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Anhui 230026, China

(Dated: 31 July 2015)

We present a formulation of collisional gyrokinetic theory with exact conservation

laws for energy and canonical toroidal momentum. Collisions are accounted for by

a nonlinear gyrokinetic Landau operator. Gyroaveraging and linearization do not

destroy the operator’s conservation properties. Just as in ordinary kinetic theory,

the conservation laws for collisional gyrokinetic theory are selected by the limiting

collisionless gyrokinetic theory.
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Introduction. — One of the greatest unsolved problems in the theory of magnetically-

confined plasmas is understanding and controlling the turbulent flux of particles and heat

into a fusion reactor’s wall 1. It is believed that the predominant cause of these fluxes is low-

frequency fluctuating electromagnetic fields with wavelengths on the order of the gyroradius.

While a collisionless gyrokinetic model of these fluctuating fields has been developed that is

fully consistent with the First Law of Thermodynamics (for a recent review see Ref. 2), this

energetically-consistent model has the serious flaw of ignoring collisions altogether.

In order to accurately describe irreversible plasma transport processes, the effects of

collisions must be incorporated into gyrokinetic theory. Previous work on linear gyrokinetic

collision operators3–5 assumed a strict two-scale separation between a large-scale equilibrium

distribution function Fo and a small-scale fluctuating part δF = F − Fo. Conservation

properties of the collision operator in Ref. 3, for example, were discussed in the gyroBohm

limit. Here, we will focus on nonlinear gyrokinetic collision operators for a global full-F

approach that do not make this split, and that can thus investigate more completely the

possible effects of finite ε = ρi/L in experiments, such as corrections to gyroBohm scaling

and non-local turbulence spreading (see footnote 5 on p. 427 in Ref. 2.)

When finite-ε effects are accounted for, preserving exact conservation properties, and

therefore ensuring consistency with the First Law of Thermodynamics, is a nontrivial un-

solved problem. The collision operators in Refs. 3 and 4, for example, were obtained by

transforming a particle-space collision operator with exact conservation properties into the

lowest-order guiding center coordinates. While this approach guarantees the existence of

energy and momentum-like quantities that annihilate the collision operator, these same

quantities are not conserved by the full-F collisionless gyrokinetic system, and therefore

fail to be conserved by the full-F collisional system. More generally, existing gyrokinetic

collision operators are not energetically consistent in a full-F formalism because: (a) the

gyrocenter coordinate transformation, and therefore any collision operator transformed into

gyrocenter coordinates, is only known as an asymptotic expansion in the gyrokinetic ordering

parameter ε; and (b) replacing the asymptotic expansion of such an operator with a trun-

cated power series destroys exact conservation laws. See section IV of Ref. 6, from which

we borrowed the term “energetic consistency,” for the analogous discussion of truncation

and conservation laws in collisionless gyrokinetics. The purpose of this Letter is to present

the first collisional formulation of global full-F gyrokinetics with exact conservation laws.
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Refining the example set in Ref. 7, we will show that the key to obtaining this formulation of

collisional gyrokinetics is expressing the collision operator in terms of single-particle Poisson

brackets “as much as possible.”

Electrostatic Model. — For the sake of simplicity, our discussion will focus on quasi-neutral

electrostatic gyrokinetics (for instance, see Ref. 8 for a meticulous and explicit account of

the theory). However, the ideas behind our discussion apply equally-well to electromagnetic

gyrokinetics (for example, see Ref. 9.) Our primary result consists of an expression for the

non-linear Landau operator in gyrocenter coordinates that is corrected by small terms to

ensure exact energy and momentum conservation [see Eq. (25).] These correction terms are

analogous to the B∗‖-denominators in the Hamiltonian guiding center theory introduced by

Littlejohn10; they do not increase the theory’s order of accuracy, but they are essential to

include for the sake of ensuring exact energy and momentum conservation.

As a first step, we review how the energy conservation law is discussed in collisionless

kinetic theory. The governing equations of collisionless electrostatic kinetic theory are the

Vlasov-Poisson equations,

∂tfs + {fs, Hs} = 0 (1)

∆ϕ = −4πρ(f), (2)

where fs is the species-s distribution function, ϕ is the electrostatic potential, ρ(f) =∑
s es
∫
fs dp is the charge density, Hs = p2/2ms + esϕ, and {·, ·} is the standard canonical

Poisson bracket. Equations (1)-(2) conserve the total energy

E =
∑
s

∫
p2

2ms

fs dz +

〈
ϕ, ρ(f) +

1

8π
∆ϕ

〉
, (3)

where 〈·, ·〉 denotes the standard L2-pairing of functions on configuration space and dz =

dx dp. Note that the second term in Eq. (3) is equal to the total energy stored in the electric

field 1
8π

∫
∇ϕ · ∇ϕdx; this follows from applying integration by parts together with the

assumption that ϕ decays sufficiently rapidly to ensure
∫
∇· (ϕ∇ϕ) dx = 0. Because binary

collisions conserve energy, Eq. (3) must also be conserved in collisional kinetic theory. In

particular, if the Vlasov-Poisson equations are modified by the addition of a bilinear collision
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operator,

∂tfs + {fs, Hs} =
∑
s̄

Css̄(fs, fs̄) (4)

∆ϕ = −4πρ(f), (5)

then Css̄ must be chosen to satisfy the condition

0 =
dE
dt

=
∑
s

∫
Hs ∂tfs dz +

〈
∂tϕ, ρ(f) +

1

4π
∆ϕ

〉
=
∑
s,s̄

∫
HsCss̄(fs, fs̄) dz. (6)

Note that ρ − ∆ϕ/4π = 0. Because this identity must hold for an arbitrary multi-species

distribution function, the collision operator therefore has to satisfy the well-known identities∫
HsCss̄(fs, fs̄) dz +

∫
Hs̄Cs̄s(fs̄, fs) dz̄ = 0, (7)

which express the fact that the energy gained by species s due to collisions with species s̄ is

precisely the energy lost by species s̄ due to collisions with species s. The non-linear Landau

operator (summation rule is implied),

Css̄(fs, fs̄) = −Γss̄
2
{xi, γss̄i }, , (8)

where xi is the i’th cartesian component of the position vector x, satisfies the identi-

ties (7), and therefore defines an energetically-consistent collisional kinetic theory. Here

Γss̄ = 4πe2
se

2
s̄ ln Λ; the 3-component vector γss̄ is

γss̄i (z) =

∫
δ(x− x̄) Qss̄(z, z̄)Ass̄(z, z̄) dz̄; (9)

the 3× 3 matrix Qss̄ is given by

Qss̄(z, z̄) =
1

Wss̄(z, z̄)
P[Wss̄(z, z̄)], (10)

where P(ξ) ≡ I− ξ̂ξ̂ is the orthogonal projection onto the plane perpendicular to the vector

ξ; the velocity difference Wss̄ is given by

Wss̄(z, z̄) = {x, Hs}(z)− {x, Hs̄}(z̄); (11)
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and the vector

Ass̄(z, z̄) = fs(z){x, fs̄}(z̄)− {x, fs}(z)fs̄(z̄). (12)

When comparing this form of the Landau operator to more conventional expressions, it is

useful to note that {x, g} = ∂pg, where g is any function on phase space, which leads to the

identity

v − v̄ = {x, Hs}(z)− {x, Hs̄}(z̄). (13)

Moreover, the identities (7) follow immediately from the fact that the velocity difference

Wss̄ is a null-eigenvector of the matrix Qss̄.

Electrostatic Gyrokinetic Model. — In order to apply this same argument to gyrokinetic

theory, we start with the gyrokinetic Vlasov-Poisson system

∂tFs + {Fs, Hgy
s }gc

s = 0 (14)

∇ · P = ρ(F ). (15)

Here, Fs is the gyrocenter distribution function; ρ(F ) =
∑

s es
∫
Fs Jsdv‖ dµ dθ; Js is the

guiding center Jacobian; and θ is the gyrophase; ϕ is the electrostatic potential; {·, ·}gc
s is

the guiding center Poisson bracket;

Hgy
s = Hgc

s + es 〈ψ〉+
e2
s

2
〈{ψ̃, Ψ̃}gc

s 〉 ≡ Ks(E) + esϕ (16)

is the gyrocenter Hamiltonian; ψ(z) = ϕ(X + ρos), where ρos is the lowest-order guiding-

center gyroradius; 〈·〉 denotes the gyroaverage; Ψ̃ denotes the gyroangle antiderivative of

ψ̃ ≡ ψ − 〈ψ〉; Ks(E) is the gyrocenter kinetic energy; P = − δK/δE is the gyrocenter

polarization density11; K =
∑

s

∫
FsKs(E) dzgc

s ; and dzgc
s denotes the guiding center Liouville

volume element. These equations govern collisionless quasineutral electrostatic gyrokinetic

theory when the E × B speed is much less than the thermal speed, and they conserve the

total energy,

Egy =
∑
s

∫
FsH

gy
s dzgc

s , (17)

exactly, which can be verified directly or derived from this collisionless system’s formulation

as a Lagrangian field theory9 (which we will not present here.) Note that the quasineutrality
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equation (15) implies that this system governs plasma dynamics on time scales long compared

to the period of plasma oscillations (this is discussed, for instance, in section IV C in Ref. 9).

Also note that the gyrocenter Hamiltonian (16) agrees with the dt-component of Eq. (16) in

Ref. 12 modulo geometric terms that appear in Hgc
s and the guiding center Poisson bracket.

The relevant geometric terms in Hgc
s can be found explicitly in Ref. 13, in either Eq. (31)

or Eq. (35). If Eq. (31) is used, the guiding center Poisson bracket must be the one defined

by the Lagrange 1-form given in that reference’s Eq. (30). If Eq. (35) is used instead, the

guiding center Poisson bracket must follow from Eq. (33). In general, the guiding center

Hamiltonian and Poisson bracket must be derived from the same guiding center Lagrangian.

The equations governing collisional gyrokinetic theory are given by adding a bilinear

collision operator to the gyrokinetic Vlasov-Poisson equations,

∂tFs + {Fs, Hgy
s }gc

s =
∑
s̄

Cgy
ss̄ (Fs, Fs̄) (18)

∇ · P = ρ(F ). (19)

Because the conservation laws of ordinary collisional kinetic theory are consistent with those

of collisionless kinetic theory, the gyrokinetic collision operator Cgy
ss̄ must not alter the con-

servation of Egy. Thus,

0 =
dEgy

dt
=
∑
s

∫
Hgy
s ∂tFs dz

gc
s +

〈
ρ(F )−∇ · P , ∂tϕ

〉
=
∑
s,s̄

∫
Hgy
s C

gy
ss̄ (Fs, Fs̄) dz

gc
s . (20)

Note that ρ−∇·P = 0. This identity will be satisfied for a general multi-species gyrocenter

distribution function if and only if∫
Hgy
s C

gy
ss̄ (Fs, Fs̄) dz

gc
s +

∫
Hgy
s̄ C

gy
s̄s (Fs̄, Fs) dz̄

gc
s̄ = 0, (21)

which is the gyrokinetic version of Eq. (7). The identities (21) must be satisfied exactly by

any energetically-consistent gyrokinetic collision operator.

An energetically-consistent collision operator— While Eq. (21) imposes important qual-

itative constraints, they cannot determine the form of the gyrokinetic collision operator by

themselves. A quantitative constraint is necessary as well. To this end, it is important that

the gyrokinetic collision operator agrees with the the transformation of the particle-space
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Landau operator14 into gyrocenter coordinates, at least up to some desired order in the

gyrokinetic ordering parameter ε. Is it possible to satisfy these qualitative and quantitative

constraints simultaneously? The answer is “yes”.

We have discovered an accurate gyrokinetic collision operator that is consistent with the

conservation laws of collisionless gyrokinetic theory, and therefore the first law of thermo-

dynamics. The form of the operator is suggested by the somewhat-peculiar presentation of

the particle-space Landau operator given earlier, i.e. Eq. (8). Let ys = X + ρos and define

the gyrocenter velocity difference

W gy
ss̄ (z, z̄) = {ys, Hgy

s }gc
s (z)− {ys̄, Hgy

s̄ }gc
s̄ (z̄), (22)

the associated 3× 3 matrix

Qss̄
gy(z, z̄) =

1

W gy
ss̄ (z, z̄)

P[W gy
ss̄ (z, z̄)], (23)

and the vector

Agy
ss̄ (z, z̄) = Fs(z){ys̄, Fs̄}gc

s̄ (z̄)− {ys, Fs}gc
s (z)Fs̄(z̄). (24)

The energetically-consistent gyrokinetic Landau operator is given by

Cgy
ss̄ (Fs, Fs̄) = −Γss̄

2
{ys i, γss̄gy i}gc

s , (25)

where

γss̄gy(z) =

∫
δgy
ss̄ (z, z̄)Qss̄

gy(z, z̄)Agy
ss̄ (z, z̄) dz̄gc

s̄ , (26)

and δgy
ss̄ (z, z̄) = δ(ys(z)− ys̄(z̄)). Note that this operator depends explicitly on the electric

field through the gyrocenter Hamiltonians that appear in Eq. (22). We also note that by

including ρos in ys, this gyrocenter collision operator includes the classical diffusion terms

reported on in Ref. 7 in that Reference’s Eqs. (51)-(56). Using a straightforward, but tedious

argument that will be given in a forthcoming publication, we have shown that this operator

agrees with the Landau operator transformed into gyrocenter coordinates (which is also

discussed, for instance, in Ref. 5) with leading-order accuracy.

Because the proofs are simple, we will now show explicitly that the gyrokinetic Landau-

Poisson system (18) defined in terms of the collision operator (25) has exact conservation

laws for energy and momentum and produces entropy. We hope to convey the similarity
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of this demonstration with the analogous demonstration for the ordinary Landau-Poisson

system (4)-(5). However, a word of caution is in order here. It is essential that the guid-

ing center Poisson brackets that appear in Eq. (25) be genuine Poisson brackets (i.e., the

brackets must satisfy the Leibniz and Jacobi identities15). Dropping terms from a bracket

that satisfies these properties will destroy the gyrokinetic Landau-Poisson system’s exact

conservation laws. The correct approach to deriving the guiding center Poisson bracket is

described in detail in Sec. II C of Ref. 16.

Energy conservation—Proving that the gyrokinetic Landau operator (25) satisfies the

identities (21) is very similar to proving that the particle-space Landau operator satisfies the

identities (7). Setting Ėss̄ =
∫
Hgy
s C

gy
ss̄ (Fs, Fs̄) dz

gc
s , it is simple to verify that

Ėss̄ + Ės̄s =
Γss̄
2

∫∫
(W gy

ss̄ )†Qss̄
gyA

gy
ss̄δ

gy
ss̄ dz̄

gc
s̄ dzgc

s , (27)

where all two-point quantities in the integrand are evaluated at (z, z̄) and ·† denotes the

ordinary matrix transpose. Because Qss̄
gy is a symmetric matrix with null eigenvector W gy

ss̄ ,

the right-hand-side of this equation vanishes exactly. Thus the gyrokinetic Landau opera-

tor (25) satisfies the identities (21) exactly, and the gyrokinetic Landau-Poisson system (18)

has an exact energy conservation law, dEgy/dt = 0.

Toroidal momentum conservation—We will prove that if the background magnetic field

is axisymmetric, then the gyrokinetic Landau-Poisson system conserves the total toroidal

momentum

Pφ =
∑
s

∫
pφsFs dz

gc
s , (28)

where pφs is the guiding center canonical toroidal momentum. In general the expression

for pφs will depend on one’s choice of guiding center representation. However, given the

guiding center Lagrange 1-form ϑ in a particular representation (e.g. Eq. (33) in Ref. 13,)

pφ = ϑX · R2∇φ, where ϑX is the dX-component of ϑ, R is the major radius, and φ is

the toroidal angle. If the background magnetic field has different or additional symmetries,

a similar proof of the conservation of the corresponding total momentum can easily be

constructed. The time derivative of Eq. (28) yields

dPφ
dt

=
∑
s,s̄

∫
pφsC

gy
ss̄ (Fs, Fs̄) dz

gc
s =

∑
s,s̄

Ṗφss̄, (29)
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where Pφ is conserved exactly by the gyrokinetic Vlasov-Poisson system, as is discussed in

detail in Ref. 6. Here, we find

Ṗφss̄ + Ṗφs̄s =

Γss̄
2

∫∫
({ys, pφs}gc

s − {ys̄, pφs̄}
gc
s̄ )†Qss̄

gyA
gy
ss̄δ

gy
ss̄ dz̄

gc
s̄ dzgc

s . (30)

Now using the fact that pφs is the generator of infinitesimal toroidal rotations, i.e. {h, pϕs}gc
s =

∂φh for any function on phase space h, we can see that {ys, pφs}gc
s = ez × ys, where ez is

the unit vector along the axis of rotation. Therefore the vector quantity ({ys, pφs}gc
s −

{ys̄, pφs̄}gc
s̄ ) δgy

ss̄ = ez × (ys − ys̄) δgy
ss̄ = 0, which follows from standard δ-function properties.

This shows that Ṗφss̄+Ṗφs̄s = 0, which in turn implies total toroidal momentum conservation

dPφ/dt = 0.

Entropy production—As we have discussed, these conservation laws ensure that the gy-

rokinetic Landau-Poisson system is consistent with the the First Law of Thermodynamics.

On the other hand, they do not directly imply that the gyrokinetic Landau-Poisson system is

consistent with the Second Law of Thermodynamics. To verify that entropy is indeed a non-

decreasing function of time, we have computed the time derivative of S = −
∑

s

∫
FslnFs dz

gc
s

and found

dS

dt
=

Γss̄
2

∫∫
1

FsFs̄
(Agy

ss̄ )
†Qss̄

gyA
gy
ss̄δ

gy
ss̄ dz̄

gc
s̄ dzgc

s . (31)

Key in deriving this identity is the fact that any function of Fs is conserved by the collisionless

gyrokinetic system. Because Qss̄
gy is a positive semi-definite matrix and the distribution

function is positive17, the right-side of Eq. (31) is non-negative, which is the desired result.

Note that this proves one “half” of a gyrokinetic version of Boltzmann’s H-theorem. The

missing ingredient is a complete characterization of the distributions that satisfy dS/dt = 0,

i.e. the gyrokinetic Maxwellians. Because the guiding center Poisson bracket is rather

complicated, we have not yet found a complete characterization. However, we have verified

that the distribution

FMs =
1

Zs
exp

(
− Hgy

s

T

)
, (32)

where Zs =
∫

exp(−Hgy
s /T ) dzgc

s is the partition function, maximizes the entropy. We leave

the characterization of the most general gyrokinetic Maxwellian, which would be useful for
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the sake of deriving dissipative gyrofluid models with exact conservation laws18, as a topic

for future study.

Gyroaveraging— When the collision frequency is much smaller than the gyrofrequency7,

the full gyrokinetic Landau operator (25) can be replaced with that operator’s gyroaverage,

〈Cgy
ss̄ 〉. When this is done, the gyrokinetic Landau-Poisson system becomes the gyroaveraged

Landau-Poisson system,

∂tFs + {Fs, Hgy
s }gc

s =
∑
s

〈Cgy
ss̄ (Fs, Fs̄)〉 (33)

∇ · P = ρ(F ), (34)

where Fs is now interpreted as the gyroaveraged part of the distribution function. Because

the functions Hgy
s and pφs are independent of the gyrophase, the proofs of energy and mo-

mentum conservation given earlier work with Cgy
ss̄ replaced by 〈Cgy

ss̄ 〉. Thus, the gyroaveraged

Landau-Poisson system has exact energy and momentum conservation laws.

Linearization— Closely related to the gyroaveraged Landau-Poisson system is the

collisionally-linear gyroaveraged Landau-Poisson system,

∂tFs + {Fs, Hgy
s }gc

s =
∑
s̄

(
δCtest

ss̄ + δCfield
ss̄

)
, (35)

∇ · P = ρ(F ), (36)

where the linearized test-particle and field-particle collision operators are

δCtest
ss̄ (Fs) = 〈Cgy

ss̄ (Fs, FMs̄)〉, (37)

δCfield
ss̄ (Fs̄) = 〈Cgy

ss̄ (FMs, Fs̄)〉. (38)

This system of equations is obtained from the gyroaveraged Landau-Poisson system by

assuming Fs = FMs + δFs and then dropping the non-linear term in the collision operator,

〈Cgy
ss̄ (δFs, δFs̄)〉. Note that 〈Cgy

ss̄ (FMs, FMs̄)〉 = 019. Because the gyrokinetic Landau operator

satisfies the identities (21), it is straightforward to prove that these equations have the same

conservation laws for energy and momentum as the gyroaveraged Landau-Poisson system.

Concluding remarks— The key to deriving an energetically-consistent formulation of

collisional gyrokinetics was first expressing the particle-space Landau operator in terms of

Poisson brackets “as much as possible,” which was an idea first championed by Brizard in
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Ref. 7. In particular, the identity

v − v̄ = {x, Hs}(z)− {x, Hs̄}(z̄), (39)

together with the close relationship between energy conservation and the null eigenvectors

of the Q-matrix in the Landau operator, suggests that the appropriate definition of the

gyrocenter velocity difference is given by Eq. (22). This idea, together with the procedure

given earlier for determining the energetic consistency constraints, appears to be appropriate

for deriving energetically-consistent collision operators for other reduced plasma models as

well. In future work, we will report on the energy-conserving collisional formulations of

electromagnetic gyrokinetics and oscillation center theory.

We note that, although the gyrokinetic Landau operator (25) and its linearized forms

(37)-(38) may prove difficult to implement numerically, they identify the proper formalism

for the inclusion of collisional transport in gyrokinetic theory. Hence, these gyrokinetic col-

lision operators form the basis from which approximations can be implemented for practical

applications. For instance, if one wishes to use a simplified guiding center Hamiltonian that

neglects second-order geometry-dependent terms as in Ref. 12, then our work shows how the

collision operator should be modified in order to preserve conservation laws.

Lastly, by setting ϕ = 0 in the above formulas, our results reduce to an energy-

momentum-conserving guiding center collision operator. This operator would be ideally

suited to incorporating collisions into orbit-following codes such as ORBIT 20; see Ref. 21

for recent work on the Monte Carlo implementation of a 5D guiding center Fokker-Planck

collision operator. All previous guiding center collision operators that have been applied in

orbit-following codes either resort to ad hoc methods to ensure exact conservation laws22,

or else do not fully account for inhomogeneities in the magnetic field 23.
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