the case in a wide variety of other astrophysical sceqario

Explaining the amplification of magnetic fields with cor- Of particular note is the presence of homogenous magnetic
relation lengths larger than the underlying fluid motions ha fluctuations, which have not been included in most previous
proven to be a fascinating and rich problem in astrophysicgheoretical mean-field dynamo investigations (but seeexer
From the early days of mean-field dynamo theory it has beeAMPle, Refs. [7-10]). These should be generically present,

well known that the presence of fluid helicity enables such beat @ similar level to velocity fluctuations, in magnetohyaire
havior [1, 2]. This is the so-called effect, where the small- namic (MHD) turbulence above moderate Reynolds numbers,

scale turbulence creates an electromotive force (EMF) due to small-scale dynamo action. While SOCA itself cannot
capture the small-scale dynamo, by assuming the presence of
E=(uxb the magnetic fluctuations we can compute expected changes
to the EMF, in particular whether a small-scale magnetidfiel
that is proportional to a large-scale magnetic figd= oB, might suppress, or enhance, kinematic dynaffiects.
leading to exponential instability in the kinematic regime The most important result presented here is an analytic
While this simpleca effect is now well established and reg- confirmation of our numerical work related to the “mag-
ularly observed in simulations, a variety of complicatiexs  netic shear-currentfiect” [11, 12]. Generically, this type of
ist in explaining observations. For one, in some situatiens dynamo is non-helical, driven by the interaction of afft o
for instance, the inner regions of accretion disks — there igliagonal turbulent resistivity with a mean shear flow [13-16
no reason to expect a helical flow and symmetry argumentSome controversy has surrounded the kinematic version of
demonstrate that = 0, yet dynamo action is still observed this dfect, since following early work [14—16], others found
in numerical experiments [3, 4]. Less obviously, nonlinearthat the crucial transport céicientny, had the incorrect sign
effects caused by the fast build up of small-scale fields camo promote dynamo action [17-20]. Here, we show that the
“quench”a dynamos before significant mean-field amplitudesmagnetic version of thisfeect is much more robust and of the
are reached [5, 6]. Since théfectiveness of this quench- correct sign — not only is its magnitude substantially large
ing increases with the Reynolds numbers, it remains uncleahan the kinematic féect, but a variety of calculation meth-
whether mean-field theory is able to explain the observed fielods agree on this: SOCA, the spectradpproximation [8],
amplitudes in the nearly dissipation-free plasmas prexate  quasi-linear theory [11, 20], and perturbative shearingeva
astrophysical environments. For these reasons, itisastie)g  calculations [21]. With this array of other calculationse w
to consider other possibilities for mean-field dynamo axctio feel that SOCA calculations are important, not because they
in particular the &ects of velocity gradients and strong ho- should be more accurate than other methods, but because they
mogenous magnetic fluctuations. are simple, have a well-understood range of validity, ard al
In this paper, we present a very general theoretical examindow exploration of expressions across a range of parameters
tion of different mean-field dynamdfects, within the second- (e.g., magnetic Prandtl number). This final consideration i
order correlation approximation (SOCA). In particular,iwe  notable since it provides the researcher with some indioati
clude the &ects of specified large-scale velocity gradients,of the robustness of a giverifect, for instance by noting if
rotation, density and turbulence stratification, helicéipd a  the sign a given transport cieient is particularly sensitive to
bath of strong small-scale magnetic fluctuations (treated islight changes in parameters. Finally, all of our resulisteel
the same way as the velocity fluctuations). For our primaryto nyx have been confirmed through direct numerical simula-
inspiration in this work — the accretion disk dynamo — each oftions [11, 12]. Most important is the measurement of a marked
decrease imyx after saturation of the small-scale dynamo in
sheared turbulence, accompanied by excitation of a coheren
mean-field dynamo [12].
" jsquire@princeton.edu Turbulence and density stratification is invariably signifi
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cant in astrophysical scenarios, including in accretisksli HereUt andBr are the full velocity and magnetic fieldsjs
away from the central plane of the disk. With this applicatio the kinematic viscosity/ is the bulk viscosity (this will not

in mind, we also apply our results to the case of stratified ro€ontribute), and; is the resistivity. We have included the ef-
tating turbulence with strong velocity shear, considetimg  fects of rotation through a mean Coriolis forcep{® x U+)
resultinga effects. We find that for a Keplerian (or more gen- in the momentum equation. Before calculating transport co-
erally, anticyclonic) rotation profile, the contributiofidm  efficients from Eq. (1), we shall apply an anelastic approxi-
shear and rotation, and those from kinetic and magnetiafluct mation [27, 28], assuming nearly incompressible fluctuio
ations, are each of opposite signs. The dominant contoibuti with V - (ou) = 0 [see Eq. (2)]. This allows low-order ef-
will depend strongly on the magnetic Prandtl number Pm, a$ects due to a mean density gradient to be retained, while sti
well as the relative intensities of magnetic and kinetibtur  preserving most of the simplicity of an incompressible galc
lence. This is confusing in light of the beautifully coheren lation.

“butterfly diagrams” that are often seen in stratified adoret Mean-field dynamo theory [1, 2] involves splitting fields
disk simulations [22-25], which would suggest a robust neginto a mean and fluctuating part;

ative value forayy. We note that the contributions to thase

effects from velocity shear are at least as strong as those from Ur=U+u, Br=B+b, (2)
rotation and should not generally be neglected.

The structure of our calculation almost identically folow With U = (Ur), B = (Br). The averaging operatidp should
that of Radler and Stepanov [18] (hereafter RS06), with thdilter out small scales and satisfy the Reynolds averagikegru
additional éfects of magnetic fluctuations, density stratifica- (ater in the manuscript we will specify) as a horizontal spa-
tion (within an anelastic approximation) and net helicipie  tial average). Applying-) to the induction equation leads to
inclusion of such a variety of physicaffects leads to a rather the well-known mean-field induction equation
prodigious number of terms, and we have used VST
package [26] ifMathematicao carry out the bulk of the cal-

culations. We start, in Sec. Il, by outlining the setup of the B . .
calculation, including the most general form&#llowed by Wwhere& __<u x byis th_e electromotive force (EMF)' The goal
of mean-field theory is to calculat& as a function oB and

the symmetries of the problem, as well as the relation of the . :
transport cofficients in Cartesian domains with velocity shearother parameters in the pr.obllem (i-el, Vln_p and the

to this general form. We also give the perturbation expansio smaII—.scaIe turbulence stat|st|cs)_, thereby closmg By.
used, which is a generalization of that in RS06 to include-maga (B) is such that a small magnetic f'elq will t.’(.e reinforced by
netic turbulence at lowest order. In Sec. lll, we outlinephe the small-scale turbglenc_e, a dynamo |ns.tab|I|ty_ rgsults.
cedure used in the calculation itself, skipping many defail Before commencing with a full calculation &f it is worth

the sake of brevity. Particular focus is placed on the utistra €X@mining the symmetries of the problem. Assuming scale
fied shear dynamo — especially the magnetic shear-current gfeparation between the mean and fluctuating fields, we can
fect — in Sec. IV, while the stratified effect is examined in 1aylor expand the EMF as

the same geometry in Sec. V. Readers interested primarily

in the application of calculated cigients to disk dynamos & =aijB; + bipBjx+ ... )
may wish to skip directly to these sections. Due to the lengt
of algebraic expressions, the full set of transportfitoents

is given in Appendix B.

0B=Vx(UxB)+Vx&+vaB. 3)

Ryhere we use the Einstein summation convention and the
comma denotes a derivative. The tensaysandb;j are the
transport cofficients determined by the turbulence. In keep-
ing with the separation of scales assumption, we shall densi
linear B fields (B); = B; + Bjjx;, velocity fields(U); = U;;x;
Il. FUNDAMENTALS OF MEAN-FIELD and densityp = pg + po X-VInp (the constant velocity part
ELECTRODYNAMICS can be removed by Galilean transformation). As in RS06,
to cleanly separate fiierent dynamo féects into scalar coef-

Our starting point, common to most mean-field dynamoficignts, it is helpful to splitVU andVB into symmetric and
calculations, is the system of compressible MHD equations, @ntisymmetric parts,

1
% +V-(pUr) =0, Uij = Dij - A = Djj - ik W
1
aUr Bij = (VB)i(jS) - A = (VB)i(js) ~ ik )
pW +p(UT-V)UT+2pQ><UT+Vp: Bt - VBt
+ V- [ov(VUr + (VUT)T) + pZ6,;V - U1] + oy, whereD;; and (VB)i(jS) are the symmetric and antisymmetric
parts ofU;; andB;;, W = VxU is the background vorticity and
0Bt J = VxBis the mean current. Due to the assumpiiod = 0

—— =V x (Ut x Br) + nV2By + op,

ot in our calculation, we have implicitly assumed- Vp = 0, a

requirement that could easily be relaxed if desired.
V-Ur =0, V-B =0 1) We consider general inhomogenous background turbulence
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in bothu andb, modified by mean velocity gradients, rotation in accretion-disk simulations. In this case, mean fields de-
and density stratification. The density stratification sumsed pend only orz, U = —-S ¥y (givingW = -S2), Q@ = QZ and
to be aligned with the turbulence stratification in the dimt ~ the mean-field average is defined as an averageoaady,
g, but we allow their magnitudes and signs tdfeti; thatis,  (-) = (LxLy)~* [ - dxdy. The mean-field equations simplify to
defining

0Bx = —nyx03By + nyyd2Bx,

Vlnp :ng, Van=XGg, Vlnb—:XE@’ (6) atBy — —SB(—T]xyaZBx"'T]xxasz (8)
z z >

(Whereurms = (U3)Y2, bims = (b3)Y/2), we allowy,, # xa # xp-
For completeness, we include both non-helical and helic
contributions to the turbulence [29] but neglect tlikzets of
inhomogeneity on the helical part [30]. We assume that th
EMF due to the background turbulence vanisiKast b)y =

0. Such aB independent contribution could be important in T = k{—STIyx+ K2
some situations (see, for example, Yoshizawa and Yoko) [31]

and the method applied here can be used to calculate We||!]- ©)
known dfects of this type if desired, for instance the cross- 1as a ree;l part greater than 0 One can neglgct the term mul-
helicity effect [32]. In addition, we do not calculate the com- tPYing k* in the square root in Eq. (9) sinéis presumed

ponents of the Reynolds stress, which would force a mearf® P€ large compared to all transport fagents. This gives

field velocityU. This is not justified for any particular reason 11215 < 0 as a necessary condition for instability. Computing

other than our primary interest in the magnetic field dynam-the relationship between Eqg. (7) and Eq. (8) shows

ics. While it is possible that there are important inteiacsi 1
betweerl) andB that lead to other instabilities [33], we leave 7yx = -S [6("") = 5 («™) - g®) + D)
their systematic study to future work. 2

A careful consideration of the symmetry properties of the My =S [5(\/\/) _ }(K(W) + B0 K(D))} _ Q(é(g) _ }K(Q)),
system leads to the general representatio& of terms of a 2 2
set of scalar transport transport @dgents (see RS06 for a (10)
full explanation)

\fvhere they;; are defined to be the relevant components; gf
Fhat are nonzero for the chosen average and mean field. For
ési = Bio€*?e a coherent dynamo is possible if

12
} K+ 1)

1
Mxylyx + é(nxx - ley)2

+afs - ).

andny = nyy = B9. Note that Eq. (9) only describes the
E=- aﬁ)B - le_lD)Dij Bj - y(HQ)Q xB- ySN)W x B growth due to a coherent dynamo process and fluctuations in
_@p . @ oNg a orpthatarise in any finite system can cause a dynamo in and
@1°(9-2)B -3 °[(g- B)2 + (B- )Y of themselves[11, 34, 35]. We shall specialize to the Cianes
—a‘lw’(g -W)B - a(zw)[(@- B)W + (B-W){] case in Sec. IV and kedp general for the calculation of the

—® (&1 D Gm + &jim Dii §m) Bj transport cofficients listed in Eq. (7).

~O +yDgx @+ yMgx W +yPD;;g)) x B
(70 4 Dg 7g . 7 Diig)) In Sec. V we give results specific to the case of stratified
893 - gD J; - (6"W + 60) x J sheared rotating turbulence. This is motivated by consider
— (W (@) (& _ 2 D). © ation of the upper (or lower) portions of an accretion disk.
(K WK Q)j (VB)j” — 2 &ix D (VB)}”  (7) Again, mean fields depend only anU = -Sxj, @ = Q%
ndg = z We neglect §-diagonal resistivity contributions

Here we have conformed to the sign conventions in RS06 ang,_ USerxx = 7y = BO. The mean-field equations simplify

use the Einstein summation convention. The subsgyipte-
notes a cofficient that is only allowed by the helical part of

the turbule_nce, while all ot_h_er cﬁ‘f_eslents arise only through By = —8yx3,By — 80,8, +ﬁ‘°)6§Bx
the nonhelical part. In addition, since we assume smalksca 02
fluctuations in botu andb, we further split each transport co- 0By = =S B+ axy0;Bx + axxd:By + 857 By. (11)

efficient into these contributions; e.g™ = ("), + (™),
Since we work with SOCA in the linear regime (wheBes
small), these are always additive and can be calculated sep@owth rate
rately from theu andb turbulent contributions.

With ax, = —ayx, consideringd; = Bioe“%€™, one obtains the

I = (kS 3y/2+ Kayax)  +ikay - K80, (12)

_ ) Again, S is presumed large in comparison to all transport co-
A.  Cartesian domains efficients, so we see that any nonzeyg can lead to insta-
bility at sufficiently long wavelength. Of course, in practice
In Sec. IV we shall give specific results for the numeri- there will be a minimunk possible in the system, particu-
cally convenient Cartesian shear dynamo with nonhelical, u larly sinceayy arises from a stratification, so a finigg, will
stratified background turbulence. This is essentially & genbe necessary to overcome the turbulent resistivity. The co-
eralization of the unstratified shearing box that is ofteedus efficients in Eq. (11) are related to those in Eq. (7) through



axy = —ayx = ¥@ and codficients:
ay =S (" - o) - Qal®, (@ - va)m = - (mg- VU + U - Yy - (g, - U)my)
8= S (ol + a©) - Q. (13) ~Vp@ - 20 x mg + (bp - VB + B - Vb?) - vg, - Vimy

@ —va)ym® = - (m?.vU + U - vm (g, - Uym)
~vp® - 20 x M + (b VB + B Vb?) - vg, - vm(®
(@ —n2) b = p7[(g,- M)B - my- VB + B - Vimy
~ (9, - B)Mo| + g - VU - U - Vi,
(@ —n8) b® = p7[(g,- mM)B - m?. VB +B - Vm®
- (g, - B)M?| + b@.vu -U - Vb, (14)

B. Perturbation expansion to describe the fluctuations

For the calculation off we use the second-order corre-

lation approximation (SOCA), which involves solving limea z1ong with divergence constraints for eanf®, b©, m®, and
equations for the fluctuations by neglecting third-orded an n1), Hereg, = y,§and we have neglected second derivatives
higher correlations. As such, this is rigorously valid only of y andp, as well as products &fB with X, [these contri-

at low Reynolds numbers where dissipation dominates ové§tions should vanish in the transport fiagents, since the
nonlinearities for the fluctuations (SOCA can also be valid i £q. (7) illustrates that there is no contribution to the stigi

the small Strouhal number limit [Eq. (31)], see Brandenburgty due to g at linear order]. In addition, we shall neglect any
and Subramanian [36] for a more thorough discussion). IRerms that involve quadratic products df Q, andy,, (e.g.,
addition, we choose to include the shear, rotation and der(-gp - U)mg), and expand all terms to linear order to take the
sity stratification perturbatively [16, 18], consideringipthe  Fourier transport of Eq. (14) (see App. A).

linear response of transport dfeients to thesefgects. An While it may seem surprising that one requires terms two
analytic c_alculatlon with shear included at zerot_h order €4 orders higher thamo andhy, it is straightforward to see that
be found in [20], and some examples of calculations that 'n'only consideringm© and b©@ will not lead to contributions
clude nonlinear contributions from otheffects can be found 4 & that depend on products & with U or © (these are

in Refs. [8, 9, 27, 28, 37]. In a very general calculationi®ip he jnteresting terms in the dynamo, describing thieat of

[10] nonlinearly includes all #ects discussed here (although ji4ti0n or velocity). With this in mind, the EMF is calcubat
the approach, the “minimat approximation,” has a some-

what unknown range of validity). We have also computed the

magnetic dynamo transport déieients with non-perturbative g, — <Ui b,—> = <p—1mOi bo,'> + <P_lmoi b(j0)> n <p_lffbi b(j1)>
shear and rotation using statistical simulation in the shga 10 T L OO)

box [11]. + (o7 m%bg;) + (o7 'mPhg)) + (o mOBl7) . (15)

Following Riidiger and Kichatinov [28], Kichatinov and Despite the fact that all the terms in Eq. (15) give some con-
Rudiger [27], and Rudiger [37], we start by making an anelastribution, there are also a large number of terms that con-
tic approximation to the full compressible equatiofigpu) =  tain quadratic products dflij, Qi, x,, or B, which are ne-

0. This should be valid for weakly compressible turbulenceglected. As is evident, with background turbulence in hoth
and allows the inclusion of a weak density stratificatiomint andb there will be contributions t& from the Maxwell stress
the problem, which is important in a wide variety of mean-(B - Vb + b - VB) that one would expect to be of a similar
field dynamos. We shall assume that the large-scale flow is inmagnitude to the standard kinematic dynamo arising from the
compressible, since our primary application is to sheardlow Lorentz force ¥V x (u x B)]. This choice of perturbation ex-
It is then more convenient to work in terms of the small-scalepansion is the natural generalization of RS06 to the cade wit
momentum [27, 28]m = pu, since the calculation fanpro- by fluctuations (although note that? in RS06 has become
ceeds in a similar manner to the incompressible case. u©@ in our notation such thatandb are treated on equal foot-
ings). Our results for the kinematic dynammp = 0) without

In retaining both strong homogenous velocity and magdensity stratification agree with RS06 aside from a single nu
netic fluctuations, denoted, (or mp) and by respectively, merical codicient (see App. B).
we must treat the momentum and induction equations on the
same theoretical footing. We start from Eq. (1) by split-
ting into mean-field and fluctuation equations, applying the
anelastic approximation followed by the change of variable
Up = mp/p. We then linearize the small-scale equations and
expandm=my+mQ+ m® ... b=1by+b@+bd . . to Our calculation follows the methods and notation in RS06
perturbatively find the change to the background turbulencand a full explanation is given there. Here we give a veryfbrie
caused by the shear, rotation and stratification. This l#e&ls outline, in particular the choices involved, with final résu
SOCA equations that will be used to calculate all transporgiven in Appendix B. We have carried out the entire calcula-

Ill. OUTLINE OF THE CALCULATIONOF &



tion in Mathematicausing theVEST package [26] to handle ucts of B; andB;;. Recall that we have assuméghbg) = 0
abstract tensor manipulations using the Einstein summatioimplying that all terms in the expansion &f; containB; or

convention. Bij. In keeping with the expansion to linear order in back-
The two-point correlation of two fields andw is defined ~ ground quantities, it is necessary to exparick]].. to first
as order inK in those terms that contal, (i.e., a codficients).
These lead to terms involving the gradient of the turbulence
¢f}’w) (Xpt1; X2, tp) = <vi (X1,t1) W (X2, t2)>. (16) intensity. Note that{(k)]. — f(zxk) for resistive terms (coef-
ficients ofB;;). Some useful identities in the above procedure
It is convenient to write such quantities in the variables are given in RS06 Egs. (33)-(35), which are needed to remove
0/0k; derivatives fromug andbg. Similarly, we apply the
R=(X1+X2) /2, I=X1-Xp, identities
T=(@Mt+1t)/2 t=t1 -1, 17)
~ Ki . - Ki .
. kifty = —=m;, ki = = (23)
giving
r t (and similarly forB,—i), which arise from the divergence con-
PRy = <V' (R+ > T+ 2) Wi (R_ > 1= §)> straints onmi andb.
(18
One then Fourier transforms in the small-scale variabie

obtain
Extracting the cofficients ofB; and B;; in the expression
(vw)(R T:nt) = /dkdwgb("‘”)(R T: k, w) ékret - (19) for & = &kEik (0,0), at this stage we have large integral ex-
pressions for;; andbj in terms ofi; andb., and their spa-
tial derivatives [for example, RS06 Egs. (39)-(40)]. Witlho
further interpretation, such expressions are nearly asgéad
(VW) (R-0m). it is helpful to insert explicit forms fom andb;j. Assuming
RTikw)= /dK dQ ([V], [W]_) € (20)  isotropy in the limit of vanishing mean flow and rotation, we

with

insert
wherev = ¥ (k, w) andw = W(k, w) denote the Fourier trans- i kk; .
forms ofv andw, and we use the][, notation of RS06, i = % 8 - kZJ o (K K; — kjKi) | Win (K; k, @)
[f(kw)|, = £k +K/2, 20+ Q/2). (21) ’ o K _
- 1] 2 u R, >
As in RS06 we shall calculate 10 kik; 7
bij = S|~ e 2k2(k|K] KiKi) [Wh (K; k, w)

&ij (R,T;0,0):/dkdwéij (R.T; k) K
~leijl g Hp (k, w) , (24)

= /deQdkdw (lo~*m]. [bi] ) @rRAeT
wherek = |k|. HereWy,, represents a non-helical part and
= [ dK dQdk dwp: ([ — ig, 8 ], [Bi] ) €K RA9T Hmbahelica! part qfthe backgrourjdturpulence [27,28]. This
/ “Po <[m 19010 ][] > form for Wy, is particularly convenient since it can be shown
(22)  that to first order in the scale of density variation

settingR, T — 0 only after extracting the cdigcients of B Wi (X; Kk, w) = pZ(X)Wu (x;k w), (25)
andB;; (i.e., the transport cdicientsa;;, bjjc).

With these notations defined, the starting point of the calwhereW, (x; k, w) is a similar function specifying the statis-
culation is the substitution of the linear forms 1o p andB  tics of u andWin (x; k, w) = [ dKe**Wy (K; k, w) [27]. In
and into Eq. (14), followed by a Fourier transform. This lgad this way,
to Egs. (A2)-(A5). One then substitute”"andb® into (™
andb™® to form explicit expressions fax andb; in terms of

(oi andbyo. Defining separating thefiects due to density and turbulence stratifica-
tion. Similarly, for the magnetic fluctuations

VW (X; K, @) = 8(2x, + 2xa)Wm (X K, ), (26)

ity = ([o] [oj]- ),
bij = ([boi] [boj]-),

to specify the statistics afy and by, this allows one to form
Eqg. (15) in terms ofr{j andb;j, neglecting all terms that con-
tain UjjUrs, UijQ;, QiQr, Uijx,, Qix,, (VInp)2, or any prod- It transpires that all terms now dependloonly throughk,

VW, (X; K, w) = 28vpWh (X k, w) . (27)



and all of the integrals can be substantially simplified gsin  able straightforward manipulation of tensors in index nota
tion. This has the obvious advantage of handling the very lon
/dk kik; T (K) = }5”_ /dksz ®), expressions with ease and making the calculation straightf
3 ward to generalize or modify. The sequence of stg?‘s is es-
1 sentially the same as that detailed above. We first d
/dk kikjkik f (K) = 15 (5ij5k| + 0ikdjl + 5i|5jk) / dkK'f (K), md, b(O))/, andb®  insertm© andb© into m® andb®, thipi
(28)  only later remove products that are quadratitin , or x,,.

It is then straightforward to defing [ operators, their associ-
where the integrals ovdeon the right-hand side of Eq. (28) ated product rules, and methods to in expan.ifT his allows
are taken fromk = 0 — oco. One then splitsJ;; and  the construction of the entirety éfin one step. Insertion of
Bi; using Eq. (5), puttingS; in the form given by Eq. (7). the explicit forms fonij andb;j [Eq. (24)] and the partial inte-
One can straightforwardly readfdhe transport cdéicients  gration using isotropy [Eg. (28)] is easily carried out wggie-
a9, a9, B0, . asintegrals of the form placement rules. Finally, we decompose products;pfvith
Uij, Q and g into the form given in Eq. (7), allowing the co-
efficients listed in App. (B) to be straightforwardly extracted

() _ 2~()
(“H )u,b = 4”/dkd‘”k @y} (k, w) Hup (k, w) from the total expression. Finally, if so desired, these lvan

0 22() directly integrated with the specific form ®¥ [Eq. (30)] by
(e )u,b = 4ﬂ/dkdwk a’ (k, w) Wup (k, w) carefully substituting the dimensionless variables [B1))
and usingVathematic nativeIntegrate function. For the
(,3(')) L= 4n / dk dw k289 (k, w) Wyp (K, ) . (29) interested reader, we include the full calculation notétioo
& supplementary material.
The full list of coeficientsa'?,....&®, ..., 3O, .. is given
in App. B. A. Agreement with previous works

Finally, it is possible to carry out the integrals of the form
in Eq. (29) for a specific form dfV andH, leading to explicit Our results agree with related works of other authors in
expressions for the transport ¢heients in terms of the physi- special limits, including those utilizing fierent calculation
cal parameters. A convenient form for examining expressionmethods. As discussed throughout the work, all results of
and plotting is the Gaussialif used in RS06, RSO06 are recovered in the limiitin p = 0 [aside from one dis-
crepancy, ing®),]. This agrees with Rudiger and Kitchati-
nov [17], many results of Pipin [10], including his magnetic
contributions (see his App. B), as well as the quasi-linear
methods in Sridhar and Subramanian [38] and Singh and Srid-
with a similar definition oM,. With this choice, all integrals har [20]. As is well known, there is a discrepancy between
can be carried out explicitly without further approximaio these kinematic quasi-linear results and those obtainiegd us
As in RS06, we shall write such expressions in terms of theher approximation [8, 16], possibly due to a change in sign of

237 (Kip)? e ie)’/2
Wy = U=t (ko) — (30)
3(2n) 1+ (wte)

non-dimensional variables (apd) nyx With Rm [19]. As seen in Eq. (32) of Pipin [10], his con-
5 5 clusions regarding the kinetic and magnetic contributitns
€ = bms/Ums, P = Ag/vte, O=Ag/nte, Pm=v/n, the shear-currentfiect (with rotation) are are similar to ours.

Re= Umslc/v, RM=Umsle/n, St= Umstc/de.  (31)  Our results also compare favorably to previous works withou
velocity gradients, but including magnetic fluctuationss A
Here Pm, Re, Rm, and St are respectively the magnetic Prandikpected, the helical magneticeffect has the opposite sign
number, the fluid Reynolds number, the magnetic Reynoldgo the kinematic #ect, and there is no changeg® due to
number and the Strouhal numberandq are the ratio of dif-  the addition of magnetic fluctuations. In addition, the sign
fusion times /v andAZ /7, to the correlation timec. Thus  of 5 ands™ agree with ther approximation calculation of
g — 0 denotes the low conductivity limit, while — o de- Radleret al. [9] (5(9) <0590 although there is not an
notes a high conductivity limit (with a similar result fqr P I
and fluid difusivity). A suficient condition for the validity exact cancellation at = b as in Radleet al. [9]).
’ The « effects arising through stratification and inhomo-

of SOCA (i.e., neglect of nonlinear terms in the correlation . . .

equations) is Rme 1 in the limitq — 0, and St< 1 in geneity also show broad agreement with previous works. Be-
the limitg — oo, see Brandenburg and Subramanian [36] and:24s¢ of the_I!ne:?\rlty of th_e expanS|onVnnp, U andQ_, the
Radler and Stepanov [18] for more discussion of these walidi density stratification contributes very little to the @aents,

; pal [18] . W aside from directly througWW, [Eq. (26)]. This meang
regimes. In addition, e requitd;; andQ; be a small pertur- I h ith th bul . Thp
bation to the background turbulence. In practice, we stsal u generally appears to_ge_t erw‘l‘t the tur u.entgradg_en Y €
these non-dimensional variables [Eq. (31)] for plottirats- one exception to this is the “turbulent diamagnetism” term,

' @, which interestingly depends only on the turbulence gra-

port codficients. dient, not the density gradient, due to a cancellation (his
We have carried out the full sequence of steps detaileéh agreement with Kichatinov and Rudiger [27]). Again our
above inMathematicausing theVEST package [26] to en- results without mean velocity broadly agree with ttepprox-



imation magnetic turbulence results given in Radfeal. [9]; ”Yf
for instance, the fact tha(tyo)b = —(yo)u and the opposing P ‘ -
signs of the rotational kinematic and magnetic diagenef- [-==--_010- 1 10 400
fects @3})up, With [(@P)ul > 1(@$)l (although we see a strong -02f - =
dependence of these parameters on Pm; see Sec. V). oal (s
—0.6; .
IV. SPECIFIC RESULTS FOR UNSTRATIFIED SHEAR 08 )
DYNAMOS Tr
1.0} a)
In this section we discuss the results pertinent to our pri- L
mary motivation for this work, the shear dynamo in a Carte- %)
sian box. As shown in Eq. (8), in this geometry with a hor-  ["====== BT —==== Fooo - 10— 480 °
izontal mean-field average, the number of transporticoe ("™ ()
cients reduces significantly. We are particularly intexdsh ~002}
the sign of theyyy cosdficient, which should be most impor-
tant for dynamo growth due to its coupling with the shear .
[Eq. (9)]. Here we outline the contribution tg, from ve- ~004r )
locity and magnetic fluctuations in the presence of shedin, bo
with and without rotation. This geometry is particularly-re -0.06 | b)
evant for the central regions of accretion disks, whereether
is strong flow shear, stratification may be subdominant, and 5”{*
there is no obvious source of helicity in either velocity axgn a
. . s ()b
netic fluctuations [4]. (%)
Utilizing Eqg. (10) and the results in listed in App. B, one [ ==——Z_ 04— o p— S =00
obtains after some impressive cancellations oy
-5
327k2Wi, (K, w) w?H?
103 = [ dodk S MEDET - (zp) :
15372 + w?)* (7 + w?) 1ol (1%)s
c)
A* -15L
(le)()g = /da) dk871'k2,071Wb (k, LL)) (ﬁ
15(7% + w?) FIG. 1. Transport cdécients ) (solid, blue), ¢S (dashed,

2072 + 72972 + 202 + 3w*
C15(7 + 0?) (72 + w?)?
402555 )
15(77 + w?)? (P + w?)

(33)

2! 2~2
0 = - [ dod T DT 5y
15(72 + w?)” (7 + w?)

5 . dk87rk2p_1Wb (k. w) (7 - 12057 + 30%)
= ) .
(1o / 152 + w?)?
(35)
Herev = vk?, ij = nk?, integration ovew is from —co to co
and overk is from 0 toco. We have defined each dfieient
such that

Myx=3S [(ny)u + (Myp ] +Q [(nyX)Q + (UyX)b] (36)

blue), @,x)F (solid, orange) andy(,);} (dashed, orange) as a function
of q for (a) Pm= 1, (b) Pm= 10, and (c) Pm= 1/10. Each coffi-
cient has been calculated using the form given in Eq. (30)\fpand
normalized by(,B(o)) with the magnetic dfusion time,A2/n, held

constant (equwalentlyC = 1/0). (Note that this choice is necessary
because the cdigcients have dferent units, and is chosen purely for
plotting purposes, since it reduces the variation offiscients with

q)

anticyclonic) whers andQ have the same sign.

Let us first examine the céiecients for a kinematic dy-
namo, i.e., with strong homogenous velocity fluctuatiohse [t
codficients @yx)u, Egs. (32) and (34)]. Firstly, we note that
the contributions frons andQ have identical forms, and that
the integrands are positive definite [39], see Fig. 1. Thsifs a
well known, we see that(,)3, the “shear-currentféect,” has
the incorrect sign for dynamo action within this quasi-ne
approximation. Although the basfe x J effect (also known
as the Radlerféect) is well known, the explicit calculation

to keep all signs consistent. Recall from Eq. (9) that with ou of transport cofficients including shear and rotation seems
definition of S, nyxS < 0 is required for a growing dynamo to have been mostly ignored, although there is much discus-
(note that this is the reverse of RS06). For Keplerian rotasion in early literature on the subject (e.g., Krause anddrad
tion, Q = 2S/3, since vorticity and rotation are opposite (i.e., [2], Moffatt and Proctor [13]). Given the identical forms of
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Egs. (32) and (34), we can immediately write down the resuliSelf-sustaining turbulence simulations in this geometoy (
instance with shear-periodic boundary conditions in thkéala
(ydu = (S -2Q) &, (37)  direction) exhibit a very coherent dynamo, with quasi-time
. o ) . periodic behavior irBy and B, creating a “butterfly diagram”
whereE is the (positive) integral in Eq. (32). Thus, we find [23 24]. Large-scale magnetic structures are seen to émana
that the addition of Keplerian rotatiof(= 2S/3) (as relevant  from the central portion of the disk, migrating upwards into
to turbulence in accretion disks for example), will charige t  the |ower density regions and becoming more intense as they
sign of 7yx to slightly negative and a coherent dynamo insta-go so [25]. This migration behavior would be characteristic
bility should be possible. Indeed, this is seen in our recengs 5 dynamo driven by, above and below the mid-plane:
simulation work [11], where we observe increasing coheyenc 55 shown in Eq. (12), growth of this type afé&” dynamo is
and a larger growth rate as the rotation is increased in the arlways accompanied by dynamo waves sifice complex.
ticyclonic direction. Note that a negative imaginary part Bfis required for up-
Turning to the cofficients for magnetic fluctuations we find wards migration of mean-field structures with=" 2. This
the interesting possibility of a magnetically driven dymam  occurs forayy < 0, ay, < 0, (ayx > 0) [40].

In particular, as shown in App. (C) and Fig. 1, the fiméent o ) . .
()b i consistently negative and generally larger than the Utilizing Eq. (13) with the results listed in App. B, and set-

other contributions. This implies that a dynamo can be exicit N9 Pm= 1 here for simplicity, one obtains,
by magnetic fluctuations, themselves presumably arisomg fr

a small-scale dynamo process, or perhaps an MHD instability (S = 8r 7/ o dkaWu(k, u)v (5V2 + “’2) (38)
of some sort. Since the small-scale dynamo is usually censid R Xou 15(72 + w?)* ’

ered harmful to mean fields [5], this is an interesting padksib

ity — a build of magnetic noise on small scales ntayisea

coherent large-scale dynamo to develop. The addition af rot 4 — 4027 - 30*

v
tion renders theféect of magnetic fluctuations more complex, (ayy)ﬁ - _4”Xb/d“)dkp Wk Wk 1532 + a)z)S
and no simple result seems possible. In particular, theddign (39)
the nyx)f} codficient depends on the parameters, and is gen-
erally negative for large,  and positive at lower dissipation,

K2Wy (K, )72 (7 + 5?)
although smaller in magnitude thayy{)ﬁ This change in sign (ayy)fj2 = —6471ng/ dw dk — 3 ,  (40)
is also seen in quasi-linear calculations [11]; howevearigi 15(v2 + w?)
that the quasi-linear approximation becomes less valitig t
limit, it would be unwise to draw any conclusions about the (kR (w? — 352
high-Rm limit from this behavior. () = —6drys / doo "Ml WK w («” - 37) 41)

Finally, we note the possible relevance of this dynamo to b Xb 15(2 + w2)3 '

the central regions of accretion disks. In self-sustairtirrg
bulence simulations in this geometry, magnetic fluctuation Finally, for the df-diagonal component/® = a,, = —ayy,
are generally substantially stronger than velocity fluttues.  one has
Such conditions seem ideal for excitation of a coherent dy- W (K L)

i i u
namo dr_lven by Fhe magnetic shear-cu_rreﬂie«a. We_z pote O, = 47r)(g/da)dk N;( > 377, (42)
that cyclic behavior, as often observed in self-sustaising 3(7? + w?)
ulations [4, 25], seems to be quite generic in the nonlinear d
velopment of the magnetic shear currefieet, and we have
observed this in low-Rm simulations with a forced induction ), = _4,%3/ dow dk
equation [11]. In addition, it is worth noting that Lesur and
Ogilvie [4] concluded thatyy was the primary dynamo driver o L
from analysis of their numerical simulations. While more gefre v(\;e USE tue notatigna = [V In(eu)l, and again signs are
work is obviously needed to explore this possibility in dieta efined such that
seems reasonable to conclude that the magnetic sheanturre

g ay = S|(@ays + @]+ Q[@yd + @ye].  @4)

effect is playing a fundamental role.
for anticyclonic rotation, e.g., Keplerian rotatior(ds= 2/3S.

k2o~ "Wh(K, u)7

3G+ a?) (43)

It is first worth noting the sign of each cieient given in
Egs. (38)-(43). Withy,g, xp > 0 it can be shown easily from
the above expressions that

V. SPECIFIC RESULTS FOR STRATIFIED ACCRETION
DISKS

In.t_h|s section we b(lefly outline how our results apply to (ayy)ﬁ >0, (ayy)ﬁ <0, (ayy)f} <0, (ayy)ff > 0. (45)
stratified sheared rotating turbulence. Our primary maitva
is consideration of the upper and lower regions of accretiorfNote that for thdo components, it is necessary to integrate by
disks, where the turbulence is stratified in density anchinte parts ovek, see App. C). The relations in Eq. (45) appear to
sity by the vertical gravity, perpendicular to the veloghear.  also hold for Pmz 1 (although we have a proof of this only
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FIG. 2. Transport cdcients &) (solid, blue), &,)S (dashed,
blue), @y); (solid, orange) anda(,y)ﬁ (dashed, orange) as a function
of g for (a) Pm= 1, (b) Pm= 10, and (c) Pm= 1/10. Each coffi-
cient has been calculated using the form given in Eq. 30fpand
normalized by(ﬂ(o))u with the magnetic dfusion time,A2/n, held
constant (equivalently. = 1/q). The dotted (black) curve in each
plot shows the totad,, with equal kinetic and magnetic turbulence
levels for Keplerian rotationQ2 = 2/3S [Eq. (44)], to illustrate the
variability in these predictions.

for the Q codficients). This consistent dierence in sign be-
tween contributions is rather inconvenient for the appiia

9

two are roughly equal in magnitude,a )5 ~ —(ay)?, and
will approximately cancel for Keplerian rotation. Finallyis
worth noting that to complement these uncertainties, tnessi
of @ seem to predict theppositefield migration pattern to
the upwards transport seen in simulation. In particular, fo
Xo < 0, yg > 0, the kinematic and magnetic contributions
both enforcey©® > 0, leading to InT" > 0. However, in our
use of the anelastic approximation, buoyanffges are not
included and these would be expected to change this aspect of
the calculation substantially [40, 42, 43], potentiallyaihgh
large-scale instability [44].

Where does this leave us for understanding the dynamo
in stratified accretion disks? We see that aside from per-
haps the transport terpd®, claims that SOCA predictions
areincorrect for the stratified regions of accretion disks are
unfounded. More accurately, one could say that SOCA pre-
dictions themselves are completely inconclusive, evemén t
kinematic regime, since each contribution — kinematic, sag
netic, rotation, and velocity shear — has a tendency to ¢ance
its partner. Such uncertainty seems at odds with the rolgust d
namo “butterfly diagram” seen across a wide variety acanetio
disk of simulations.

Of course, one possibility is that the SOCA calculation car-
ried out here, keeping only the linear contributions du@ 8
and stratification, is not up to the task of calculating these
efficients, and in reality thelis a robustr effect. For instance,
in Rudiger and Pipin [40], the authors find tlgy has the cor-
rect sign {y,y < 0) for magnetic fluctuations in a compress-
ible turbulence model for Keplerian shear and moderate Pm
(this is the sign opposite to Eq. (39) but since théieet van-
ishes in the incompressible limit, one should have no reason
to expect agreement). Similarly, the calculations presirt
Donnelly [45] go well beyond the accuracy of SOCA for the
specific case of Keplerian shear through non-perturbative i
clusion of several extra physicdfects; however, it is unclear
from their (rather complicated) expressions whether tlee th
ory predicts a specific sign far,y. While certainly feasible,
it would seem a little bizarre that a behavior that appears so
robustly in simulation could show so much variability acos
different calculation methods or rely on nonlinear behavior of
transport cofficients withQ, S, or the stratification. A va-
riety of other possibilities might be imaginable, for inste
a dynamo driven primarily by the magnetic shear-current ef-
fect up to relatively far from the mid-plane (Sec. 1V), with
upwards transport above this caused by large-scale buoyant
instability (not included here due to the anelastic appraxi

of SOCA results to stratified accretion disks. Since one extion). Another possibility could be that upwards field traost

pectsy,z < 0, xp < 0 (although possiblyg > 0) [24, 41], we
are left with the situation where not only do thesffects due

is caused by a small-scale magnetic helicity flux [46, 47ifro
the central shear-current dynamo, which would create & (hel

to u andb partially cancel, but also those due to rotation andcal) magnetier effect. Such an process could look rather sim-
velocity shear! What's more, as shown in Fig. 2, the relativellar to a more standard effect, although the basic cause of the
contribution of each depends strongly on Pm. In particulardynamo would be entirely ffierent [24]. Note that magnetic

we see a dominance ad), over @yy), for Pmx 1, but this

helicity fluxes have been found to be playing a significarg rol

can reverse at low Pm. Similarly, the relative contribusion in unstratified global MRI turbulence [48], providing some

due to velocity shear and rotation for the magnefiee vary
substantially with Pm, although th&ect of shear seems gen-

indication that such a process could be important. It is also
worth noting that spatial variation in transport dogients and

erally more substantial. While the ratio of kinematic shearquenching can lead to some interesting possibilities for dy
and rotation contributions may be somewhat more robust, theamo action [49, 50], and similaffects may prove important
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at the boundary between the stratified and unstratified megio bers.
of disks. Overall however, it seems that the underlying eaus The work presented in this manuscript was primarily mo-
for the “butterfly diagram” in stratified disks remains urale tivated by gaining improved understanding of the fundamen-
and more work will be needed to arrive at robust mean-fieldal dynamo mechanisms in accretion disks. Consistent with
models of the process. the idea that two dynamo mechanisms might operate in disks
[53], their inner regions seem well suited to be explained
by the magnetic shear currenffext [4] — magnetic fluctu-
VI. DISCUSSION AND CONCLUSIONS ations are generally stronger than kinetic fluctuationta-ro
tion has the correct sign to enhance the kinematic dynamo,
In this work we have theoretically studied the dynamo inand the turbulence is essentially unstratified and norgielic
systems with mean velocity gradients, rotation, net hglici Concurrent nonlinear direct numerical simulations of taist
and stratification, using perturbative calculations witthhe  ified shear dynamos in Cartesian boxes [11, 12] have con-
second-order correlation approximation. In addition te th firmed all results discussed in Sec. IV for the low-Rm regime
standard kinematic dynamo, we have considered the posdit1, 54]. Firstly, we see a qualitative change in the kingmat
bility of a dynamo driven by small-scalmagnetic fluctua- dynamo with the addition of rotation, due to the change in
tions, as might arise from the small-scale dynamo or an in-sign of theyyx transport cofficient [11]. Secondly, we observe
stability. Our main finding is that anflediagonal resistivity ~the magnetically driven shear-curreffitset, both through di-
coupled to the shear can cause a dynamo instability in theect driving of the induction equation [11], and at higher
presence of magnetic fluctuations. Thi$eet — the mag- magnetic Reynolds number where magnetic fluctuations arise
netic analogue of the “shear-currerfest” [8, 16] — raises self-consistently though excitation of a small-scale dyoa
the interesting possibility of the small-scale dynaemhanc- [12]. The nonlinear saturation of these magnetically drive
ing the growth of a large-scale field. In some sense, this podarge-scale dynamos exhibits a pleasing resemblancefto sel
sibility is the reverse of large-scale quenching [5, 51ihea  sustaining unstratified accretion disk turbulence sinioes;
than the small-scale magnetic fluctuations inhibiting #rigé-  with quasi-cyclic behavior of the large-scdgfield.
scale field growth, they could actively aid field generation, Less clear have been our findings regarding d¢heffect,
with large-scale growth eventually halting due to nonlinea as relevant to the stratified regions of accretion disks.aln p
changes to the transport d¢beients, possibly influenced by ticular, we find thair codficients arising from rotation and
secondary quenchingtects [52]. shear, and those arising from kinetic and magnetic fluctua-
Importantly, our prediction that the magnetic shear-aurre tions, are each of opposite signs for anticyclonic rotagi@n
effect is able to excite a dynamo agrees with other transpodndVxU antiparallel), and thus would tend to cancel. Further-
codficient calculation methods and simulations. In particu-more, predictions about which of these terms dominate (thus
lar, ther approximation predicts the linear magnetiteet to  determining the sign of the totaleffect), depend strongly on
be much stronger than the kinematiteet (see Fig. 3 of Ro- the magnetic Prandtl number and the relative levels of kinet
gachevskii and Kleeorin [8]), just as was found in this workand magnetic turbulence. We thus conclude that pertusbativ
using SOCA (Fig. 1). In addition, agreement is found with SOCA calculationgive no useful predictionsegarding the
guasi-linear calculations [11] (the magnetic version ef¢al-  primary driver of the so-called “butterfly diagram” pattevh
culations in Singh and Sridhar [20]), as well as perturleativ large-scale field evolution seen in self-sustaining gteatiac-
inhomogenous shearing wave calculations [21]. This suggescretion disk simulations. Whether this is simply due to the
that the éfect may be more robust than the kinematic shearinaccuracies of SOCA or there is some other more exotic ef-
current €fect angdor have less dependence on Reynolds numfect operating (e.g., a helicity flux [48]), remains to bersee
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Appendix A: Equations for u©@, u®, b©@, b® in Fourier space

Here we give the set of perturbation equationsfandbin
Fourier space, as result from the Fourier transform of E4). (1

The method is outlined in RS06, so we give very little detail

here. Since we assuni (x) = UijXj, p = po + x,8i%, and
Bi(x) = B + B.JxJ the Fourier transforms can be carried out

kidb;j (where-"denotes the
Fourier transform). We have also neglected productg,of

with Bjj. In the momentum equations, the projection operator

— kikj/Kk? is applied so as to remove the pressure.
Defining, as in RS06,

1 1

T (A1)

the Fourier space equations are as follows,

kik
m® =N, |-Uimy + Ulkkl_ + 2 J

K

kikikr kQ
2 —5XpOrMoj + 2——— 2

Uji — ivkey,Or Mo

+iv 5|]krrb]kk+|krBrbO|
6b0| k|k

Bicki —

kik;
— ik By — 2 kk k

Lboj + Bitbo - —LbaBj |,

(A2)

kik;

6mi()+2

+ Ulkklm

k- Q
k2

1 _ (0)

()
ml

> mMOU; = ivkor, G

Sh P km(o)kk + ik B b®

o6 Kk
Blkklm -2 kzj b(O)le},
(A3)

. Kkkr

. kik
— ik, By kzj b + Bilb (0)

bi(o) =E, [pol (ikr Brmgi — Bjjmgj — B + B|ngrmor

kkj akk
abOl

omy
+x,0r BjK; )+U|1bOJ + U jkj—

ks
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om© @) _
b® =, | o5 | ik Brm® — Bym® - Byk; 1 4 Byy, g m® (o”),
! e I K kk . ~ 2~ (52 2 ~2 25 . ~3 2~ (~2 2
. 0 4ngr][2w77(v +a))+77(3a)v+v)+wv(v +3w)]
m ©) ab 1572 + w?)2 (52 + w2)? ’
+x,0rBik +Ubl? + U k— A5 (7 + ?)” (v + w?)
X0 BiK; ok, ] i jkKj ke (A5) (B6)
Here myi, bg etc. refer to the Fourier space variables for
simplicity of notation. As a fir;t step in the calculation, o Ay pw? (a)z - 3,72)
Egs. (A2) and (A4) are inserted into Eqgs. (A3) and (A5) and (of ))b = (B7)
expanded, neglecting those terms that contajiurs, Ui;Q, 15 (v + w?)
Qin, Uinp, Q)(p,)(g, B; Bj, B; Bij andBi,-BrS as higher order
in this perturbation expansion.
@) _ XU, 2~ ~2 2~2
(87), = 2 [ - 57) 8 (7.7
+21 v(a) —3v) a)4( 2+ )]
A dix B: List of all t t flicient -
ppendix ISt Of all transport coencients (ﬁ2+(,¢) ) 2(V +a)2) 2, (88)
In this Appendix we list all transport céiicients a©
BO, §@ . in the form of integrals over the isotropic @\ _ Xb(3w* — 247572 + 57%)
velocity and magnetic correlation function®y, (R, k, w), (a’z )b = TS (B9)
Hu (k, w) Wo (bmR K, w), Hp (k, ). This parallels Appendix O (7 + )
B in RS06 and there is some overlap; however, for complete-
ness we list all cocients. Xou
W) _ APY [45 2~ ~3 ~ 6~ 4~3
Analogous to the relations in Sec. 1V for the Cartesian case (al )u ~ 120 [4'7 (11“) Sy )+ 477(11“) VS )
and RS06, we list here the diieient of 4tk®\W,;, or 47k?H, 1, +8i7° (11104; + 5w2,~,3) +i (1202;2 Ay 13(04)
in the integrand of each transport ¢eient; that isaf), & ol 4ep e open s s
or 30 in - 47 (5a)v + 3wV +2a))+5a)v—5w]
X (ﬁ2 + wz)f3 (172 + wz)fz, (B10)
(@)= 47 [ dkboI) (< ) Hu (k 0.
(a('))u’b = 4n / dk dw ka0 (K, w) Wup (k, w) , (e <1W))b =55 [4w2ny (#+w ) + 77 (7 - 36077 + 110?)
(ﬂ('))u,b - Ar / dk dw K239 (K, w) Wop (k, ). (B1) — 45 v(vz + wz) + 4 (—11104172 + 5% + 8a)6)
. — 808 + 1904 + 210° (P + 0?) (P + 0?) o7,
We use the notation = k?;, ¥ = k?v, andVIna = y, g (e.g., (B11)

Vinp+Vinu= x5 0)

(o). = % [-47° (30,75 + 57°) - 47 (305 + 5w*%7°)
ii* (4407 + 137* + 31w*) - 877 (3w + 5w7°)
_ 28;72 (5w4v2 + 3054 + 2w )

+5(8a) 72 + 3w + 5w8)]

1. Nonhelicala codficients

) Jp— (82)
(y )u 6(772 + wz) % (ﬁz + wz)‘3 (‘72 + wz)‘z , (812)
_ Xo¥
(), = TR (B3) (), = 22 [2&02“ (7 + w?) - 2875 (7 + o?)°
, + i (- 12077 + 77 - 3w?)
(y9) =- Ao (B4) — 4P (1772 - 5% + 140°)

u 3(72 + w?) (V2 + w?)’ o it . 20n a4
=56 v + 13w™V 53w](77 +<u) (v +w) o,

@) _ Xp(0® -7 (B13)
(7 )b 60 (72 + w2)2’ (B5)
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(0©), = Top [ 120777 (7 + 02) + 1275 (? - 7) (89),=o. (821)
+ 4077 (7 + 70?) + 87 (50*7 — w?7) + 5w - 5w’
2
-3 (20 55+ 1008 (o) (7 ) RS e
(B14)
_ 1’;2 _ wZ
(o), = 135 40775 (60777 + 7+ 5 %)= Gy 29
—if* (120%7 - 57 + o)
+ 47% (67 + 57 + w*) (6v), = % (B24)
+ 47 (<3072 + 3077 + 20°) ey
+ T + 9w8] (772 + wz)_z (172 + a)z)_sp*l, (B15) (5(W)) _ 72 _ 02 (825)
b 120 (52 + w?)®
(), = —% [~80%777 — 16077 — 8275
7 (8% + 7 + Tw®) — 47 (7077 + 30°7* + 40 (), = 20 (“3722‘ 507) , (B26)
u 52 2 52 2
+ 120%72 + 50*7* + 7<u8] (7"72 + wz)fs (172 + wz)fz, 1507 + @) (7 + o)
(B16) ~4 2~2 4
(K(Q)) _ 9 - 48wV + Tw (B27)
Xb [ 4 - ) b 15+ w?)
(Y(W))b =16 [4772 (—3w4v2 + 20%55% + 3w6)
8077 (P + ) + 7 (~120%57 + 37 + %) (W) =
+ 5045 + 1008 (P + 0?) (P +o?) T (BLT) ii* (2802 - 7) + 127 (" - w??) + 50* (7 + o)
30(72 + w?)® (7 + w?)
_ B28
(), = —% |97 (w" — 7) + 87° (5025 + 67°) (828)
+877 (30°7 + 407 + 167" (4" + 50,%7) (), =
b
+4i7? (13057 + 3077 + 100°) 37 (~120%52 + 7 + 30%) - 20047 + 15024 + 130°
+ 5w* (4w2172 +74 4 3w4)] 300 (72 + w?) (32 + w2)3
X (ﬁ2 + wz)fs (172 + wz)fz, (B18) (B29)

(),(D))b _ ])-(_250 [_1%277; (3@2172 L. 2w4) (,B(D))u = % [27759 (5172 + wz) + 16027537 + 5w (172 + wz)z

+ i (120757 + 107 - 230") +i7 (6047 - 20%) — 7j* (1007 + 37 + 7w?)
873 (305 + 407 + ) + i (52652 + 5607 — 360) — 21 (8uw*? + 3w + 5°)| (7 + wz)fs (7 + wz)fz,
40057 + 3704 — 130° | (P + %) (7 +0?) o7 520
(B19) L
(B), = 151477 (7 + &?) + 477 (o - 30'7)
2. j codficients ~4w?ij7 (3077 + 7 + 20%) - 605 — W' + 30
+ 7t (—6a)2172 + 7+ w4)] (ﬁz + wz)fz (172 + wz)fs o
) B31)
(ﬁ(O)) = ~277 J (B20)




(K(D))u = % [2 (5v +w ) + 160%7%7° + U(Ga)4173 - 2«)6\7)

+i* (100%7 + 37 + 7w?) + 277 (87 + 3w + 50,°)
— 50 (7 + wz)z] (P +?) (P +a?) ", (B32)

(K(D))b = 310[ 47373 (v + w ) + 4wy (3w2v2 +7 4+ 20w )

( 60?7 - 37 + 5w*) + 4 (~Tw*7? - 4w + °)
o (

220°7 + 137" + w )] (ﬁz + w2)72 (172 + wz)isp_l,

B33)

3. Helical a codficients
(@), = A (B34)

T 3G+ )

25
(Cls_cl)))b = _WZ—QJZ), (835)
(»?),=0, (B36)
(), =0, (B37)
i (7 + 8w?) - W7 + W’
(’y(l‘YV))u = 6 (ﬁz + (,()2)2 (;}2 i+ (,()2) (538)
72 (02 —32) — w2 (352 2

(y(i-\lN))b:n(w V) w(v+w) (ng)

6p (712 + w?) (72 + w?)?

) ="1
- 8% (v —7a))+4a)417v(
+ 47 (110%7 + 60%7* + 50°)

[3 (w* = 7*) + 47° (55 - 37°)

1% +9a))

— 50 (4077 + 7 + 30*)| (7 + wz)—s (#+ a)z)_z,
(B40)
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(4), = g 7 (2079 + 77 .)
47 (3w + 20°7° = 7P) + 47 (- 11w*7? + 20°7*
—47j (1105 + 1807° + 7%

+ 3w6)

W (<2007 + 7 + 100)| (P + 0?) (P + 7).
(B41)

All of the listed kinematic transport cfiicients agree with
those given in RS06, with one exception. This is (ﬁ@)
codficient, which contains a factor/30, rather than /60.

Appendix C: The sign of (i7,,)7

In this appendix we give argue that the sign @‘XIS is al-
ways negative, given reasonable assumptions about the form
of W, (k, w). We have not been able to find a general proof
that this is the case due to the complexity of the expression
Eq. (33), but instead analyze the casesPth Pm« 1, and
Pm > 1 separately. In addition, plottin@)(x)ﬁ for Gaussian
W, [Eg. (30)] across a range of Pm (e.g., Fig. 1) leads us to
the same conclusion for this specifig,. [Note that @yx)g
depends nontrivially only on Pm arndvhen written in the di-
mensionless variables given in Eq. (31), meaning it isgiitai
forward to observe positivity by plottingyﬁx)ﬁ againsftg over
arange of Pm.]

1. Pm=1

Insertingv = n into Eqg. (33) leads to

8r (w? - i) (372 + w?)

()5 = / dw dk IRW, (k, w)

15(i72 + w?)°
(C1)
An integration by parts i yields
dW,
(TIYX)b - 15/d(,()dk ( ) d(/.)
2

y ST+ 30 dVh (C2)

(2 + w?)?  do

Under the reasonable assumptions thatW/dw < 0 and
tarm! (w) dWdw < 0, each term in the integral must be neg-
ative. (Note that the tam (w)dWdw < 0 condition, al-
though it may appear less familiar, is just as restrictive as
wdWdw < 0, given the odd nature of the tarfunction.)

2. Pm«x1

Insertingn = v/Pm into Eq. (33), we carry out a series ex-
pansion about PM = o of the resulting expression. The
reason for this expansion (rather than the more obvious ex-
pansion about Pra 0) is that we wish to explore that low Pm
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limit with large n rather than that withh — 0, since SOCA term is obviously negative due to the positive definitendss o
looses applicability ag,; — 0. The series expansion to first the integrand.
orderin ¥Pmis

8r 3w — 20w* 3. Pm>1
s _ o7 2| QWYY — 2w )
(0F = ~15 | dodk Wik ( o (c3)
432 1 Insertingy = Pmp into Eq. (33), and carrying out a series
+ 152 2)2 Pr L + ] (C4)  expansion about Pm co (See previous section), one obtains
Ve + w

] o o W2 — P

;Lhe first term is independent of Pm, persistingyas 0, and (y0S ~ 16r /dwde\t,kz 1 (~ n )2 +.] (s
e existence of this is not surprising given the fact that th 15 PM (72 + w?)

dynamo can arise from thH&- Vb+b- VB term in the induction

equation. This term can be shown to be negative using thAs expected, there is no = 0 contribution to the transport.

same integration by parts method used to obtain Eq. (C2), witAgain using integration by parts, it is easy to prove negstiv

the requirement dW/dw < 0. The Pm dependent second of the integral provided) dW/dw < 0.
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