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A tutorial introduction to the
statistical theory of turbulent plasmas,

a half century after Kadomtsev’s Plasma

Turbulence and the resonance-broadening
theory of Dupree and Weinstock

John A. Krommes†
Princeton Plasma Physics Laboratory, P. O. Box 451, MS 28, Princeton, New Jersey

08543–0451 USA
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In honour of the 50th anniversary of the influential review/monograph on plasma turbu-
lence by B. B. Kadomtsev as well as the seminal works of T. H. Dupree and J. Weinstock
on resonance-broadening theory, an introductory tutorial is given about some highlights
of the statistical-dynamical description of turbulent plasmas and fluids, including the
ideas of nonlinear incoherent noise, coherent damping, and self-consistent dielectric
response. The statistical closure problem is introduced. Incoherent noise and coherent
damping are illustrated with a solvable model of passive advection. Self-consistency
introduces turbulent polarization effects that are described by the dielectric function D.
Dupree’s method of using D to estimate the saturation level of turbulence is described,
then it is explained why a more complete theory that includes nonlinear noise is required.
The general theory is best formulated in terms of Dyson equations for the covariance C
and an infinitesimal response function R, which subsumes D. An important example is
the direct-interaction approximation (DIA). It is shown how to use Novikov’s theorem
to develop an x-space approach to the DIA that is complementary to the original
k-space approach of R. H. Kraichnan. A dielectric function is defined for arbitrary
quadratically nonlinear systems, including the Navier–Stokes equation, and an algorithm
for determining the form of D in the DIA is sketched. The independent insights of
Kadomtsev and Kraichnan about the problem of the DIA with random Galilean in-
variance are described. The mixing-length formula for drift-wave saturation is discussed
in the context of closures that include nonlinear noise (shielded by D). The role of R
in the calculation of the symmetry-breaking (zonostrophic) instability of homogeneous
turbulence to the generation of inhomogeneous mean flows is addressed. The second-order
cumulant expansion and the stochastic structural stability theory are also discussed in
that context. Various historical research threads are mentioned and representative entry
points to the literature are given. Some outstanding conceptual issues are enumerated.

† Email address for correspondence: krommes@princeton.edu
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1. Introduction

The first steps toward theories of plasma turbulence occurred in the early 1960s with
the development of quasilinear theory (Vedenov et al. 1962; Drummond & Pines 1962). It
was, of course, appreciated that the quasilinear approximation had a restricted domain of
applicability. For calculation of the lowest-order nonlinear corrections, it was natural to
use regular perturbation theory, such as in the work of Kadomtsev & Petviashvili (1963);
however, the way forward to an analytical description of strong turbulence was not very
clear. It was therefore a significant event when Kadomtsev (1920–19981) published his
review/monograph on plasma turbulence [in Russian, as an article in Vol. 4 of Problems

in Plasma Theory (1964); in English translation, as a book entitled Plasma Turbulence

(1965)2], which addressed not only quasilinear and weak-turbulence theory but also
sophisticated results about strong turbulence. Because of the diversity and unfamiliarity
of many of the ideas, it was a challenge to understand. A reviewer wrote (Drummond
1966),

“It is not an easy book to read. The method of presentation is in most cases
extremely brief and often it is not clear how the conclusions follow from the
discussion. [It] is such that it is also difficult to distinguish between those results
which are speculative and those which have been more rigorously derived. . . .

“The third chapter, which is the most speculative, contains a description of what
is apparently recent work in the theory of strong turbulence. Although some ideas
are presented clearly, it is next to impossible to follow in detail and the conclusions
reached are evidently of a speculative character.”

Nevertheless, Kadomtsev’s insights were seminal and the reviewer ultimately concluded,
“it should be required reading for any serious student in this field”—and so it served.
It was a bible for multiple generations of plasma theorists. And although some of the
conclusions may have appeared at the time to be speculative, in fact Kadomtsev’s
discussion contained, among many other notable ideas, a deep and entirely correct insight
about a deficiency of the leading theory of strong turbulence, the direct-interaction

1A memorial article that surveys Kadomtsev’s entire career is by Velikhov et al. (1998).
2In the present article, page references to Kadomtsev refer to the 1965 English translation.
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approximation (DIA) of Kraichnan (1959). It is ironic that Kadomtsev’s contribution
is better known in fields other than plasma physics (Monin & Yaglom 1971, Vol. 2,
p. 307). I shall explain the issue in Sec. 5.1.
Shortly after the 1965 Western publication of Kadomtsev’s book, Dupree (1966)

published the paper “A perturbation theory for strong plasma turbulence.” Subsequently
the formalism, including further significant advances by Dupree (1967) and Weinstock
(1968, 1969, 1970), came to be known as resonance-broadening theory (RBT); that work
was also extremely influential.3

It is now a half century since those watershed events. Over that time the theory
of turbulence in both fluids and plasmas has developed substantially, and a beginning
researcher interested in turbulence will find that much conceptual background is assumed.
Fluid turbulence theory has been addressed in multiple books (Leslie 1973; Frisch 1995;
Lesieur 1997; McComb 1990, 2014) and articles (Eyink & Sreenivasan 2006; Falkovich
2006; Boffetta & Ecke 2012); the plasma literature is sparser although a review by
Yoshizawa et al. (2001) ranges broadly over many conceptual and practical topics for
both fluids and plasmas, a comprehensive review of analytical statistical turbulence
theory with a focus on plasma issues is available (Krommes 2002), and the book by
Diamond et al. (2010) provides an introductory survey of various approaches to plasma
turbulence.4 But absorbing all of this material is a formidable undertaking. The purpose
of this article is to provide some help by introducing in a tutorial5 way a few highlights
of the statistical description of turbulence, using Kadomtsev’s review and the resonance-
broadening theory as springboards. Whereas all of the discussion should be of interest to
plasma theorists, some other parts apply equally to fluids and to plasmas, thus serving
to unify those specialties.

1.1. The role of analytical theory

This article addresses analytical turbulence theory. It is a reasonable question to ask,
Why should one care? The experimental situation has improved dramatically since the
1960s at both laboratory and (pre-)reactor scales, and we now have refined diagnostics
and data-analysis capabilities that provide direct windows into nature. Certainly the
biggest advance over the last half century has been the explosive rise in computing power,6

3As is often true in research, the works by Kadomtsev, Dupree, and Weinstock were not without
flaws. However, the more significant point is that early on those scientists brought powerful
insights and techniques to an important problem. For examples of technical discussion of some
issues, see Catto (1978a), Krommes (1981), Weinstock & Catto (1981), and additional remarks
later in this article.
4Although there is a small amount of overlap between the book of Diamond et al. and the
present article, the goals and emphases are rather different. I focus more on the challenges
of a systematic analytical description, and I cover only a restricted set of topics but discuss
some of those in more detail than do Diamond et al.: I give a lengthy discussion of a solvable
random oscillator model, I treat the renormalized dielectric function thoroughly, and I provide a
complete statement and (new) technical approach to the DIA. I also include some topics omitted
from that book, including (i) the symmetry-breaking bifurcation from homogeneous turbulence
to a state of inhomogeneous turbulence that includes steady zonal jets, and (ii) some modern
closures (CE2 and S3T) that are well suited to considerations of the interactions between mean
fields and turbulence.
5A lengthier and more introductory set of tutorial lectures on some plasma-physics topics is by
Krommes (2006).
6Of the 215 references cited by Kadomtsev (1965 English version; some references in the Russian
original differ), just one reported computer simulations—namely, the pioneering work by Dawson
(1962) on a 1D model of the two-stream instability.
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which has enabled entirely new methods of scientific discovery.7 A companion tool has
been the nonlinear gyrokinetic formalism (c. 1982), which has become indispensable for
both analytical insights into, and the numerical simulation of, turbulence in magnetized
plasmas. We have learned much more about plasma turbulence from both experiments
and simulations than we have from sophisticated theory. Nevertheless, there are good
arguments in favour of analytical approaches, as I discuss in the next several paragraphs.

It is worth emphasizing that before one attempts to build a technically sophisticated
formalism, one should understand the dimensional and scaling consequences of the gov-
erning partial differential equations (PDEs), which are assumed to be given. Consider, for
example, random motion in one spatial dimension and suppose that, in a statistical sense,
the dynamics are entirely specified in terms of just two dimensional parameters σ and τ
having the dimensions of space and time, respectively. I shall indicate random variables
by a tilde. It follows that the mean-square displacement must obey 〈x̃2〉 = f(t;σ, τ),
where f is an unknown function.8 By dimensional and scaling analysis (Barenblatt 1996;
Krommes 2002, Appendix B), it follows that f must have the form f(t;σ, τ) = σ2g(t/τ),
where g is a dimensionless function of a dimensionless argument. Although g can be
measured in experiments or simulations, much deeper understanding follows from theories
that predict the form of g, such as models of continuous-time random walks (Klafter
et al. 1996; Metzler & Klafter 2000). One of many possibilities is g(t) = At

α
, where the

dimensionless constants A and α are not determined by scaling analysis. The value α = 1
corresponds to the classical random walk, but subdiffusive or superdiffusive values of α
are also possible in some interesting physical situations.

By generalizing from such examples, one can argue (Connor & Taylor 1977; Connor
1988) that when faced with a new problem in statistical theory one should always
first extract the maximum amount of information accessible from scaling analysis of
the governing equations. In some cases, that fully determines the form of the answer
except for a numerical constant. More generally, it couches the answer in terms of various
dimensionless functions. It is the role of experimental observation, numerical simulation,
and analytical theory to determine the forms of those functions and to identify the physics
that underlies them.

The basic challenge for any of those approaches, especially for theory, is that the
dynamical equations are nonlinear. Nonlinearity leads to rich and interesting behaviour,
including turbulent transport, fluctuation spectra with suggestive shapes, and probabil-
ity density functions (PDFs) that are frequently non-Gaussian. Analytical turbulence
theory provides methods to explain and predict that behaviour both qualitatively and
quantitatively. Qualitatively, it has proven fruitful to discuss turbulence in the same
language of random walks and (generalized) Langevin equations that has long enriched
our understanding of classical Brownian motion. Quantitatively, statistical theory pro-
vides formulas for turbulence-induced transport fluxes in terms of weighted sums over
fluctuation spectra, and it also leads to approximate equations for those spectra; the
predictions can be directly compared with experimental measurements or computer
simulations. More sophisticated techniques (not discussed in this article) can predict
entire PDFs. Analytical methods have also been useful in addressing the generation

7A few examples selected from a very long list are the works of Rogers et al. (2000), Wang et al.
(2011), and Hatch et al. (2011a).
8The restriction to a statistical description is essential; σ and τ are properties of probability
density functions descriptive of the dynamics. Motion in an individual realization would also
depend at least on the initial condition x̃0, so the allowable form for x̃2(t) would be much less
constrained.
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mechanisms of zonal flows, which are important in regulating the levels of turbulence
and transport. In some cases, one can analytically predict the threshold for the onset of
zonal flows and the characteristic scale of those flows, among other things. Furthermore,
from analytical statistical descriptions one can gain unique insights into the mechanisms
by which those flows are self-sustained.
The restricted goal of this article is to introduce some of the conceptual issues

and technical challenges relating to the analytical, especially statistical, description of
turbulence; that provides a language for discussion and a framework for thinking and
modelling,9 and it can lead to quantitative predictions. It is remarkable how much the
pioneers understood of this subject 50 years ago, and that deserves to be celebrated; it
is also instructive to see how far we have (or have not) come.

1.2. The plan of the article

Broadly speaking, one can say that the two key concepts in statistical turbulence theory
(introduced in Sec. 2) are nonlinearity-induced incoherent noise and coherent damping,
which are generalizations of analogous effects in the simple Langevin description of
classical Brownian motion. Both of those are already present in systems involving passive
advection, as I shall illustrate with an exactly solvable model in Sec. 2.3. Self-consistency
adds additional complications, including the concept of a dielectric function D(k, ω).
The dielectric function is a fundamental object in plasma physics. In its lowest-order
(linearized-Vlasov) approximation, it is treated exhaustively in many textbooks. Yet not
one of those discusses how to systematically treat dielectric shielding when the system is
turbulent, which is the case almost universally encountered in practice. ThenD becomes a
functional of the turbulence level, so it is sometimes referred to as the nonlinear dielectric
function. Failure by some to appreciate that nonlinear corrections to D are essential in
steady-state turbulence has led to confusion.
It is a common belief that the existence of a nontrivial D importantly distinguishes

the electromagnetic, polarizable plasma from the neutral fluid. Plasma physicists proudly
lay claim to D as a special feature of their field, with its potpourri of linear waves. In
fact, however, even the incompressible Navier–Stokes turbulent fluid possesses a well-
defined D, as I shall show. The consequences of this result are unclear because D is
subsumed by the infinitesimal response function R with which statistical turbulence
theory is usually formulated. However, it does imply that turbulent plasmas are not
conceptually as special as one might have thought, and it lends itself to a unified
discussion of the spectral balances in both plasmas and fluids.

I shall discuss in Sec. 3 the definition and meaning of the nonlinear dielectric function of
a turbulent plasma, then note that D cannot be practically evaluated without a statistical
approximation or “closure.” I shall sketch some of Dupree’s early work on the subject.
However, the limitations of his approach can only be appreciated in the context of a more
complete formalism. The general theory is formulated in terms of a response function R
that subsumes D, so it is never necessary to evaluate D independently. Nevertheless,
introducing D aids in heuristic understanding. Although fluid-turbulence theorists focus

9One use of analytical modelling is to provide workable numerical algorithms for large-eddy
simulations that are more computationally efficient than straightforward high-resolution direct
numerical simulations. An example is the elimination of a shell of the largest wave vectors in
favour of a simple eddy viscosity that acts on the resolved scales. Although the potential payoff
for such advances is large, space limitations preclude discussion of this difficult area here. Some
representative papers are by Smagorinsky (1963), Germano et al. (1991), Lilly (1992), and Morel
et al. (2011, 2012); further words and references can be found in Krommes (2002, Sec. 7.3).
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on R whereas many plasma physicists (still strongly influenced by Dupree’s work) are
inclined to think in terms of D, in fact R and D are intimately related, as I shall explain.
An important self-consistent closure is the DIA. It provides coupled equations that

balance the excitation due to nonlinearly produced incoherent noise with classical
dissipation and nonlinear coherent damping, including a proper shielding of the noise by
dielectric polarization. In Sec. 4 I shall present a new approach to the DIA that exploits
the Furutsu–Novikov theorem (Appendix B). I shall also describe an algorithm that
defines the direct-interaction approximation to D for arbitrary quadratically nonlinear
systems. With the DIA in hand, I shall briefly explain in Sec. 5 its difficulty with random
Galilean invariance, understood independently by Kadomtsev and by Kraichnan. I shall
also emphasize the important role of nonlinear noise in the spectral balance for saturated
turbulence, and I shall discuss the famous mixing-length formula for the saturation
level of drift waves, illustrating with the aid of an exactly solvable model that includes
nonlinear noise. Kadomtsev well appreciated the content of the DIA, but it is instructive
to take a fresh look with the hindsight of 50 years of experience.
A different perspective on the role of infinitesimal response arises when one considers

the instability of homogeneous turbulence to the generation of mean fields. I shall
discuss that in Sec. 6.2, where I describe how R figures in contemporary research on
the generation of zonal flows. That leads to a brief discussion of the so-called second-
order cumulant expansion (CE2) and the closely related stochastic structural stability
theory (S3T) that are currently popular for studies of the interactions between turbulent
eddies and mean (e.g., zonal) fields. Understanding those processes involves the concept
of Reynolds stress, which I shall describe.
Virtually all of the ideas and concepts discussed in the mid-1960s have been much

further developed over the last half century, and new ones have been introduced. I
emphasize that this article is not a comprehensive review of that huge body of work;
it is an introductory tutorial. However, in Sec. 7 I shall mention selected highlights and
provide some entry points to the literature.
I shall enumerate some open problems in Sec. 8, which concludes the body of the article.

Three appendices are also included: drift-wave terminology is defined in Appendix A, a
simple proof of Novikov’s theorem is given in Appendix B, and a list of notation is
provided in Appendix C.
Much of practical plasma physics involves the use of basic tools such as dimensional

analysis, simple model building at the cartoon level, and back-of-the-envelope estimates
of scaling laws, saturation levels, and transport coefficients. In the face of a rich phe-
nomenology, such elementary approaches are essential, and they can carry one a long
way. Some of the simplest arguments found in Kadomtsev’s review, such as saturation
at the mixing-length level, continue to influence one’s thinking about plasma turbulence.
Nevertheless, in the last half century the field has advanced significantly beyond mere
hand waving. It is important to appreciate what has already been learned, not only to
avoid reinventing the wheel but also to acquire the tools and perspective to build on
existing methodology in ways that are presently unforeseen.
This article is intended to be accessible to advanced graduate students. No sophisti-

cated mathematics is used.10 The ideas, however, are profound. Even if one reproduces
every step of the mathematics, it is unlikely that the full implications of the necessarily
brief discussion will be appreciated on a first reading. A half century of ideas (a full

10Familiarity with basic statistical objects, including probability density functions and
cumulants, is helpful (I shall give some references); the most complicated operation is probably
functional differentiation, which should be familiar from elementary variational calculus.
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century, if one includes research on neutral-fluid turbulence11) cannot be absorbed in
one sitting. But I hope that this article will provide historical perspective and an entrée
to the intriguing edifice that is modern turbulence theory.

2. Statistical descriptions of turbulence; the statistical closure
problem

The basic goals of a statistical theory of turbulence are to (i) predict experimentally
measurable quantities such as the mean field (e.g., profiles of density, temperature,
and flow), two-point fluctuation spectra, or transport coefficients; and (ii) understand
the physical processes that underlie the observations. These require one to consider
the famous statistical closure problem, which arises because the PDEs of interest are
nonlinear.

2.1. The statistical closure problem

The fundamental PDE of many-body plasma physics is the Klimontovich equation
(Klimontovich 1967, written here for zero magnetic field B):

∂tÑs(x,v, t) + v · ∇Ñ + Ẽ · ∂Ñ = 0, (2.1)

where

Ñs(x,v, t)
.
=

1

ns

∑

i∈s

δ(x− x̃i(t))δ(v − ṽi(t)) (2.2)

is the phase-space microdensity of species s,
.
= denotes a definition, n is the mean density,

∂
.
= (q/m)∂/∂v, q and m are charge and mass, and Ẽ is the microscopic electric field.

In electrostatics, to which this article is restricted for simplicity, it is sufficient to write
Ẽ = −∇φ̃ and to determine Ẽ or φ̃ from Poisson’s equation:

∇ · Ẽ = −∇2φ̃ = 4πρ̃ = 4π
∑

s

(nq)s

∫
dv Ñs(x,v, t). (2.3)

The functions x̃(t) and ṽ(t) are the random particle trajectories that evolve from certain

initial conditions. The quantities x̃, ṽ, and hence Ñ and Ẽ are random because it
is assumed that at some initial time the phase-space locations of the particles are
sampled from some ensemble; i.e., Ñ describes the phase-space dynamics of one par-
ticular realization of that ensemble. An observable quantity is the ensemble or statistical
average, denoted by 〈. . . 〉, of a random variable. For example, the so-called one-particle

distribution function is12 fs(x,v, t)
.
= 〈Ñs(x,v, t)〉. One is also interested in higher-

order statistics of the fluctuation δN
.
= Ñ − 〈Ñ〉, such as 〈δN(t)δN(t′)〉. In classical,

near-equilibrium plasmas, that two-point correlation function is used to derive the
Balescu–Lenard collision operator (usually approximated in practice by the Landau
operator13) that describes the effects of particle discreteness in the limit of weak coupling

11See the early articles on fluid turbulence reproduced in Friedlander & Topper (1961).
12This formula is a physical case of the general result from probability theory that a PDF P (x)
for a random variable x̃ is the average of a delta function that pins the observer coordinate x
to x̃: P (x) =

∫∞

−∞
dx δ(x− x)P (x) = 〈δ(x− x̃)〉. The fs(x,v, t) defined here differs inessentially

from a PDF because it is normalized such that V −1
∫
dxdv fs(x,v, t) = 1, where V is the

volume of the system.
13The plasma collision operators are discussed in most textbooks; an early treatise is by
Montgomery & Tidman (1964).
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[ǫp
.
= 1/(nλ3D) ≪ 1, where λD is the Debye length14]. But even in the continuum limit

ǫp → 0, turbulent fluctuations of the phase-space fluid can occur (Davidson 1972). The
goal is to determine their effects on observable spectra and turbulent transport.15

For neutral fluids, the paradigmatic PDE is the Navier–Stokes equation constrained
by incompressibility:

∂tũ(x, t) + ũ · ∇ũ = −ρ−1
m ∇P̃ + µ∇2ũ+ f̃ ext(x, t), (2.4a)

∇ · ũ = 0. (2.4b)

Here ρm is the mass density, µ is the kinematic viscosity (here assumed to be constant),

and f̃ ext is a solenoidal external random forcing.16 The pressure P̃ in Eq. (2.4a) is
determined in terms of ũ by taking the divergence of Eq. (2.4a), enforcing Eq. (2.4b),
and solving the resulting Poisson equation. The stochastic velocity ũ is random either
because the initial velocities are distributed randomly or because of the random forcing.
Because a single realization varies erratically in space and time, one is interested in the
ensemble average u(x, t)

.
= 〈ũ(x, t)〉 and in higher-order statistics such as the two-point

correlation function 〈δu(x, t)δu(x′, t′)〉, the Fourier transform of which with respect to
difference variables is the energy spectrum in wave number and frequency. The mean
flow u(x, t) is analogous to the plasma fs(x,v, t) in the sense that both are the ensemble
averages of random variables. (Unlike f , however, u is not a PDF.)

Operationally, ensemble averaging is well defined. One is given some probability density
function(al) of initial conditions and/or random forcing, and averages are taken with
that PDF. A question is whether the result of the averaging has something useful to say
about the observable macroscopic world. In particular, whereas Newton’s laws of motion
are time reversible, ensemble averaging (often together with certain asymptotic limiting
procedures) typically introduces irreversibility (one manifestation of which one sees in the
laboratory as turbulent transport). The use of ensembles and the origins of irreversibility

14The Debye length is defined in terms of the Debye wave number kD according to λD
.
= k−1

D ,

where k2D
.
=

∑
s k

2
Ds and k2Ds

.
= 4π(nq2/T )s.

15For turbulent plasmas with ǫp 6= 0, the theory becomes extremely complex and some of the
formalism used in this paper is either wrong or incomplete because a fundamental assumption
about Gaussian initial conditions is violated. Rose (1979) has elegantly discussed the general
case, but for this introduction I shall mostly be content to ignore particle discreteness. (See,
however, the discussion of discreteness noise in Sec. 7.1.4.) Distinguish the limit ǫp → 0 from
the completely reversible case ǫp = 0. Collisional dissipation remains in the limit, which is
singular, and that is important to retain in order that turbulent steady states can be achieved.
Further discussion of this singular limit is given by Krommes & Hu (1994).
16External forcing can represent the effects of other modes not described by the basic PDE (such
as the influence of baroclinic instabilities on the barotropic vorticity equation commonly used in
meteorology), or it can provide a stirring that replaces the macroscopic instabilities that would
arise if one imposed nontrivial boundary conditions.
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are subtle topics.17 A readable article on the subject as applied to many-body theory is
by Lebowitz (1993), who says (the italics are his),

“We neither have nor do we need ensembles when we carry out observations . . . .
What we do need and can expect to have is typical behavior. Ensembles are merely
mathematical tools, useful for computing typical behavior as long as the dispersion
in the quantities of interest is sufficiently small.

“There is no such typicality with respect to ensembles describing the time evolution
of a system with only a few degrees of freedom. This is an essential difference
(unfortunately frequently overlooked or misunderstood) between the irreversible
and the chaotic behavior of Hamiltonian systems. The latter, which can be observed
already in systems consisting of only a few particles, will not have a unidirectional
time behavior in any particular realization. Thus if we had only a few hard spheres
in a box, we would get plenty of chaotic dynamics and very good ergodic behavior,
but we could not tell the time order of any sequence of snapshots.”

Having thus warned the reader, I shall continue with the use of ensemble averages,
which are technically convenient. In practice they can often be equated to some sort
of time average, providing a link between the processing of simulation data and the
analytical theory.

Both of Eqs. (2.1) and (2.4) are quadratically nonlinear, so they are special cases of
the generic quadratic PDE

∂t1 ψ̃(1) = U2(1, 2)ψ̃(2) +
1

2
U3(1, 2, 3)ψ̃(2)ψ̃(3) + f̃ ext(1), (2.5)

where 1 stands for the complete set of independent variables,18 the U ’s are specified
coupling coefficients [for examples, see Eqs. (3.10a) and (3.10b)], U3 can be assumed
to be symmetric in its last two arguments, an integration–summation convention over
repeated arguments is assumed, and f̃ ext is external random forcing. It is conventional
to choose f̃ ext to be Gaussian for simplicity, so it is completely specified by its mean
〈f̃ ext〉 and covariance F ext(1, 1′)

.
= 〈δf ext(1)δf ext(1′)〉. There are two basic approaches

to determining the statistics of ψ̃: either formulate approximate coupled equations for
a few low-order cumulants, or ambitiously try to find an equation for the entire PDF19

17For example, the Liouville equation for the N-particle PDF of a many-body system is
reversible; so is the cumulant hierarchy that follows from the Euler equation (the Navier–Stokes
equation with viscosity set to zero), as discussed by Orszag (1977). An authoritative overview on
the origins of macroscopic irreversibility for many-body systems is by Lebowitz (2007); related
discussion can be found in the beautiful book by Cercignani (1998). Plasma physicists encounter
an analogous situation in the description of Landau damping. Hammett et al. (1993) discuss
how a perturbation in the lowest (density) moment of a distribution function can propagate
reversibly through an infinite chain of higher moments while the density itself exhibits irreversible
behaviour (the origin of which is often described as phase mixing). If one does not want to deal
with the infinite chain, one can introduce irreversibility by inserting damping at some point
in a finitely truncated chain; that is analogous to the difficulty of arranging an initial many-
body state precisely in a time-reversal experiment. This is the basic mechanism underlying fluid
closures that capture Landau damping (Hammett & Perkins 1990; Hammett et al. 1992).
18For example, in a fluid problem ψ̃(1) ≡ ψ̃(x1, t1).
19The complete multivariate statistics of a random variable ψ̃(x, t) are captured by a probability
density functional P [ψ], which includes information about all multipoint cumulants in both
space and time. As a special case, one can consider an ordinary probability density function
P (ψ,x, t), which contains information about only the equal-time statistics at some specific x
and t; P (ψ) is independent of x and t in a homogeneous steady state. Even determination of the
reduced function P (ψ) is generally entirely nontrivial because the given PDE usually couples the
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of ψ̃. The cumulant approach is easier and traditional, and it is the one I shall describe
here. An article that summarizes aspects of both approaches is by Kraichnan (1991).
The simplest statistical quantity is the mean field, which exactly obeys

∂t1〈ψ〉(1) = U2(1, 2)〈ψ〉(2) +
1

2
U3(1, 2, 3)〈ψ〉(2)〈ψ〉(3)

+
1

2
U3(1, 2, 3)C(2, 3) + 〈f ext〉(1). (2.6)

This already exhibits a closure problem: the mean field is determined by the covari-
ance C(2, 3)

.
= 〈δψ(2)δψ(3)〉, which is unknown. To obtain an equation for C, subtract

Eq. (2.6) from Eq. (2.5) to find that the fluctuations obey

∂t1δψ(1) = U2(1, 2)δψ(2) + U3(1, 2, 3)〈ψ〉(2)δψ(3)

+
1

2
U3(1, 2, 3)[δψ(2)δψ(3)− C(2, 3)] + δf ext(1). (2.7)

Upon multiplying Eq. (2.7) by δψ(1′) and averaging, one finds that C(1, 1′) obeys20

∂t1C(1, 1
′) = U2(1, 2)C(2, 1

′) + U3(1, 2, 3)〈ψ〉(2)C(3, 1′)

+
1

2
U3(1, 2, 3)T (2, 3, 1

′) + 〈δf ext(1)δψ(1′)〉, (2.8)

where the three-point correlation function is

T (2, 3, 1′)
.
= 〈δψ(2)δψ(3)δψ(1′)〉. (2.9)

Quantities such as 〈ψ〉, C, or T are cumulants, a central concept.21 An important property
is that multipoint cumulants of statistically independent quantities vanish. We see that
n-point cumulants are driven by (n + 1)-point cumulants; the cumulant hierarchy is
unclosed. This is the classical statistical closure problem (Kraichnan 1962; Leslie 1973;
Orszag 1977; McComb 1990, 2014; Krommes 2002, and references therein). To close the
system at the covariance level, one must express the triplet correlation function T and
the cross-correlation of δf ext and δψ in terms of one-point (the mean field) and two-point
quantities (such as C; a two-point response function R will also be important).

Statistical closure would not be a problem if the PDF of ψ̃ were Gaussian. General
PDFs can usually be represented in terms of an infinite set of cumulants;22 Gaussians are
special because they possess just two cumulants—namely, the mean and the variance.
A theorem states that the sum of two Gaussian variables is again Gaussian, so if
the dynamics were linear (i.e., U3 = 0), ψ̃ would be Gaussian if it evolved from
Gaussian initial conditions under Gaussian forcing. Unfortunately, nonlinearity confounds
this result. The product of two Gaussian variables is not Gaussian, so even if the
initial conditions were Gaussian, non-Gaussian statistics would develop after just one
time step.23 Once non-Gaussianity arises, it is compounded during each subsequent

space point x to adjacent points via integro-differential operators, but P (ψ) does not contain
information about multipoint statistics. PDF methods are challenging and state of the art.
20Equation (2.8) has the form of a certain (functional) derivative of Eq. (2.6). This is a special
case of a generating-functional formalism; see the review by Krommes (2002), who cites the
original references.
21Some helpful references on cumulants are by Kubo (1962) and McCullagh & Kolassa (2009).
A succinct discussion that is oriented toward turbulence applications is given by Krommes &
Parker (2015).
22Some counterexamples are mentioned by Krommes & Parker (2015).
23For simplicity of discussion and the application of simple random-variable theory, it is imagined
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time interval. After long times a statistically steady PDF can develop, but it will be
non-Gaussian in a self-consistent way that is difficult to determine analytically.24 The
inevitable development of non-Gaussian statistics in nonlinear PDEs is the essence of the
closure problem.
Over roughly the last century, enormous efforts have been expended toward obtaining

satisfactory statistical closures. A famous example is the DIA; it will be discussed in
Sec. 4. Some simpler approximations have enjoyed good successes for the description of
the interactions of mean fields with turbulence; see Sec. 6.3.

2.2. Interlude: Langevin equations

Although statistical closures for realistic nonlinear PDEs such as the Klimontovich
equation are difficult and nontrivial, a good deal of the physics embodied in such
equations can be understood with simple intuition. A good example is the use of Langevin
equations (Lemons & Gythiel 1997; Gardiner 2004) to describe the statistical properties
of classical Brownian motion. I shall include a few words of introduction here so that
later I can interpret certain exact and closure results in terms of generalized Langevin
descriptions.

2.2.1. Classical Brownian motion

In physics, classical Brownian motion refers to the random motion of a heavy “test”
particle (mass M) moving in a thermal bath (temperature T ) of light particles. The
original model was motivated by observations25 (Brown 1828) of the jittery motion of
particles ejected by pollen grains suspended in water; in plasmas, the description applies
equally well to an ion moving in a sea of electrons. In the simplest Langevin model,
Newton’s second law of motion for the velocity of an unmagnetized test particle is written
approximately (in 1D for simplicity) as26

˙̃v + νṽ = ã(t). (2.10)

Here the time axis has been assumed to be coarse grained into intervals that are much
larger than the time for a single interaction between the test particle and a bath
particle. Then the effects of the microscopic interactions have been replaced by a coarse-
grained force divided into two physically distinct parts: ã is a centred Gaussian random
variable that describes the random or incoherent kicks due to the light particles, and
−νṽ describes the coherent drag experienced by the test particle as it pushes through
the sea. Of course, that drag arises microscopically from discrete interactions with the
bath particles, so both ν and the statistics of ã can ultimately be determined in terms
of microscopic statistical dynamics. Because of the coarse graining, it is conventional to
take the fluctuation δa to be delta correlated:

〈δa(t)δa(t′)〉 = 2Dvδ(t− t′). (2.11)

here that the time axis is discretized. Clearly, however, non-Gaussian statistics also develop in
continuous time under the action of nonlinearity.
24An important and readable introduction to the technical issues relating to the determination
of non-Gaussian statistics is given in the first section of Martin et al. (1973).
25Further history and references are given by Metzler & Klafter (2000).
26Here I present a physicist’s approach to the Langevin model. More mathematically precise
representations in terms of the Itō stochastic calculus are sometimes useful but are not required
for the discussion in this article.
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For short times (νt ≪ 1), one finds from Eq. (2.10) that 〈δv2〉 = 2Dvt, so Dv is the
diffusion coefficient for a simple random walk (Rudnick & Gaspari 2004) in velocity
space. At long times one finds (Wang & Uhlenbeck 1945)

lim
t→∞

〈δv2〉 ≡ lim
t→∞

C(t, t) = Dv/ν, (2.12)

which describes the fluctuation level arising from a steady-state balance between forcing
and dissipation; in that same limit, one finds the two-time correlation function to be

C(t, t′)
.
= 〈δv(t)δv(t′)〉 = (Dv/ν)e

−ν|t−t′|. (2.13)

This depends on only the time difference τ
.
= t− t′, so one can Fourier transform27 with

respect to τ :

Ĉ(ω) = 2(Dv/ν)Re ĝ(ω), (2.14)

where g(τ)
.
= H(τ)e−ντ is Green’s function28 for the left-hand side of Eq. (2.10).

Equations (2.13) and (2.14) are called fluctuation–dissipation relations, where relation (as
opposed to theorem) implies that one has not yet asserted a connection between forcing
and dissipation. If one does so by invoking microscopic statistical equilibration according
to 1

2M〈δv2〉 = 1
2T , one is led to the Einstein (1905) relation Dv/ν = T/M ≡ V 2

t . Then
C(τ) = V 2

t exp(−ν|τ |), or
Ĉ(ω) = 2V 2

t Re ĝ(ω). (2.15)

This is the simplest example of a fluctuation–dissipation theorem (Kubo 1966; Martin
1968; Zwanzig 2001). Such theorems are derived most fundamentally by studying the
linear response of a Hamiltonian system perturbed from a Gibbsian thermal equilibrium.
This superficial treatment of Langevin equations merely scratches the surface. For

example, because the statistics of all dependent variables of a Gaussianly forced linear
Langevin system are jointly Gaussian, a variety of exact results (including the complete
form of the PDF) can be obtained; see the articles by Fox & Uhlenbeck (1970) and
Fox (1978). A wealth of information about linear and nonlinear Langevin equations is
contained in the book by Zwanzig (2001). Some aspects of stochastic differential equations
are reviewed by van Kampen (1976).
The fact that the statistics of the Brownian particle follow from a Langevin amplitude

equation (an equation for a random variable, not a mean quantity) has profound im-
plications. It guarantees that the statistics calculated from the model must obey all
of the realizability inequalities (Kraichnan 1980; van Kampen 1981) that stem from
the requirement that the PDF be non-negative. The simplest realizability inequality
is 〈ṽ2〉 > 〈ṽ〉2; i.e., C ≡ C(t, t)

.
= 〈δv2〉 > 0. In the latter form, this is obvious if one

has an explicit solution for the real quantity δv(t), as in the linear Langevin model
(2.10). But in closure theory one usually formulates approximate evolution equations
for cumulants like C rather than for random variables: ∂tC = f(C), where f can
be a complicated nonlinear function. In general, there is no guarantee that solutions

27My Fourier integral transform convention is f(x, t) = (2π)−1
∫∞

−∞
dω (2π)−d

∫
dk eik·x−iωt ×

f̂(k, ω), where d is the dimensionality of space. For two-point quantities such as covariances,
the transform is with respect to the difference variables in space and/or time. Later I will also
use a discrete transform in space, denoted by a wave-vector subscript instead of argument:

f(x) =
∑

k eik·xf̂k. Passage to the continuum representation can be effected by approximating∑
k

≈ (δk)−d
∫
dk, where δk

.
= 2π/L is the mode spacing in a box of side L → ∞. Thus

f̂k = L−df̂(k).
28The unit step function (Heaviside function) H(τ ) ensures causality. It is defined by H(τ ) = 0

if τ < 0, 1
2
if τ = 0, or 1 if τ > 0.
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of such nonlinear equations preserve the non-negativity of C for all time. If they do
not, catastrophes such as finite-time blowup can ensue (Ogura 1962a,b, 1963; Bowman
et al. 1993). However, positive-semidefiniteness is guaranteed if it is known that the ∂tC
equation follows rigorously from an underlying amplitude equation for a random variable.
That is the case, for example, for the DIA; see Eq. (4.29) and the discussion nearby.

2.2.2. The Taylor formula for a diffusion coefficient

Note that Eq. (2.11) can be inverted:

Dv =

∫ ∞

0

dτ 〈δa(τ)δa(0)〉. (2.16)

This is the simplest example of the Taylor formula (Taylor 1921) for the diffusion

coefficient Dz of a test particle or fluid element evolving in variable z according to ˙̃z = Ṽ :

Dz =

∫ ∞

0

dτ CV V (τ), (2.17)

where

CV V (τ)
.
= 〈δV (τ)δV (0)〉 (2.18)

is called the Lagrangian correlation function. Here Ṽ (τ) ≡ Ṽ (x̃(τ), ṽ(τ), τ); i.e., it
is measured along the random phase-space trajectory {x̃(τ), ṽ(τ)}. Whether diffusion
happens in position space (z = x) or velocity space (z = v) depends on which variable
suffers random kicks. In the case of an unmagnetized Brownian particle, the generalized
“velocity” of the general theory is actually acceleration; diffusion occurs in velocity space
(for times much shorter than a collision time).29 For a magnetized test particle moving

across a magnetic field, Ṽ would be the E × B velocity and diffusion would occur in
x space.
If one defines a Lagrangian correlation time by

τ (L)ac
.
= [CV V (0)]

−1

∫ ∞

0

dτ CV V (τ), (2.19)

then one can write formula (2.17) as

D = V
2
τ (L)ac , (2.20)

where V
.
= [CV V (0)]

1/2 is the rms level of the generalized velocity fluctuations. This

formula is exact; the problem lies in determining V and τ
(L)
ac . In general, relating

Lagrangian correlation functions to more easily observable or calculable Eulerian ones
is a difficult task that again requires one to face up to a closure problem. One does not
see that difficulty in the linear Langevin model because the Langevin equation is coarse
grained in time and Dv is simply prescribed. More realistically, one must “open up” the
physics of the short time scale on which the random kicks occur and perform a nontrivial
calculation of the Lagrangian correlation function; formula (2.17) then connects the short-
time physics to the more macroscopic time scale on which diffusion is observed. This is
what is done in the derivation of the Balescu–Lenard collision operator, and there are
analogs of that procedure for turbulence.30

29For times longer than a collision time, the integral Dv(t)
.
=

∫ t

0
dτ Cv̇v̇(τ ) asymptotically

vanishes as t→ ∞. [Cv̇v̇(τ ) has a long, negative tail.] Meanwhile, Dx(t) asymptotes to a constant;
diffusion occurs in x space. This can be understood by considering a new coarse graining of the
time axis in units of the collisional mean free path.
30Mynick (1988) has taken the analogy literally and discussed a generalized Balescu–Lenard
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2.3. An exactly solvable model of passive advection

There are actually two levels of difficulty in cumulant-based statistical closure. Prob-
lems arise even for passive advection. [In plasmas, that is frequently called stochastic
acceleration (Orszag 1969), implying no backreaction of the particles on the electric
field.] Self-consistency (in plasmas, determining the field from the particles rather than
prescribing the field externally) adds more complications (polarization effects) and leads
to the concept of a dielectric function D.

2.3.1. The stochastic oscillator

Before turning to self-consistency, let us see how things work in a simple, exactly
solvable passive model. The discussion introduces various important concepts and issues
relating to random nonlinear systems, and I shall build on it in the next section, where
I discuss the additional effects relating to self-consistency. Although there are important
differences between passive and self-consistent problems, many points can be illustrated
with passive models because although they are dynamically linear they are stochastically
nonlinear—for example, Eq. (2.21) involves the product of the random variables Ṽ

and ψ̃—and thus possess the closure problem (Kraichnan 1961). Thus consider the
passive-advection equation

∂tψ̃(x, t) + νψ̃ + Ṽ (t) · ∇ψ̃ = f̃ ext(x, t), (2.21)

where ν is a positive constant, Ṽ is a centred Gaussian random velocity with a specified
two-time correlation function, and f̃ ext is a Gaussian random forcing that is homogeneous
in space, stationary in time, and uncorrelated with Ṽ . For simplicity, I assume that f̃ ext is
white noise, so its covariance F ext has the form

F ext(ρ, τ)
.
= 〈δf ext(x+ ρ, t+ τ)δf ext(x, t)〉 (2.22a)

= 2ε(ρ)δ(τ), (2.22b)

where ε(ρ) is given. To make analytical progress, I assume that Ṽ is independent of x.
Then Eq. (2.21) can be Fourier transformed in space into

∂tψ̃(k, t) + νψ̃(k, t) + iω̃(k, t)ψ̃(k, t) = f̃ ext(k, t), (2.23)

with ω̃(k, t)
.
= k · Ṽ (t) and F̂ ext(k, τ) = 2ε̂(k)δ(τ). Because the k’s are uncoupled, one

can drop the k’s and consider the stochastic oscillator (Kubo 1959; Kraichnan 1961)

∂tψ̃(t) + νψ̃ + iω̃(t)ψ̃ = f̃ ext(t), (2.24)

where the mean31 ω and the covariance W (τ) of ω̃ are prescribed. The normalized area
under W (τ) defines an advection-related autocorrelation time according to

τ (W )
ac

.
= [W (0)]−1

∫ ∞

0

dτ W (τ). (2.25)

operator that includes turbulence. The general structure of turbulence theory has a more
abstract analogy to the classical theory.
31The best way of interpreting ω is as the free-streaming particle term k · v in linearized
Vlasov theory. Do not think of it as a normal mode of oscillation; that will come later with
the introduction of D.
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I shall consider two limits32—one in which Ṽ is delta correlated, so 〈δṼ (τ)δṼ (0)〉 =
2Dδ(τ)I ; and one in which it is time independent (but still random) with variance β2:

W (τ)
.
= 〈δω̃(τ)δω̃(0)〉 =

{
2k2Dδ(τ) if τ

(W )
ac → 0,

β2 if τ
(W )
ac → ∞.

(2.26)

2.3.2. Exact solution of the stochastic oscillator

Being dynamically linear, the stochastic oscillator can be solved exactly. By doing so,
I shall be able to introduce the concepts of a random Green’s function or propagator33

g̃(t; t′) as well as the mean “propagator”34 g
.
= 〈g̃〉, and we shall be able to see how g(τ)

relates the correlation function C(t, t′)
.
= 〈δψ(t)δψ∗(t′)〉 to the external forcing. Green’s

function for Eq. (2.24) obeys

[∂t + ν + iω̃(t)]g̃(t; t′) = δ(t− t′) (2.27)

with the boundary condition g̃(−∞; t′) = 0. Upon ignoring an initial condition at t =
−∞, one finds that the exact driven solution of Eq. (2.24) is

ψ̃(t) =

∫ t

−∞

dt g̃(t; t)f̃ ext(t). (2.28)

[The upper limit can be replaced by ∞ because g̃(t; t) ∝ H(t− t).] The mean field follows
as

〈ψ〉(t) =
∫ t

−∞

dt g(t; t)〈f̃ ext〉(t), (2.29)

where again g
.
= 〈g̃〉. (Here I used the fact that f̃ ext and ω̃ are uncorrelated, which for

Gaussian variables implies statistical independence, in order to factor the average.)
It is straightforward to find that

g̃(t; t′) = H(t− t′) exp

(
−ν(t− t′)− i

∫ t

t′
dt ω̃(t)

)
. (2.30)

Because ω̃ is Gaussian, the cumulant expansion of the average of Eq. (2.30) truncates at
second order:

g(τ) = H(τ)e−iωτ−ντ exp

(
−1

2

∫ τ

0

dt

∫ τ

0

dt
′
W (t− t

′
)

)
(2.31a)

= H(τ)e−iωτ−ντ

{
e−k2Dτ if τ

(W )
ac → 0,

e−
1
2
β2τ2

if τ
(W )
ac → ∞.

(2.31b)

32One can bridge these limits with a formula motivated by Doob’s theorem for a Markov process

(Wang & Uhlenbeck 1945): W (τ ) = β2 exp(−|τ |/τ (W )
ac ), where β

.
= kV for some V . This shows

that a natural dimensionless variable is the Kubo number K .
= βτ

(W )
ac . For K → 0 (τ

(W )
ac → 0),

W (τ ) approaches a delta function with
∫∞

0
dτ W (τ ) = β2τ

(W )
ac = k2D, where D

.
= V

2
τ
(W )
ac

(assumed to remain nonzero as τ
(W )
ac → 0).

33The semicolon reminds one that the function is causal; i.e., it is proportional to H(t− t′).
34Strictly speaking, it is best to apply the nomenclature propagator to the function that
multiplies the causality constraint H(t− t′); thus write g̃(t; t′) = χ̃(t, t′)H(t− t′) and call χ̃(t, t′)
the propagator. Although χ̃ is an actual propagator—it obeys the semigroup property χ̃(t, t′) =
χ̃(t; t)χ̃(t; t′)—the average χ

.
= 〈χ̃〉 does not necessarily obey that property but is still sometimes

called a “propagator.” The differing behaviour of χ arises because the average of a product need
not equal the product of the averages. That fact is ultimately responsible for the difficulty that
Eulerian theories have with satisfying random Galilean invariance (discussed in Sec. 5.1).
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Both g̃ and g contain an e−ντ damping, a consequence of ordinary linear dissipation.
However, g(τ) decays even for ν = 0 though g̃ does not. That random fluctuations
lead to decay of the mean response is one instance of phase mixing.35 In the context of
equations like Eq. (2.21), one can say that the effect is due to random Doppler shifts, an
effect emphasized by Dupree.
Another perspective is obtained by looking in frequency space. The Fourier transform

of Eq. (2.31b) is

ĝ(ω) =





1

−i[ω − ω + i(ν + k2D)]
if τ

(W )
ac → 0,

√
π

2

1

β
w[(ω − ω + iν)/(

√
2β)] if τ

(W )
ac → ∞,

(2.32)

where36

w(z)
.
= e−z2

erfc(−iz) = e−z2

(
1 +

2i√
π

∫ z

0

dt et
2

)
. (2.33)

The small-τ
(W )
ac result demonstrates that the effect of the random Doppler shifts is to

enhance the dissipative broadening of the Lorentzian-shaped resonance:

Re ĝ(ω) =
ν + k2D

(ω − ω)2 + (ν + k2D)2
. (2.34)

Whereas for ν → 0 and D → 0 one would have Re ĝ(ω) ≈ πδ(ω − ω), the random
Doppler shifts provide additional line broadening, distributing power to all frequencies
0 6 |ω − ω| . ν + k2D. In Vlasov theory, this amounts to a broadening of the
Landau wave–particle resonance, which is the effect discussed in the original paper of
Dupree (1966). This justifies the nomenclature resonance-broadening theory for Dupree’s
early line of attack (which with regard to the nonlinearity was a theory of passive
advection, though that was not clarified by Dupree37). For infinite τac the resonance is
not Lorentzian, but it maintains the same general features. The function w(z) is graphed
in Fig. 1. Also plotted there is the equivalent single-pole approximation or Lorentzian
shape for which the functions agree at z = 0. An interpretation of this choice is given in
footnote 40 on page 19.
Now let us turn to the fluctuation spectrum; for simplicity, I now consider 〈f ext〉 = 0.

35Mathematically, decay due to phase mixing is a consequence of the Riemann–Lebesque lemma.
That is discussed, for example, by van Kampen & Felderhof (1967, Chapter XII.5).
36The standard function w(z) is related to the widely used plasma dispersion function Z(z) by

w(z) = Z(z)/(i
√
π).

37Some discussion that I gave in an earlier review article (Krommes 2002) is worth repeating
here: “Dupree (1966), in describing his formal theory of test waves [not defined here], stated,
‘The method we employ for solving the Vlasov–Maxwell equation consists of two distinct pieces.
First, we assume knowledge of the electric field E . . . . As a second step, we must . . . require
that the f so determined does . . . produce the assumed E [via Poisson’s equation].’ Later he
asserted, ‘The fact that the initial phases of the background waves in the subsidiary [test wave]
problem are uncorrelated . . . does not prevent the [Fourier coefficients] so calculated from being
used to describe an actual system in which all the initial phases have some precise relation
to each other and to f .’ However, freezing E in step 1 is the definition of a passive problem.
Statistical correlations are lost at that point and cannot be recovered with the basic test-wave
theory.” However, this does not mean that theories of passive advection are useless. An example
of an experimental situation to which resonance-broadening theory properly applies is described
by Hershcovitch & Politzer (1979).
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Figure 1. (Colour online.) The function w(z) [Eq. (2.33)] and the equivalent single-pole
approximation.

From Eq. (2.28), the two-time correlation function then follows as

C(t, t′) =

∫ t

−∞

dt

∫ t′

−∞

dt
′〈g̃(t; t)F ext(t; t

′
)g̃∗(t′; t′)〉 (2.35a)

= 2ε

∫ min(t,t′)

−∞

dt 〈g̃(t; t)g̃∗(t′; t)〉. (2.35b)

The upper limit of the integral in Eq. (2.35b) ensures that one of the integration variables
in Eq. (2.35a) encounters the argument of the delta function in F ext so that it can be
integrated to 1, and it guarantees that C(t, t′) is properly symmetric.
Upon recalling Eq. (2.30), one can easily work out Eq. (2.35b):38

C(τ) =
( ε
ν

)
e−iωτ−ν|τ |

{
e−k2D|τ | if τ

(W )
ac → 0,

e−
1
2
β2τ2

if τ
(W )
ac → ∞;

(2.36a)

Ĉ(ω) = 2
( ε
ν

)
Re ĝ(ω) (for arbitrary τ

(W )
ac ) (2.36b)

[cf. Eq. (2.14)]. Note that from either Eq. (2.36a) or Eq. (2.36b) follows the steady-state
fluctuation level39

C(0) =

∫ ∞

−∞

dω

2π
Ĉ(ω) =

ε

ν
, (2.37)

which has the same form as Eq. (2.12).

2.3.3. Autocorrelation time

By contemplating the inverse Fourier transform of Eq. (2.36b), one learns that the
detailed time dependence of the correlation function depends on all of the Fourier

38Equation (2.36b) follows because −i
∫ t

t
ds ω̃(s) + i

∫ t′

t
ds ω̃(s) = −i

∫ t

t′
ds ω̃(s). This integral is

independent of t, so the t integral can be done explicitly.
39(2π)−1

∫∞

−∞
dω ĝ(ω) = g(0) = H(0) = 1

2
.
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components of ĝ(ω). As a special case, one can define an autocorrelation time as40

τac = [C(0)]−1

∫ ∞

0

dτ C(τ) =
1

2
[C(0)]−1

∫ ∞

−∞

dτ C(τ) =
1

2
[C(0)]−1Ĉ(0) = Re ĝ(0).

(2.38)

In general, this is built from the four frequencies or rates ω, ν, β, and (τ
(W )
ac )−1. These

four dimensional quantities determine three dimensionless parameters. I have already

introduced the Kubo number K .
= βτ

(W )
ac ; a second important parameter is R .

= β/ν,
which plays the role of a Reynolds number.41 The third dimensionless ratio is ν/ω.
Various regimes of the K–R space for ω = 0 were discussed by Krommes & Smith
(1987).

To further understand the significance of τac or ĝ(0), let us write in general

ĝ(ω) =
1

−i[ω − ω + i(ν + Σ̂ω)]
(2.39)

for some Σ̂ω [sometimes called the mass operator42 because of deep connections to
quantum field theory (Martin et al. 1973; Krommes 2002)]. It is technically convenient
to introduce Σ because g has a resonance form that is difficult to handle in approximate
theories; approximating the inverse of the propagator (i.e., changing the focus to Σ),

is much easier to do. Upon writing Σ̂ = Σ̂r + iΣ̂i, then defining ̟̂ω
.
= ω + Σ̂i

ω and

η̂ω
.
= ν + Σ̂r

ω, one finds

Re ĝ(ω) =
η̂ω

(ω − ̟̂ω)2 + η̂2ω
. (2.40)

We see that Σ̂r introduces additional resonance broadening,43 whereas Σ̂i provides a
nonlinear frequency shift. If one defines ̟

.
= ̟̂ 0 and η

.
= η̂0, then one has

τac = Re ĝ(0) =
η

̟2 + η2
≈
{
(η/̟)̟−1 if η/̟ ≪ 1,

η−1 if η/̟ ≫ 1.
(2.41)

Thus the size of τac depends on whether the broadening is weak or strong. For weak broad-
ening, one has a weakly damped oscillator. For that limit, one has τac ≈ (η/̟)̟−1 ≪
̟−1. It may at first seem counterintuitive that τac is smaller than the oscillator period,
but that is easily explained with the aid of Fig. 2; only a small amount of decorrelation
or dissipation occurs per cycle.

Equation (2.41) makes sense only if η > 0. I shall demonstrate that at the end of the
next section.

40The result τac = Re ĝ(0) shows that the single-pole approximation plotted in Fig. 1 was
chosen to maintain the equivalence of τac; this is sometimes described as “preserving the
adiabatic response.” That is the same choice made by Hammett & Perkins (1990) and Hammett
et al. (1992) in their discussions of fluid models of phase mixing. One can view the family of
Markovian fluid closures developed by those authors as n-pole generalizations of the single-pole
approximation mentioned here.
41If one writes β = kV ∼ V /L for some scale L, then R ∼ V L/µ with µ

.
= L2ν playing the role

of a viscosity.
42Distinguish the symbol Σ for the mass operator from the summation sign

∑
. Also, for

conciseness of notation in the following discussion, some symbols such as Σ̂ω use frequency
subscripts instead of arguments even though the continuous Fourier transform in time is used.
43The form of Eq. (2.40) is not strictly Lorentzian because ̟̂ω and η̂ω depend on frequency.
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Figure 2. Example of a correlation function for weak broadening: C(τ ) = Re exp(−i̟τ −η|τ |).
The autocorrelation time is the area under the curve. For a weakly damped oscillator, the
positive and negative areas almost cancel over one cycle. Reprinted from Fig. 13 of Krommes
(2002), copyright 2002, with permission from Elsevier.

2.3.4. Internal or incoherent noise

Note that Eq. (2.40) can be written as

Re ĝ(ω) = |ĝ(ω)|2(ν + Σ̂r
ω). (2.42)

Substitution of Eq. (2.42) into Eq. (2.36b) gives

Ĉ(ω) = ĝ(ω)F̂ (ω)ĝ∗(ω), (2.43)

where

F̂ (ω)
.
= 2ε[(Σ̂r

ω/ν) + 1]. (2.44)

Equation (2.43) should be compared with Eq. (2.35a), which involves g̃ rather than g.
In Eq. (2.44), the 1 arises from the external forcing. For the purpose of calculating
second-order statistics, the interpretation of Eqs. (2.43) and (2.44) is that instead of
propagating δf ext with the random propagator g̃ [Eq. (2.28)], then averaging at the
end, one is entitled to propagate noise with the mean propagator g provided that one
enhances the external noise with a certain effective internal noise [called incoherent noise
by Dupree (1972)]. Thus one can write

F̂ (ω) = F̂ int(ω) + F̂ ext(ω), (2.45)

where (for white-noise external forcing)

F̂ int(ω) = 2ε(Σ̂r
ω/ν), F̂ ext(ω) = 2ε. (2.46)

The concept of internal noise is central to modern theories of statistical dynamics.
It is a consequence of Parseval’s theorem that Ĉ(ω) is real and non-negative. From
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Eq. (2.43), F̂ (ω) inherits the same properties. From Eq. (2.44), this implies that η̂ω > 0,
which is an important constraint on the turbulent broadening.

2.3.5. Generalized Langevin equation

The representation (2.39) together with Eqs. (2.45) and (2.46) lead one to the gener-
alized Langevin equation44

(∂t + iω + ν)ψ̃(t) +

∫ t

−∞

dtΣ(t; t)ψ̃(t) = f̃ int(t) + f̃ ext(t)
.
= f̃ tot(t). (2.47)

Here Σ(τ) is the inverse Fourier transform of Σ̂(ω), and f̃ int is an auxiliary random

variable (assumed to be statistically independent of f̃ ext) whose covariance is

F int(τ) = 2εΣ′(τ)/ν, (2.48)

where Σ′(τ) is the inverse Fourier transform of Σ̂r
ω. Generalized means that the equation

is nonlocal in time due to the time-history integral. Such generalized Langevin represen-
tations arise frequently in modern turbulence theory.

The solution of Eq. (2.47) is

ψ̃(t) =

∫ t

−∞

dt g(t; t)f̃ tot(t), (2.49)

which should be compared with Eq. (2.28). It must be emphasized that Eq. (2.49) is not
an exact solution for a single realization since all realizations are coupled through Σ,
which determines both g and the covariance45 of f̃ int. However, it is equivalent to that
solution at the level of second-order statistics. This remark holds as well for the original
Langevin equation (2.10).

2.4. Statistical closure and the stochastic oscillator

It is instructive to try to recover the essence of these exact results from statistical
closure approximations because exact solutions are not available for realistic, nonlinear
PDEs. This topic has been treated extensively in the literature. An important early
paper (the first part of which is quite pedagogical) is by Kraichnan (1961), who consid-
ered aspects of the infinite-τac problem; further discussion and references are given by
Krommes (1984) and, more thoroughly, by Krommes (2002). Here I shall just give a brief
introduction.

Consider the restricted problem of finding an approximation to the mean response
function g(τ) for Eq. (2.24). The random response function g̃(t; t′) obeys Eq. (2.27).
Instead of writing a formally exact solution (which would not be useful if the primitive
amplitude equation were really a PDE), let us write the evolution equation for g by
averaging Eq. (2.27). One gets

∂tg(t; t
′) + (iω + ν)g + 〈iδω̃(t)δg̃(t; t′)〉 = δ(t− t′). (2.50)

44Generalized Langevin equations were originally discussed by Zwanzig (1961a,b) and Mori
(1965). A modern reference is by Zwanzig (2001).
45In this version of the generalized Langevin formalism, the complete statistics of f̃ int are

not specified. They could be chosen to be Gaussian. Then Eq. (2.47) would predict that ψ̃ is
Gaussian, which of course is not true for the actual problem.
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To be consistent with Eq. (2.47), I shall write this as

∂tg(t; t
′) + (iω + ν)g +

∫ t

t′
dtΣ(t; t)g(t; t′) = δ(t− t′) (2.51)

or

∂tg(τ) + (iω + ν)g +

∫ τ

0

dτ Σ(τ )g(τ − τ ) = δ(τ). (2.52)

Either of these forms is called a Dyson equation46 after the famous unification by Dyson
(1949) of various approaches to quantum electrodynamics.
The goal is to find an approximate formula for Σ. One has exactly

∂tδg(t; t
′) + (iω + ν)δg + iδω(t)g(t; t′) + i[δω(t)δg(t; t′)− 〈δω δg〉] = 0. (2.53)

To proceed, one must assess the importance of the (stochastically) nonlinear term δω δg,
and that depends on the values of the dimensionless parameters. For present purposes,
if either K or R is small it is appropriate to drop the nonlinear term, in which case the
solution of Eq. (2.53) is

δg(t; t′) = −
∫ t

t′
dt g0(t; t)iδω(t)g(t; t

′), (2.54)

where g0(τ)
.
= H(τ) exp(−iωτ − ντ) is the lowest-order Green’s function. Thus

〈iδω(t)δg(t; t′)〉 =
∫ t

t′
dtΣ(t; t)g(t; t′) =

∫ τ

0

dτ Σ(τ )g(τ − τ ), (2.55)

where

Σ(τ) ≈ Σ0(τ)
.
= g0(τ)W (τ). (2.56)

This has the form of Eq. (2.52) with a particular approximation for Σ. Since in the
present case Σ has been constructed with the unperturbed propagator g0 but describes
the nonlinearity, one may call this the quasilinear approximation.47

[As a consistency check, for K → 0 one has Σ(τ) → g0(τ)2k
2Dδ(τ) = k2Dδ(τ), in

agreement with Eq. (2.32).]
For the quasilinear approximation to be valid, the nonlinear term in the equation for

the fluctuations must be smaller than the linear term. For simplicity, assume that ω = 0.

Then the ratio of nonlinear to linear rates is β2τ
(Σ0)
ac /ν, which becomes large as ν → 0

(R → ∞). In this situation, quasilinear theory is unjustifiable and advanced techniques
must be used to effect a proper closure. As discussed by Kraichnan (1961), a plausible
approximation is the DIA. For the oscillator model, that amounts to replacing the g0 in
Eq. (2.56) by the as-yet-unknown g: Σ(τ) ≈ g(τ)W (τ). The exact Dyson equation (2.52)
is then used to solve for g self-consistently.48 For K → ∞ one has η = β2τac, and the

46Although in principle Dyson equations are nonlocal in time, it is sometimes possible to

approximately eliminate the time convolution. Define a new autocorrelation time τ
(Σ)
ac

.
=

β−2
∫∞

0
dτ Σ(τ ). If one is content to consider a coarse graining of the time axis into increments

proportional to τ
(Σ)
ac , then for τ > τ

(Σ)
ac one has

∫∞

0
dτ Σ(τ)g(τ − τ ) ≈ [

∫ ∞

0
dτ Σ(τ)]g(τ )

provided that Σ(τ ) decays more rapidly than g(τ ); this is a Markovian approximation. One

has η
.
=

∫∞

0
dτ Σ(τ) = β2τ

(Σ)
ac = k2D, where D

.
= V

2
τ
(Σ)
ac . Compare this result to Eq. (2.20).

47A distinction between a non-Markovian Bourret approximation and a Markovian quasilinear
approximation is sometimes made; see Krommes (2002, Sec. 3.9.2).
48For K → ∞ and R → ∞ the DIA for the response function of the stochastic oscillator,

∂τg(τ ) +
∫ τ

0
dτ [g(τ)β2]g(τ − τ ) = δ(τ ), where the term in square brackets is Σ(τ), can be
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balance ∂τ ∼ η self-consistently determines τac to be O(β−1). This is consistent with the
exact solution; see Eq. (2.36a). Note that in this strong-turbulence limit the Markovian
approximation breaks down because Σ(τ) and g(τ) vary on the same time scale; the
physics is intrinsically nonlocal in time. I shall give a derivation of the DIA in Sec. 4.1.

2.5. Renormalization

The replacement of g0 by g is an example of renormalization. A thorough discussion of
the technical meaning of renormalization and of all of its ramifications is unfortunately
beyond the scope of this article. Heuristically, it implies the broadening of resonance
functions due to random nonlinear effects; in perturbation theory, that broadening is
represented as a sum of certain terms through all orders of the nonlinear coupling. In
general, the broadening must be determined self-consistently. An elucidating collection
of articles with historical perspectives was edited by Brown (1993), a beginner’s guide to
methodology is by McComb (2004), and an advanced book is by Zinn-Justin (1996). Some
of the connections to quantum field theory are reviewed by Krommes (2002). Renormal-
ization has a deep connection to so-called anomalous scaling, frequently discussed in the
theory of phase transitions (Goldenfeld 1992). A brief discussion of anomalous scaling that
uses the stochastic oscillator as an example is given in Sec. 6.1.2 of Krommes (2002). The
basic point is that the naive quasilinear result for Σ scales with β2, but a self-consistent
calculation of the nonlinear damping rate for large K and R leads to a scaling with β1;
here the power 1 is called an anomalous exponent. Introductory pedagogical discussion
of renormalization and anomalous scaling can also be found in the article by Krommes
(2009), which provides some useful background for the present tutorial.

3. Self-consistency, polarization, and dielectric shielding

Passive systems are (relatively) simple because the advecting velocity is not modified
by the system response. When instead that velocity is self-consistently determined,
additional effects come into play. In particular, once a fluctuation arises it can polarize
the medium (that backreaction being a manifestation of self-consistency); the resulting
polarization field shields the fluctuation and modifies its effect. This is dielectric response.

3.1. Prelude: Dielectric polarization in electromagnetism

Ultimately I shall consider turbulent systems that are not necessarily electromagnetic
in nature, such as the Navier–Stokes fluid. However, it is useful to begin on familiar
footing by discussing electromagnetic systems, fully ionized plasmas being a prominent
example.

3.1.1. Introductory concepts from electromagnetism

In electromagnetism, the dielectric function D is introduced as a way of describing the
macroscopic polarizability properties of a microscopically random medium. Specifically,
in elementary discussions the total charge density ρtot is divided into free charge and
bound charge, and Maxwell’s equation

∇ ·E = 4πρtot = 4π(ρfree + ρbound) (3.1)

is rewritten as ∇ · D = 4πρfree, where the electrical displacement is D
.
= E + 4πP

and the polarization vector P obeys ∇ · P = −ρbound. If P is assumed to be linear

solved exactly by Fourier transformation (Kraichnan 1959, 1961). See also the article by Frisch
& Bourret (1970).
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in the macroscopic field E, then one can introduce a susceptibility tensor X by P =
(4π)−1X · E and one has D = D · E with D

.
= I + X being the dielectric tensor.

A standard generalization is to introduce the wave-number- and frequency-dependent
dielectric tensor D(k, ω), appropriate for a medium that is on the average invariant under
translations in space (statistically homogeneous) and time (statistically stationary). For
a homogeneous, isotropic, and stationary plasma in the electrostatic approximation
E = −∇φ, it is sufficient to work with the longitudinal dielectric scalar D(k, ω)

.
=

k̂ · D(k, ω) · k̂, so D(k, ω) = D(k, ω)E(k, ω). For simplicity, I shall consider only the
longitudinal dielectric function in this article.
The quantity D−1(k, ω) describes the first-order response to the addition of free charge

or external potential; it is a so-called linear response function. If a turbulent plasma
is perturbed by a potential of the form φext(t) = ∆eǫtH(−t) (i.e., by adiabatically
raising φext from 0 at t = −∞ to a value ∆ at t = 0−), it can be shown (Martin
1968) that the Fourier transform of the subsequent one-sided response of the internal or
induced potential, φint+ (t)

.
= H(t)φint(t), is

φ̂int+ (k, ω) =
∆

iωD(k, ω)

(
χ(k, ω)

χ(k, 0)
− 1

)
. (3.2)

Note that this expression has no pole at ω = 0. If D were to vanish at a real frequency ω =
Ωk, the system would oscillate even in the absence of external forcing; this is called
a normal mode. That does not usually happen for real ω; however, the analytical
continuation of D(k, ω) into the complex ω plane can possess a complex zero ωk =
Ωk + iγk. One continues to speak of a normal mode provided that |γk/Ωk| ≪ 1 (i.e.,
that the oscillation is underdamped). For the sign of γk, see the discussion at the end of
this section.
It is important to understand that all of E, D, P , and ρ are statistical averages

over the random microscopic configuration; for example, ρ
.
= 〈ρ̃〉, where ρ̃(x, t)

.
=∑

s(nq)s
∫
dv Ñs(x,v, t) is the microscopic charge density. Thus D describes the mean

response of a random system of charged particles to infinitesimal perturbations. But
although D−1 is a linear response function49 (see Fig. 3), the nature of that response
inherits properties of the fluctuations in the unperturbed system; D is a nonlinear50

functional of those fluctuations through all orders. In thermal equilibrium one has the
famous fluctuation–dissipation theorem,51 which relates the two-time correlation func-
tion C to D−1. For nonequilibrium turbulence, we shall see that generalized fluctuation–
dissipation relations can be written. Indeed, a spontaneous fluctuation in the random
medium effectively behaves as another internal source of free charge that is then shielded
by the dielectric properties of the medium, so we shall find that D figures importantly
in the spectral balance equation that describes the non-Gaussian final state achieved by
the turbulent system.
When D is calculated in the linear approximation, one can often find unstable eigen-

values with linear growth rate γlink > 0. But in a turbulent steady state, which is assumed

49Linear response functions enjoy important analyticity properties as consequences of causality;
see Martin (1968) for the details.
50It must be stressed that although D is a nonlinear functional it describes first-order response.
It is also possible to define nth-order response functions for n > 2. Those have important
applications in physics, but they are not discussed in this article.
51A review article about the general fluctuation–dissipation theorem is by Kubo (1966). A good
discussion of the plasma fluctuation–dissipation theorem is by Ecker (1972); see also Martin
(1968).
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Figure 3. (Colour online.) Illustration of the linear response of a turbulent system. The top
sketch shows that the internal potential measured in the steady state is a random function of

time φ̃int(t). In the middle sketch, the system is perturbed by an external potential φext of size ∆.
Because of nonlinearity, the measured output (red, dotted curve) is a random signal containing

terms of all orders in ∆: φ̃int = φ̃+
∑∞

n=1O(∆n). The bottom plot shows the first-order part of
the perturbed output after ensemble averaging. If the turbulence level is C, nonlinear scrambling
should make the mean perturbation decay faster for larger C—for example, like exp(−Ct). Thus
the mean linear response will depend on the fluctuation level of the background turbulence
through all orders in C. The inverse of the dielectric function, D−1, is a first-order response
function. Terms of O(∆n) for n > 1 define higher-order response functions, which are not
discussed in this article.

to be stable against small perturbations, Eq. (3.2) guarantees that any complex zeros
of D(k, ω) lie in the lower (stable) half of the ω plane; i.e., the true “growth” rate
satisfies γk < 0. Thus in steady-state (“saturated”) turbulence, linear growth must be
overcompensated by nonlinear damping effects. Further discussion of this point can be
found in Krommes (2007).
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3.1.2. Digression: Gyrokinetics and dielectric response

Before delving into the difficult subject of dielectric response in the presence of
nonlinearity and turbulence, I shall illustrate some basic concepts about polarization
with the aid of the linear approximation to the gyrokinetic dielectric function.52

Low-frequency gyrokinetics is an analytical reduction of the description of magnetized
plasma in which the rapid gyrospiraling of a particle around a magnetic field line
is eliminated in favour of particle drifts and effective (gyroaveraged) potentials. It is
appropriate for the treatment of fluctuations whose frequencies are much smaller than
the ion gyrofrequency: ω/ωci ≪ 1. A revolution in analytical formalism occurred with the
development of nonlinear gyrokinetics by Frieman & Chen (1982), Lee (1983), Dubin et al.
(1983), and many subsequent researchers. Krommes (2012b) provides an introductory
review and also cites previous reviews [e.g., Garbet et al. (2010)] and fundamental papers,
including ones on linear gyrokinetics [e.g., Catto (1978b)]. The gyrokinetic formalism
is now the major tool for both analytical descriptions and numerical simulations of
low-frequency fluctuations in turbulent magnetized plasmas. The theory of gyrokinetic
transport equations is discussed in a comprehensive review of multiscale gyrokinetics by
Abel et al. (2013).

The works of Lee (1983) and Dubin et al. (1983) showed that gyrocentres can be
treated in the same sense as the free charge introduced in the theory of dielectric
media (Sec. 3.1.1). Gyrocentres can be said to move in an effective gyrokinetic vacuum
(Krommes 1993, 2012b) endowed with a large dielectric permittivity53 D⊥ that takes
account of the polarization drift that particles undergo when exposed to a slowly varying
potential. Thus gyrocentres do not move with the polarization drift; instead, polarization
is taken into account in the gyrokinetic Poisson equation. This interpretation is satisfy-
ingly intuitive, and it is given a rigorous justification by modern mathematical methods
(Brizard & Hahm 2007).

Let us illustrate the procedure for obtaining a dielectric function by deriving the
simplest (linear) gyrokinetic D, then using that to recover the drift-wave dispersion
relation. (The symbols used in this discussion are defined in Appendix A.) For uniform
magnetic field, uniform background density, and cold ions, the gyrokinetic equation
reduces (Dubin et al. 1983) to

∂tF + v‖∇‖F + VE · ∇F + E‖∂‖F = 0 (3.3)

(describing the facts that gyrocentres are electrically accelerated along the field lines and
move across the field with the E × B drift), and the gyrokinetic Poisson equation (in
the approximation of quasineutrality) becomes

−D⊥∇2
⊥φ = 4πρG or − ρ2s∇2

⊥ϕ = nG
i /ni − nG

e /ne, (3.4)

where D⊥
.
= ρ2s/λ

2
De and nG

s
.
= ns

∫
dvFs. The right-hand side of this equation describes

gyrocentre (free) charge; the left-hand side is the negative of the polarization charge ρpol,
which plays the role of bound charge in the general theory. This can be seen by
considering the linearized continuity equation ∂tδn

pol
i + ∇ · (δV polni) = 0, where

52It is not necessary to introduce gyrokinetics at this point; one can discuss polarization and
dielectric response for the unmagnetized Vlasov equation. However, gyrokinetics is important
in its own right, and the drift-wave dispersion relation (3.7) that I shall derive will be referred
to later in the article.
53The symbols ⊥ and ‖ refer to the directions perpendicular to and parallel to the magnetic
field.
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V pol .
= ω−1

ci ∂t(cE⊥/B) is the ion polarization drift. Upon removing the ∂t’s, one is

led to the expression54 δnpol
i /ni = ρ2s∇2

⊥ϕ.
Thus the coupled gyrokinetic–Poisson equations build in the particle polarization that

arises from slowly varying fields in the magnetized plasma. This new dynamical system
possesses interesting properties. It contains some, though not all, of the normal modes of
the full Vlasov–Poisson system. To learn about the gyrokinetic normal modes, one can
straightforwardly linearize Eq. (3.3) around a Maxwellian, add an external potential ϕext

(that must be done in both of the VE and E‖ terms), and find that the total potential
(the induced or polarization part proportional to δF , plus ϕext) obeys ϕ̂tot(k, ω) =

(D(0)
G )−1(k, ω)ϕ̂ext(k, ω), where

D(0)
G (k, ω)

.
= 1 +

1

D⊥

∑

s

k2Ds

k2⊥

∫
dv

(
ω∗s − k‖v‖
ω − k‖v‖ + iǫ

)
FMs(v). (3.5)

The (0) superscript indicates that nonlinear corrections have been ignored. This form
closely parallels the one that follows from unmagnetized linearized Vlasov theory, the
crucial difference being the appearance of the large D⊥—that being a consequence of
ion polarization and a fundamental property of the gyrokinetic vacuum. In the limit

k‖vti ≪ ω, ω∗s ≪ k‖vte, D(0)
G reduces to

D(0)
G (k, ω) ≈ 1 +

1

D⊥

[(
k2De

k2⊥

)
+

(
k2Di

k2⊥

)(ω∗i
ω

)]
(3.6a)

= 1 +
1

k2⊥ρ
2
s

− 1

k2⊥ρ
2
s

(ω∗e
ω

)
. (3.6b)

This leads one to the drift-wave dispersion relation

ωk = Ωk
.
=

ω∗k
1 + k2⊥ρ

2
s

. (3.7)

The dispersive term in the denominator arises from ion polarization; it persists in the
limit of cold ions, so it is not fundamentally due to a finite (nonzero) Larmor radius. The
nonlinear description of this wave will be discussed in Sec. 5.2.

More refined treatments predict the existence of various drift instabilities driven by
gradients in the background density or temperature profiles. Thus fluctuations will grow
and ultimately saturate due to nonlinear effects; in general, steady-state turbulence
results. That turbulence can respond self-consistently to perturbations, so it behaves
like a polarizable medium and possess a nonlinear dielectric response function DG that

generalizes D(0)
G to the nonlinear regime. The spectral balance describes the fluctuations

that arise from a renormalized gyrocentre that moves in the turbulent background and
is shielded by nonlinear dielectric response. DG is the permittivity of the turbulent
background state in the same sense that D⊥ is the permittivity of the gyrokinetic

vacuum. As a generalization of the previous algorithm for the calculation of D(0)
G ,

DG will be calculated from the relation between total averaged potential and external
potential. Indeed, the procedure is not restricted to gyrokinetics. We shall see that
turbulent systems quite generally possess a dielectric function D that describes turbulent

54If one calculates the vorticity of E × B motion in a constant magnetic field B = Bb̂, one

finds ∇× (cE/B) = ωci(ρ
2
s∇2

⊥ϕ)b̂. Thus the ion polarization density and the plasma vorticity
are essentially the same thing, which explains why a vorticity equation is a central ingredient of
virtually all drift-wave theories.
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polarization effects analogous to the particle polarization discussed above. This is true
even for nonelectromagnetic systems such as the Navier–Stokes fluid.

3.2. Self-consistency and the dielectric function of a turbulent plasma

I shall show in Sec. 4.2 how dielectric response can be defined for an arbitrary
quadratically nonlinear PDE Eq. (2.5). However, for initial discussion it is best to be
more concrete, so I shall first discuss the Klimontovich equation (2.1) as a particular,

very important example. Here Ẽ is linearly related to Ñ through Poisson’s equation, so
one has Ẽ = EEEÑ for a particular linear (vector) operator EEE. In general, it is necessary to
introduce a dielectric tensor that describes the response to external currents. However,
it is simplest for pedagogical purposes to consider the electrostatic limit E = −∇φ, in
which case one can work with a dielectric scalar that describes the response to external
charge or electrostatic potential. In electrostatics, Green’s-function solution of Poisson’s
equation leads to55

EEE(1, 1)
.
= −∇1|x1 − x1|−14π(nq)s1δ(t1 − t1). (3.8)

Thus the Klimontovich equation can be written as

∂tÑs(x,v, t) + v · ∇Ñ + (EEEÑ) · ∂Ñ = 0. (3.9)

This is a self-consistent (Ẽ is determined by Ñ , not specified externally), multiplicatively
stochastic PDE. It has the form of Eq. (2.5) with coupling coefficients

U2(1, 2)
.
= −v1 · ∇1δ(1 − 2), (3.10a)

U3(1, 2, 3)
.
= −EEE(1, 2) · ∂1δ(1− 3) + (2 ↔ 3). (3.10b)

[The symmetrization in Eq. (3.10b) is a manifestation of the self-consistency.] To inquire
about linear response to an external or free charge, introduce an external (statistically

sharp) electric field ∆Eext (Ẽ → EEEÑ +∆Eext) and consider the equation for first-order

response ∆Ñ :

∂t∆Ñ + v · ∇∆Ñ + Ẽ · ∂∆Ñ + (EEE∆Ñ) · ∂Ñ = −∂Ñ ·∆Eext. (3.11)

The underlining here and subsequently identifies the self-consistent response term that
would be absent for passive advection. Note that although ∆Eext is not random, ∆Ñ is
random because it evolves in the random background of Ñ . That is, there are random
coefficients Ẽ and Ñ on the left-hand side of Eq. (3.11), and ∆Eext couples to the

random Ñ on the right-hand side. Ultimately we must calculate the mean response
〈∆Ñ 〉, which will involve us with a closure problem.
The left-hand side of Eq. (3.11) is just the linearization of the Klimontovich equation

(2.1). It can be solved by introducing a random infinitesimal response function R̃, which
is just Green’s function56 for the left-hand side of Eq. (3.11). It obeys
(
∂t + v · ∇+ Ẽ · ∂ + ∂Ñ ·EEE

)
R̃ss′ (x,v, t;x

′,v′, t′) = δss′δ(x− x′)δ(v − v′)δ(t− t′).

(3.12)

55The Fourier transform of this function is perhaps more familiar: EEEss(k, ω) = ǫk(nq)s, where

ǫk
.
= −4πik/k2 describes the electric field due to a unit point charge.

56R̃ describes the response to an infinitesimal additive source on the right-hand side of the
dynamical equation. It is thus a different kind of object than the ones studied in linear response
theory (Martin 1968), which describe the response to a multiplicative perturbation (an additive
term in the Hamiltonian, if such exists).
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Thus, upon omitting all variables except the time for brevity, one finds

∆Ñ(t) = −
∫ t

−∞

dt R̃(t; t)∂Ñ(t) ·∆Eext(t). (3.13)

This result is analogous to Eq. (2.28); the right-hand side of Eq. (3.11) can be recognized
as a particular kind of forcing. However, there are two crucial differences. First, the forcing
is not purely external because it involves the background quantity Ñ ; consequently, it is
correlated to R̃ and the neat factorizations involved in Eqs. (2.29) and (2.35a) no longer

hold. Second, R̃ is distinct from g̃ because of the presence of the EEE term on the left-hand
side of Eq. (3.12). That describes the self-consistent response to a small perturbation; it
is absent in a passive problem.
Given R̃, one can calculate the mean internally produced field by averaging Eq. (3.13)

and evaluating EEE〈∆Ñ〉. One can then add ∆Eext to obtain the total mean field in the
medium. Finally, D is defined from the relation

∆Etot = D−1∆Eext; (3.14)

one finds57

D−1 = 1−EEE · 〈R̃∂Ñ〉. (3.15)

(This symbolic notation is a bit tricky because D is a function of only spatial coordinates

whereas EEE and R̃ operate in phase space.58) This is as far as one can go without facing

up to statistical closure, i.e., an approximate calculation of 〈R̃ Ñ〉.
One way of proceeding, ultimately not fruitful, is to first express R̃ in terms of g̃,

then attempt to average. The Klimontovich g̃ obeys Eq. (3.12) with the last term on the
left-hand side omitted. Thus Eq. (3.12) can be written schematically as

g̃−1R̃+ ∂Ñ ·EEER̃ = 1. (3.16)

Given EEER̃, the formal solution of Eq. (3.16) is

R̃ = g̃ − g̃ ∂Ñ ·EEER̃, (3.17)

An equation for EEER̃ follows by applying EEE to both sides of Eq. (3.17), then bringing the

EEER̃ term on the right-hand side to the left:

(I +EEEg̃∂Ñ) ·EEER̃ = EEEg̃. (3.18)

In the electrostatic approximation, this can be solved to find

EEER̃ = D̃−1
EEEg̃, (3.19)

where

D̃ .
= 1 +EEE · g̃ ∂Ñ . (3.20)

Thus

R̃ = g̃ − g̃ ∂Ñ · D̃−1
EEEg̃. (3.21)

The quantity D̃ is a kind of “random dielectric function” (although that concept is not
defined), and the form (3.21) emphasizes, through its second term, that self-consistency

57The scalar product between EEE and ∂ is a consequence of the electrostatic approximation.
58In detail, the operator notation means D−1(1, 1′) = δ(1− 1′) −∑

s′

∫
dv′

EEE(1, 1) · 〈R̃(1; 1′)×
∂1′ Ñ(1′)〉, where (in this footnote only) the underlining denotes the set of just spatial and
temporal variables, excluding velocity and species.
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is crucial. However, how to calculate the correlation between R̃ and Ñ that is required
for formula (3.15) is not apparent because of the wildly nonlinear way in which random
variables are mixed throughout the last term of Eq. (3.21). Thus a different approach
must be taken, as I now describe.
Instead of following the route of first solving for ∆Ñ , then averaging, in traditional

closures one averages Eq. (3.11) directly. Upon recalling that f = 〈Ñ〉, one finds

∂t∆f + v · ∇∆f +E · ∂∆f +∆〈δE δN〉 = −∂f ·∆Eext. (3.22)

The last term on the left-hand side must be evaluated by statistical closure. (A doubly
underlined term indicates that at least part of the term contains self-consistent response
that would be absent for passive advection.) The problem is essentially the same one that
arises in closing the equation for R itself. The most general way of proceeding is to use the
method of sources introduced in the classical context by Martin et al. (1973, henceforth
MSR), motivated by prior developments in quantum field theory. I shall not give a full
description of the MSR formalism here; see Krommes (2002) for extensive discussion.
Briefly, the procedure is to inquire about the response to an external, nonrandom source.
By looking at infinitesimal variations of that source, one can obtain functional relations
between the various statistical observables that can be usefully closed. For example, add
an external source59 η̂ to the right-hand side of the Klimontovich equation (3.9). The

random response function R̃ is defined by the functional derivative (Beran 1968)

R̃(t; t′) =
δÑ(t)

δη̂(t′)

∣∣∣∣
η̂=0

, (3.23)

and the mean response is

R(t; t′) = 〈R̃(t; t′)〉 = δf(t)

δη̂(t′)

∣∣∣∣
η̂=0

. (3.24)

Thus one can obtain an equation for R by functionally differentiating the mean equation,

∂tf + v · ∇f +E · ∂f + ∂ · 〈δE δN〉 = η̂(t), (3.25)

to find

∂tR(t; t
′) + v · ∇R+E · ∂R + ∂f ·EEER+

δ[∂ · 〈δE δN〉(t)]
δη̂(t′)

∣∣∣∣
η̂=0

= δ(t− t′). (3.26)

The key to usefully reducing the last term on the left-hand side is to recognize that as
η̂ changes f [η̂] changes in concert. One can therefore use a functional chain rule:

δ

δη̂(t′)
=

∫
dt
δf(t)

δη̂(t′)

δ

δf(t)
=

∫
dtR(t; t′)

δ

δf(t)
, (3.27)

where Eq. (3.24) was used in the last step. This formally closes the equation for R in the
form of a Dyson equation (Dyson 1949; Krommes 2002, 2009):

(∂t + v · ∇+E · ∂R + ∂f ·EEER+Σ)R(t; t′) = δ(t− t′), (3.28)

where60

Σ(t; t)
.
=
δ[∂ · 〈δE δN〉(t)]

δf(t)
(3.29)

59Here the hat does not denote a Fourier transform; instead, it denotes a particular kind of
source. The nomenclature is that used by Martin et al. (1973) and Krommes (2002).
60Multiplication of two-time functions implies convolution; i.e., (ΣR)(t; t′) ≡

∫
dtΣ(t; t)R(t; t′).
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is still unknown at this point. It can be evaluated in various statistical closures such as
the DIA; see Sec. 4.
In a seminal paper, DuBois & Espedal (1978) showed that one further manipulation

puts the R equation into a very suggestive form that is an obvious generalization of
linear theory. Note that Σ, whatever it is, will contain two kinds of terms: ones that
operate directly on R, such as . . .∂R; and ones that apply the electric-field operator to R
(. . .EEER). Call those terms ΣgR and ΣfR, respectively, and group the Σf terms with
the explicit ∂f ·EEER term in Eq. (3.28), thereby changing ∂f to a fluctuation-dependent
quantity ∂f

.
= ∂f + ∂δf with ∂δf ·EEE ≡ Σf . Equation (3.28) then becomes

g−1R+ ∂f ·EEER = 1, (3.30)

where the renormalized particle propagator g obeys

(∂t + v · ∇+E · ∂ +Σg)g = 1. (3.31)

Equation (3.30) now has the same form as Eq. (3.16), but importantly it contains only
statistically averaged quantities. The method of solution is the same, however, so one
obtains [cf. Eqs. (3.20) and (3.21)]

R = g − g ∂f ·D−1
EEEg, (3.32a)

D .
= 1 +EEE · g ∂f, (3.32b)

where D is the required dielectric function. The first term of Eq. (3.32a) describes the
propagation of a renormalized test particle; the second one represents the shielding cloud
that arises as the test particle polarizes the medium. The formula (3.32b) has the same
form as the linearized Vlasov dielectric, but it contains a renormalized particle propa-
gator g and a fluctuation-dependent function ∂f that formally replaces the derivative
of the background distribution f . In plasmas, where there is inevitably a nonvanishing
mean field (namely f), formula (3.32b) has a nontrivial limit in which all nonlinear terms
are neglected, i.e., the linearized Vlasov D(0) discussed in the textbooks and illustrated
by formula (3.5). In other situations with no mean field, D is still nontrivial, but the
corrections to the vacuum limit D = 1 are entirely nonlinear, being proportional to δf .61

The somewhat mysterious correction δf is necessary for one to recover the proper form
of the matrix elements in a reduction to weak-turbulence theory (Krommes 2002). It is
also required for the satisfaction of constraints such as energy conservation. A special
case was considered by Dupree & Tetreault (1978) and also discussed by Diamond et al.
(2010, Sec. 4.4.4).
It follows from Eq. (3.32a) [and was an intermediate step of the solution methodology;

cf. Eq. (3.19)] that

EEER = D−1
EEEg. (3.33)

This crucial result is a statement of dielectric shielding. Its interpretation is that the
field due to a particle streaming through the random medium (that streaming being
appropriately renormalized by the effects contained in Σg, such as turbulent diffusion)
is shielded by the self-consistent response of that medium, which behaves on the average
as a macroscopic dielectric.
One can generalize these results to define the dielectric function for an arbitrary

turbulent system. I shall show how to do this in Sec. 4.2 after I have given further
background on closure by deriving the DIA in Sec. 4.1.

61A good illustration of this case is the guiding-centre plasma model (Taylor 1974; Krommes &
Similon 1980); see further discussion after Eq. (4.41).
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3.3. Spectral balance and dielectric response

In Sec. 2.3 I showed that for a particular problem of passive advection the two-time
correlation function C(τ) or the fluctuation spectrum Ĉ(ω) can be written schematically
as [cf. Eq. (2.43)]

C = gFgT, (3.34)

where g is the mean Green’s function, T denotes transpose [gT(1, 2)
.
= g(2, 1)], and F is

the sum of the internal and external covariances of the incoherent noise. Although I shall
not prove it here, it is plausible that a similar formula holds for self-consistent systems:

C(1, 1′) = R(1; 1)F (1, 1
′
)R(1′; 1

′
) (3.35)

for some noise covariance F = F int + F ext, where F int is determined by closure. [It is
intimately related to Σ by a generalization of Eq. (2.48).] The form R−1C = FRT can
also be viewed as a Dyson equation.62 This equation follows in general from the MSR
formalism.63 Closures such as the DIA discussed in Sec. 4 provide specific formulas for Σ
and F int. Note that each of the functions in Eq. (3.35) depends on all of the independent
variables of the problem. For the immediately following discussion, it is useful to imagine
that one is dealing with a kinetic plasma description, for which the independent variables
are space, velocity, species, and time. Electromagnetic fields are calculated by performing
weighted integrations over velocity and summations over species. By doing so, we shall
see how dielectric response is contained in the balance equation (3.35).
Because R comprises two terms according to Eq. (3.32a), there are various pieces to

the formula (3.35), but those collapse when one calculates the electric-field fluctuation
spectrum by applying EEE to each of the arguments 1 and 1′ of Eq. (3.35) and using
Eq. (3.33):

〈δE δE〉(k, ω) .= [EEE(gFgT)EEET](k, ω)

|D(k, ω)|2 . (3.36)

Thus the appropriately propagated incoherent noise is shielded by the coherent dielectric
polarization. The beauty and elegance of this representation, which is one form of
a spectral balance equation, are hopefully apparent. This balance was already known
to Kadomtsev & Petviashvili (1963) in the context of weak turbulence theory. Some
physical interpretations of the balance equation for steady-state, isotropic, neutral-fluid
turbulence were given by Kraichnan (1964a), although he did not explicitly introduce
the concept of a dielectric function.
Equations (3.35) and (3.36) are generalized fluctuation–dissipation relations. They

determine the fluctuation spectrum implicitly since it occurs in all of g, D, and F (or
in R and F ).
The fact that the fluctuation balance can be represented as C = RFRT [Eq. (3.35)]

implies that it is unnecessary to explicitly introduce either the renormalized propagator g
or the dielectric function D; one only requires approximate formulas for Σ and F int.
Indeed, initial-value solutions of two-time statistical closures such as the DIA merely
advance R(t; t′) and C(t, t′). The purposes of stressing the decomposition (3.32a) for R
and the formula (3.32b) for D are to provide insight into the physical content of R and

62It is actually one component of a 2 × 2 matrix Dyson equation discussed by Martin et al.
(1973).
63All such statements about the MSR formalism are subject to the caveat that the external
forcing and initial conditions (which can be treated as a special case of external forcing) must
be Gaussian. Non-Gaussian external statistics lead to significant additional complications (Rose
1979).
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Eq.

The Dyson equations: (g−1
0 + ∂f ·EEE+Σ)R = 1, (3.28)

C = RFRT (3.35)

Particle propagation: (g−1
0 +Σg)g = 1 (3.31)

Self-consistent response: R = g − g ∂f ·D−1
EEEg (3.32a)

Dielectric function: D = 1 +EEE · g ∂f (3.32b)

Shielding identity: EEER = D−1
EEEg (3.33)

Spectral balance: 〈δE δE〉 = EEE(gFgT)EEET

|D|2 (3.36)

Table 1. Key formulas of statistical turbulence theory. For a turbulent plasma, g−1
0

.
= ∂t +

v ·∇+E ·∂. The effective distribution function is f
.
= f+δf . The quantities Σ (or equivalently

Σg and ∂δf) and F int must be approximated by a statistical closure. The interpretation of
the spectral balance [Eq. (3.36)] is that incoherent electric-field fluctuations (with covariance F )
behave like moving test particles (g) that are shielded by the dielectric or polarization properties
of the turbulent medium (D).

to show that the effects of turbulence can be incorporated as a natural generalization of
the familiar linear theory. Awareness of the relationships between R, g, and D is useful
in understanding the content and limitations of various approximations, beginning with
the approach taken in Dupree’s early work, discussed in the next section.
The principal results of this section are summarized in Table 1.

3.4. The D⊥ = γ/k2⊥ formula

In the last section I argued that one representation of the steady-state fluctuation
spectrum, E(k, ω) .= 〈δE · δE〉(k, ω), is given by

E(k, ω) = N (k, ω)

|D(k, ω)|2 , (3.37)

where N is the trace of the numerator of Eq. (3.36). In general, explicitly solving
this equation for E is quite complicated because E is buried in both N and D. A
straightforward though nontrivial method of attack would be to solve the kinetic DIA
directly as an initial-value problem; if that were done, spectral functions would be
calculated as subsidiary quantities. However, one can use Eq. (3.37) directly to interpret
the approach taken by Dupree, which was very popular for a time and is still instructive.
Let us inquire about the wave-number spectrum

E(k) .=
∫ ∞

−∞

dω

2π
E(k, ω) =

∫ ∞

−∞

dω

2π

N (k, ω)

|D(k, ω)|2 . (3.38)

The ω dependence of both N and D contribute to this integral, so it cannot be done
in general.64 But assume that the system supports a weakly damped normal mode; i.e.,
D(k, ωk) = 0 for complex frequency ωk = Ωk + iγk with |γk/Ωk| ≪ 1. Here γk is the
total growth rate, including all nonlinear corrections; crucially, as I remarked previously,
it must be negative in order that a steady state can be achieved. (Therefore nonlinear
contributions to γk are essential in order to overcompensate a positive γlink and balance

64A well-known special case is the thermal equilibrium of the discrete many-body system, for
which the fluctuation–dissipation theorem relates N to D in a simple way; then the frequency
integral can be done with the aid of the Kramers–Kronig relations (Ichimaru 1973).
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the positive-definite nonlinear noise.) To inquire about the contribution of a given normal
mode to the spectrum, one can expand

D(ω) ≈ D(ωk) + (ω − ωk)
∂D
∂ω

∣∣∣∣ωk

(3.39a)

≡ (ω −Ωk − iγk)D′
k. (3.39b)

The right-hand side of Eq. (3.38) then involves

1

(ω −Ωk)2 + γ2k
≈ 1

|γk|
πδ(ω −Ωk). (3.40)

Let us assume that only this mode contributes to the fluctuation level. (This cannot
really be correct since the modes are coupled nonlinearly.) Then the ω integration can
be performed:

−2γkE(k) = N (k, Ωk)/|D′
k|2, (3.41)

where I used the fact that γk < 0. This is still an implicit equation for E(k), which enters
in both N and D′. However, if the nonlinear noise is neglected altogether (see further
discussion at the end of this section), one is led to the saturation condition

γk = 0. (3.42)

If one further writes

γk = γlink − ηk, (3.43)

where ηk describes65 the nonlinear effects, then the saturation condition becomes

ηk = γlink , (3.44)

describing a balance between the nonlinear coherent damping and the linear drive. For
the case of magnetized plasma, for which fluid elements move cross field with E × B

drifts, the approximations of Dupree (1967) and Weinstock (1968, 1969, 1970) for ηk
amounted to saying

ηk ≈ k2⊥D⊥ (3.45)

for some D⊥ that is a measure of cross-field transport. Not accidentally, this is the same
formula for ηk that we found in the small-τac passive oscillator discussed in Sec. 2.3.
The virtue of Eq. (3.45) is that in conjunction with Eq. (3.44) it seems to directly

determine the diffusion coefficient to be D⊥ = γlink /k2⊥. An immediate objection is that
this cannot literally be so because D⊥ was assumed to be k independent but γlink is not
proportional to k2⊥ in general. (Furthermore, not all γlink ’s need be positive.) The more
general Eq. (3.44) does not necessarily have this problem because ηk is a functional of
the wave-number spectrum, which could in principle adjust so that Eq. (3.44) holds for
all k. However, the diffusive approximation is valid only at small k,66 so it is pointless to
worry about detailed k dependence. The saturation criterion is best evaluated at some

65I have reverted here to a Markovian description. Markovian approximations are further
discussed in Sec. 5.2.3.
66Classical diffusion of long-wavelength disturbances (small k) arises from random kicks due
to short-scale fluctuations (large k). In turbulence, there is no clean scale separation, and the
nonlinear interactions of fluctuations of comparable scale cannot be argued to be diffusive. Worse,
in self-consistent problems ηk need not even be positive; witness the inverse energy cascade in 2D
turbulence. In such situations the nonlinear noise cannot be neglected. Some further discussion
can be found in Krommes (2002, Sec. 4.3.5).
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typical67 wave vector k (one must have γlin
k
> 0); then a gross estimate is

D⊥ = γlin
k
/k

2

⊥. (3.46)

This formula, essentially also given by Kadomtsev (p. 107),68 is crude but effective. It
states that the fluctuation and transport levels scale with a typical linear growth rate,
which can be tested. It is often reasonable.

This is not the place for a thorough review of the subsequent developments of
resonance-broadening theory, which addressed various refinements and applications
of the basic theme. Regarding its validity, there are really two issues: how does one
adequately approximate the coherent damping ηk, and how important is the nonlinear
noise Nk? Note that there are important situations in which N can be neglected. In
weak-turbulence theory, where the spectrum comprises weakly coupled waves, the lowest-
order approximation to N vanishes unless the resonance condition Ωk +Ωp +Ωq = 0 is
satisfied for k + p + q = 0. Linear dispersion relations of “nondecay” type (Kadomtsev
1965; Sagdeev & Galeev 1969) do not (by definition) obey that condition. In that case,
nontrivial steady states require that Eq. (3.42) be satisfied (unless higher-order, e.g.,
four-wave interactions are considered). The nonlinear corrections to D in this case
describe wave–wave–particle (and higher-order) interactions and can be systematically
calculated by perturbation theory.69 Kadomtsev and later Sagdeev & Galeev (1969)
and Sagdeev (1979) discussed some instances of this situation; an example of a greatly
refined analysis of such effects is the work of Horton & Choi (1979).

In later research, Dupree attempted to take the nonlinear noise into consideration.
A difficulty is that at the kinetic level the incoherent noise is associated with several
distinct kinds of physical processes: renormalized free-streaming particles, which enter
into discussions by Dupree (1972) and later authors (DuBois & Espedal 1978; Boutros-
Ghali & Dupree 1981) of phase-space granulations70 in plasmas; and fluid mode-coupling
effects that are not sensitive to the details of the velocity space. Those effects must not
be neglected; failure to recognize this can easily lead to paradoxes or misconceptions
(Krommes & Kim 1988). The mode coupling is exposed more transparently in statistical
closures such as the DIA applied directly to fluid models (Weinstock & Williams 1971),
for which there has been much work (some of which is described below).

67What does “typical” mean in this context? Elementary discussions often refer to the wave
vector of the fastest growing linear mode. However, that is usually not the mode in which the
fluctuation energy concentrates in the nonlinearly saturated steady state. At the level of the
present argument, which is essentially dimensional, one merely needs to postulate the existence
of a continuous band of nonlinearly coupled, physically similar, excited wave numbers. The
estimate (3.45) captures the fact that the turbulence is driven by some source of free energy
(like a profile gradient), typified by a linear instability. Then, by a mean-value theorem, Eq. (3.45)

can be made exact by an appropriate choice of k. This argument needs to be refined for cases
of subcritical turbulence, which by definition exists even when all γlin

k ’s are negative; however,
that is beyond the scope of the present discussion.
68Kadomtsev actually wrote 〈γ/k2⊥〉, where the averaging operation was not defined. Presumably
an average over the steady-state wave-number spectrum was intended; if one models that
spectrum as being concentrated at a typical wave number k, then one recovers Eq. (3.46).
69When one does this, one finds that Dupree’s diffusive resonance-broadening approximation
is an asystematic approximation to part of the wave–wave–particle effects (Krommes 2002,
Secs. 4.3.5 and 6.5.4).
70As discussed by Dupree (1972) and later authors, one of the roles of the incoherent noise term
is to ensure that the relative motion of closely separated trajectories is represented correctly.
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4. The direct-interaction approximation

The general equations (3.32b) for D, (3.28) for R, and (3.35) for C are not useful until
the various terms Σg, δf (Σ = Σg + ∂δf · EEE), and F int are calculated from statistical
closure. That is a vast subject that cannot be fully treated here. The most famous
closure is the direct-interaction approximation of Kraichnan (1959), and the literature is
full of many discussions, developments, and offshoots of that theory. [Some perspectives
on Kraichnan’s seminal contributions are given by Eyink & Frisch (2011).] However, a
tutorial article of this nature would not be complete without some words about the DIA.
Its derivation has been variously discussed in terms of the perturbative effect of one
Fourier amplitude out of many (Kraichnan 1959), random-coupling models (Kraichnan
1961; Orszag & Kraichnan 1967), renormalized perturbation theory (Kraichnan 1961),
Langevin representations (Kraichnan 1970; Leith 1971), systems with infinite dimension-
ality (Mou & Weichman 1993), and more; discussion and many references can be found
in Krommes (2002). The book of Leslie (1973) explains in great detail Kraichnan’s work
up to that time; McComb (1990) also treats the DIA extensively.

Sections 4.1 and 4.2 contain more technical details than does the rest of the article.
They can be skipped on a first reading—but do take the time to absorb the basic message
stated in the next paragraph.

4.1. Heuristic derivation of the DIA

In the present section, I shall present a route to the DIA that seems to be modestly
new. It is designed to emphasize the principal intuitive points that all beginners must
grasp, which are that the statistics of turbulence are non-Gaussian and the goal of closure
is to calculate those non-Gaussian corrections self-consistently. The method essentially
provides an x-space version of Kraichnan’s original approach (Kraichnan 1959), which
was anchored in k space.

If one were dealing with Gaussian statistics, the Furutsu–Novikov theorem (Novikov’s
theorem for brevity) would be useful. That theorem (also known as Gaussian integration

by parts) states that for a centred Gaussian random variable ψ̃′ (with covariance C) and
a functional F of that variable, one has

〈F [ψ̃′]ψ̃′(1)〉 =
〈
δF [ψ̃′]

δψ̃′(1)

〉
C(1, 1), (4.1)

where δ/δψ̃′ denotes functional differentiation and I use ψ̃′ in this section as an alternate

notation for the fluctuation ψ̃−〈ψ̃〉. See Appendix B for the proof. Cook (1978) discussed
the use of Novikov’s theorem to obtain closures for passive advection; the present work
focuses on self-consistent problems. Thus the goal is to approximate the triplet correlation
function T introduced in Sec. 2; see Eqs. (2.8) and (2.9). One can cast T into the form
of the left-hand side of Novikov’s theorem:

T (2, 3, 1′) = 〈F [ψ̃′]ψ̃′(1′)〉, (4.2)

where F [ψ̃′] = C̃(2, 3) with C̃(2, 3)
.
= ψ̃′(2)ψ̃′(3). However, one cannot trivially employ

Novikov’s theorem to evaluate T because that theorem applies only to Gaussian statistics
and, as I discussed in Sec. 2.1, ψ̃′ becomes non-Gaussian already after the first time step.
If one attempts to assert that ψ̃′ is Gaussian, then one finds the trivial result T = 0
(third- and higher-order cumulants of a Gaussian vanish), consistent with the direct use
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of Novikov’s theorem:

〈F [ψ̃′]ψ̃′(1′)〉 =
〈
δ[ψ̃′(2)ψ̃′(3)]

δψ̃′(1)

〉
C(1, 1′) (4.3a)

= 〈δ(2 − 1)ψ̃′(3) + ψ̃′(2)δ(3− 1)〉C(1, 1′) (4.3b)

= 0 (4.3c)

because 〈ψ̃′〉 ≡ 0.
Non-Gaussian statistics are induced by the last U3 term in Eq. (2.7). Let us write

ψ̃′ = ψ̃′
G +∆ψ̃′, (4.4)

where ψ̃′
G is a Gaussian fluctuation with covariance 〈ψ̃′

G(1)ψ̃
′
G(1

′)〉 = C(1, 1′) (this will

later be determined self-consistently) and∆ψ̃′ is a non-Gaussian correction. One therefore
has

T (2, 3, 1′) = 〈ψ̃′
G(2)ψ̃

′
G(3)ψ̃

′
G(1

′)〉
+ 〈[∆ψ̃′(2)ψ̃′

G(3)]ψ̃
′
G(1

′)〉+ 〈[∆ψ̃′(3)ψ̃′
G(1

′)]ψ̃′
G(2)〉+ 〈[∆ψ̃′(1′)ψ̃′

G(2)]ψ̃
′
G(3)〉

+O(∆ψ̃′2). (4.5)

The first term vanishes because it is the third-order cumulant of a Gaussian process.
The remaining three explicit terms have been written in a form suitable for application
of Novikov’s theorem; the terms in square brackets define F . [I shall actually evaluate

the second explicit term as 〈[∆ψ̃′(3)ψ̃′
G(2)]ψ̃

′
G(1

′)〉.] The DIA is defined by the neglect of

the terms of O(∆ψ̃′2). (Unfortunately, ∆ψ̃′ is not small in general, which leads to subtle

deficiencies in the DIA; see Sec. 5.1 for further discussion.) An equation for ∆ψ̃′ follows

from Eq. (2.7); correct to first order in ∆ψ̃′, it is

∂t∆ψ̃
′(1) = U2(1, 2)∆ψ̃

′(2) + U3(1, 2, 3)[〈ψ〉(2) + ψ̃′
G(2)]∆ψ̃

′(3)

+
1

2
U3(1, 2, 3)[ψ̃

′
G(2)ψ̃

′
G(3)− C(2, 3)]. (4.6)

This equation can be represented more compactly by introducing the random infinitesi-
mal response function

R̃(1; 1′)
.
=
δψ̃(1)

δf̃(1′)
, (4.7)

which according to Eq. (2.5) obeys

∂t1R̃(1; 1
′)− U2(1, 2)R̃(2; 1

′)− U3(1, 2, 3)ψ̃(2)R̃(3; 1
′) = δ(1− 1′). (4.8)

R̃ is a functional of ψ̃: R̃ = R̃[ψ̃]. The quantity R̃[〈ψ〉+ ψ̃′
G] ≡ R̃G is Green’s function for

the terms explicitly involving ∆ψ̃′ in Eq. (4.6); thus Eq. (4.6) has the formal solution

∆ψ̃′(1) = R̃G(1; 4)
1

2
U3(4, 2, 3)[ψ̃

′
G(2)ψ̃

′
G(3)− C(2, 3)]. (4.9)

This describes how non-Gaussian statistics are generated by the nonlinear coupling of
Gaussian fluctuations.
One can now work out all of the O(∆ψ̃′) terms in Eq. (4.5) by approximating the

consequences of Novikov’s theorem, assuming that all terms are functionals of ψ̃′
G. One
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has

〈[∆ψ̃′(2)ψ̃′
G(3)]ψ̃

′
G(1

′)〉 =
〈
δ[∆ψ̃′(2)ψ̃′

G(3)]

δψ̃′
G(1)

〉
C(1, 1′). (4.10)

From Eq. (4.9), the functional derivative is approximately

δ[∆ψ̃′(2)ψ̃′
G(3)]

δψ̃′
G(1)

= R̃G(2; 4){U3(4, 2, 1)ψ̃
′
G(2)ψ̃

′
G(3)

+
1

2
U3(4, 2, 3)[ψ̃

′
G(2)ψ̃

′
G(3)− C(2, 3)]δ(3 − 1)}

+
δR̃G(1; 4)

δψ̃′
G(1)

1

2
U3(4, 2, 3)[ψ̃

′
G(2)ψ̃

′
G(3)− C(2, 3)]. (4.11)

Upon differentiating the identity

R̃(1; 2)R̃−1(2; 1′) = δ(1 − 1′), (4.12)

which leads to ∆R̃ = −R̃∆(R̃−1)R̃, and noting from Eq. (4.8) that

R̃−1(1; 1′) = ∂t1δ(1− 1′)− U2(1, 1
′)− U3(1, 2, 1

′)ψ̃(2), (4.13)

one finds

δR̃G(1; 4)

δψ̃′
G(1)

= −R̃G(1; 5)
δR̃−1

G (5; 5)

δψ̃′
G(1)

R̃G(5; 4) (4.14a)

= R̃G(1; 5)U3(5, 1, 5)R̃G(5; 4). (4.14b)

For use in Eq. (4.10), one must average (4.11) using the result (4.14b). Since all

quantities have been expressed in terms of ψ̃′
G, which is Gaussian by assumption, the

averages can be performed by using the functional generalization of results like

〈F(ψ̃′)ψ̃′ψ̃′〉 = 〈[F(ψ̃′) ψ̃′]ψ̃′〉 =
〈
d(F ψ̃′)

dψ̃′

〉
σ2

= 〈F〉σ2 +

〈
dF
dψ̃′

ψ̃′

〉
σ2 = 〈F〉σ2 +

〈
d2F
dψ̃′2

〉
σ4. (4.15)

(Here σ2 .
= 〈ψ̃′ψ̃′〉; see Appendix B.) However, terms that bring in extra factors of U3

(any of the terms that arise from differentiating R̃−1) should be neglected because the role
of U3 is to induce allegedly small non-Gaussian statistics and we have already (for better
or worse) neglected terms of higher than first order in that correction. This amounts to
saying that one should retain only the first term of Eq. (4.15) and should approximate

R̃G ≈ 〈R̃〉 ≡ R. Only the first line of Eq. (4.11) then survives the average, and one finds
a contribution to 1

2U3T of the form − 1
2Σ(1; 1)C(1, 1′), where

Σ(1; 1)
.
= −U3(1, 2, 3)R(2; 2)C(3, 3)U3(2, 3, 1). (4.16)

The second and third terms of O(∆ψ̃′) in Eq. (4.5) can be worked out in a similar
fashion. By symmetry, the second term is equal to the first. The third term gives a
distinct contribution to the term 1

2U3T in Eq. (2.8) of the form F int(1, 1)R(1′; 1), where

F int(1, 1)
.
=

1

2
U3(1, 2, 3)C(2, 2)C(3, 3)U3(1, 2, 3). (4.17)
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This function can be interpreted as the covariance of an internal emission or noise term
arising from the nonlinearity.
Next, one must evaluate the cross-correlation 〈f̃ ext′(1)ψ̃′(1′)〉 required in Eq. (2.8). This

can be done exactly if one assumes that ψ̃ evolves from Gaussian initial conditions ψ̃0

that are uncorrelated with the Gaussian f̃ ext. From Novikov’s theorem, one has

〈f̃ ext′(1)ψ̃′(1′)〉 = 〈ψ̃(1′)f̃ ext′(1)〉 (4.18a)

=

〈
δψ̃(1′)

δψ̃0(1)

〉
〈ψ̃′

0(1)f̃
ext′(1)〉+

〈
δψ̃(1′)

δf̃ ext(1)

〉
〈f̃ ext′(1)f̃ ext′(1)〉. (4.18b)

(Here the notation 1 denotes the set of all independent variables except time.) By

assumption one has 〈ψ̃0 f̃
ext′〉 = 0, and by definition one has 〈δψ̃(1′)/δf̃ ext(1)〉 = R(1′; 1).

Thus71

〈f̃ ext′(1)ψ̃′(1′)〉 = R(1′; 1)F ext(1, 1). (4.19)

This leads to the covariance equation

∂t1C(1, 1
′)− U2(1, 1)C(1, 1

′)− U3(1, 2, 1)〈ψ〉(2)C(1, 1′) +Σ(1; 1)C(1, 1′)

= [F int(1, 1) + F ext(1, 1)]R(1′; 1). (4.20)

Finally, one can obtain a closed equation for the mean response function R by noting
from Eq. (4.8) that R obeys

∂tR(1; 1
′)− U2(1, 2)R(2; 1

′)− U3(1, 2, 3)〈ψ〉(2)R(3; 1′)
− U3(1, 2, 3)〈R̃(2; 1′)ψ̃′(3)〉 = δ(1 − 1′). (4.21)

If one approximates ψ̃′ ≈ ψ̃′
G, the last term can be evaluated by Novikov’s theorem:

〈R̃G(2; 1
′)ψ̃′

G(3)〉 =
〈
δR̃G(2; 1

′)

δψ̃′
G(3)

〉
C(3, 3) (4.22a)

= −
〈
R̃G(2; 2)

δR̃−1
G (2, 1)

δψ̃′
G(3)

R̃(1; 1′)

〉
C(3, 3) (4.22b)

≈ R(2; 2)C(3, 3)U3(2, 3, 1)R(1; 1
′). (4.22c)

Thus, upon recalling Eq. (4.16), one finds that the last term on the left-hand side of
Eq. (4.21) reduces to Σ(1; 1)R(1; 1′); therefore

∂t1R(1; 1
′)− U2(1, 1)R(1; 1

′)− U3(1, 2, 1)〈ψ〉(2)R(1; 1′) +Σ(1; 1)R(1; 1′) = δ(1− 1′).
(4.23)

This result shows that the operator on the left-hand side of Eq. (4.20) is just R−1. Upon
formally solving Eq. (4.20), one is then led to the symmetrical form

C(1, 1′) = R(1; 1)[F int(1, 1
′
) + F ext(1, 1

′
)]R(1′; 1

′
) (4.24)

or concisely C = RFRT.
This closure, consisting of Eq. (2.6) for the mean field, Eqs. (4.20) or (4.24) for the

covariance, and Eq. (4.23) for the response function, along with the definitions (4.16)
for Σ and (4.17) for F int, is precisely the DIA. A thorough discussion and alternate
derivation of the DIA for Vlasov turbulence was given by DuBois & Pesme (1985).

71This result was known to Martin, Siggia, and Rose, who used the words “it is not difficult to
show that . . .” but did not actually describe the proof.
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For homogeneous turbulence, the DIA equations are often written in k space. If the
quadratic PDE for a fluid description (no velocity space) is written as72

∂tψ̃k = Lkψ̃k +
1

2

∑

p,q

δk+p+q,0Mkpqψ̃
∗
p ψ̃

∗
q + f̃ ext

k , (4.25)

then in the DIA

Σ̂k(t; t) = −
∑

p,q

δk+p+q,0MkpqM
∗
pqkR̂

∗
p(t; t)Ĉ

∗
q (t; t) (4.26)

and

F̂ int
k (t, t) =

1

2

∑

p,q

δk+p+q,0|Mkpq|2Ĉ∗p (t, t)Ĉ∗q (t, t), (4.27)

where M ≡ U3. If ψk has been normalized in such a way that Mkpq +Mpqk+Mqkp = 0,
then one can verify that

∑

k

[−Σ̂k(t; t)Ĉ
∗
k (t, t) + F̂k(t; t)R̂

∗
k(t; t)] = 0; (4.28)

this is a statement of “energy” conservation by the nonlinear terms:
∑

kCk(t, t)|n.l. = 0.
(The proof can as easily be conducted in x space.) This result is inherited from the
primitive amplitude equation; it is an essential property that any credible closure should
satisfy.
The pros and cons of the DIA have been discussed at great length (Krommes 2002, and

references therein). Significantly, it is known that the DIA is realizable; it provides the
exact description of the second-order statistics for certain stochastic models. Some general
discussion and original references are given by Kraichnan (1991). Although the first
demonstration of realizability involved a so-called random-coupling model (Kraichnan
1961), a more intuitive generalized Langevin representation was later displayed by
Kraichnan (1970) and Leith (1971). For homogeneous statistics, that model is

∂tψ̃k(t)− Lkψ̃k +

∫ t

0

dt Σ̂k(t; t)ψ̃k(t) = f̃ int
k (t) + f̃ ext

k (t), (4.29)

where Σ̂k has the DIA form (4.26),

f̃ int
k (t)

.
=

1

2

∑

p,q

δk+p+q,0Mkpq ξ̃
∗
p (t)ξ̃

∗
q (t), (4.30)

and ξ̃p is an auxiliary random variable having covariance Cp. It is left as an instruc-
tive exercise for the reader to verify that the equations for the response function and
covariance that follow from Eq. (4.29) reproduce the DIA.
In addition to realizability (which guarantees a positive-semidefinite covariance), the

DIA properly reduces to weak-turbulence theory at the level of wave–wave–particle or
three-wave coupling (but omits some terms associated with higher-order processes73). Its

72In terms of the previous general notation involving the coupling coefficients Un, then upon
Fourier transformation U2(x1 −x2) → Lk and U3(x2 −x1,x3 −x1) →Mkpq . The introduction
of conplex conjugates in the nonlinear term is done so that all of the wave vectors enter
symmetrically in the triad constraint k+ p+ q = 0.
73In the language of Martin, Siggia, and Rose, the missing terms are contained in vertex
corrections. Thus, for example, the DIA does not include all of the four-wave coupling effects
that are contained in weak-turbulence theory.
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self-consistent, nonlinearly energy-conserving determination of R and C is a definite plus,
and it has enjoyed considerable successes (Kraichnan 1964a; Krommes 2002). However,
the approximation described in the present section, and others like it, merely define
algorithms; for arbitrarily strong turbulence, they cannot be systematically defended
because one does not have a controlled estimate of the size of the non-Gaussian effects. A
well-known qualitative issue related to the lack of random Galilean invariance is discussed
in Sec. 5.1. The DIA cannot deal properly with mixtures of turbulent motions and
coherent structures. And even for regimes in which the DIA is expected to be good,
it is quite complicated. Alternate, simpler approximations are mentioned later in the
article.

4.2. Perturbative algorithm for the dielectric function of a general turbulent medium in
the direct-interaction approximation

As I discussed after Eq. (3.29), the essence of the R–g–D factorization obtained by
DuBois and Espedal was the grouping of the nonlinear terms in the equation for the
response function into two parts. In their words, they “temporarily consider [f ] and [E]
as independent functional variables” and replace δ/δf in Eq. (3.29) by

δ

δf

∣∣∣∣
E
+
δE

δf
·
δ

δE

∣∣∣∣f =
δ

δf

∣∣∣∣
E
+

δ

δE

∣∣∣∣f ·EEE. (4.31)

However, if one tries the same approach for the Navier–Stokes equation, the nonlinear
term of which is essentially (modulo the constraint of incompressibility) 〈δu · ∇δu〉,
confusion arises because the two u’s are obviously not functionally independent. In fact,
the assumption of functional independence is problematical even for the plasma case
because E and f are related by E = EEEf . Operationally, what is really being done is
keeping track of which term is responsible for the advection, then organizing the terms
in such a way that the self-consistent response is split off. This leads one to a formula for
the dielectric of a general (quadratically nonlinear) system. I shall illustrate the procedure
in the DIA.
The approach will be to calculate nonlinear corrections to R perturbatively, then to

heuristically renormalize by replacing certain zeroth- or second-order quantities by their
exact counterparts. This is one of the standard elementary procedures for obtaining the
DIA itself (Kraichnan 1977; DuBois & Pesme 1985); where the methodology differs is that
the symmetrized form of the mode-coupling coefficient will not be used here. Working
with the unsymmetrized form allows one to distinguish terms associated with advection
and with self-consistent response; this leads to a procedure that generalizes the approach
of DuBois and Espedal.
For conciseness, I shall use a subscript notation that looks like a Fourier representation.

In fact, however, the notation works in either x space or k space. A subscript k could be
a combination of discrete index (say for a Cartesian velocity component) and continuous
variable (either k or x, and t). Again, sums over repeated indices are assumed. Let the
dynamical equation be written

(R
(0)
k )−1ψ̃k − M̂k p̂ qψ̃p̂ψ̃q = η̂k. (4.32)

The hatted index identifies the advection term. Here M̂ is not symmetric in its last two
indices. Let me again underline terms that do not exist for passive advection. Then the
random response function obeys

(R(0))−1R̃k k′ − M̂k p̂ q(ψ̃p̂R̃q k′ + R̃p̂ k′ ψ̃q) = δk k′ . (4.33)
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At first order, one has

R̃
(1)
k k′ = R

(0)

k k
M̂k p q(ψ̃

(1)

p̂
R̃

(0)
q k′ + R̃

(0)

p̂ k′
ψ̃
(1)
q ). (4.34)

Upon averaging Eq. (4.33), one finds that through second order R obeys

(R(0))−1Rk k′ − M̂k p q(〈ψ̃(1)
p̂ R̃

(1)
q k′〉+ 〈R̃(1)

p̂ k′ ψ̃
(1)
q 〉) = δk k′ . (4.35)

Substitution of Eq. (4.34) gives

(R(0))−1Rk k′ − M̂k p̂ qR
(0)

q k
M̂k p̂ q(C

(2)

p̂ p̂
R

(0)
q k′ + C

(2)
p̂ qR

(0)

p̂ k′
)

− M̂k p̂ qR
(0)

p̂ k
M̂k p̂ q(C

(2)

p̂ q
R

(0)
q k′ +R

(0)

p̂ k′
C

(2)
q q ) = δk k′ . (4.36)

In the last expression, the underlined quantities identify terms in which a hatted index
is associated with R. Applying a hatted index to R is the generalization of applying the
EEE operator in the original manipulations of DuBois and Espedal; i.e., it is related to the
last term in Eq. (4.31). I shall group terms involving a hatted index on R separately,
and I shall also interchange indices so that the names of the indices on the C’s and R’s
match. Furthermore, one can heuristically renormalize by dropping the superscripts on
all quantities. Then one obtains

g−1

k k
Rk k′ +Σf

k
̂
kR̂

k k′
= δk k′ , (4.37)

where

(g−1
0 +Σg

k k)gk k′ = δk k′ (4.38)

and

Σg
k k

.
= −M̂k p̂ q(Rq qCp̂ p̂M̂q p̂ k +Rp̂pCq̂qM̂p q̂ k) (4.39a)

= −Mk p qRp pCq qM̂p q k, (4.39b)

Σf
k
̂
k
.
= −M̂k p̂ q(Rq qCp̂ pM̂q ̂k p +Rp̂ pCq qM̂p̂k q) (4.40a)

= −Mk p qRp pCq qM̂p̂k q. (4.40b)

(Here Mk p q
.
= M̂k p q + M̂k q p and redundant hats were dropped in each of the final ex-

pressions.) The quantity g is a generalized “particle” or passive fluid-element propagator,
while Σf generalizes the plasma ∂δf ·EEE.
These general formulas work for both kinetic problems, where the indices are six

dimensional (plus time), and fluid problems, where there is no velocity variable. When
the latter case is applied to a scalar field, the operations become purely multiplicative;
no summations or integrations occur. Then one can define a dielectric function simply
by the ratio of particle to total response:

D(k, ω) =
g(k, ω)

R(k, ω)
=

(g−1
0 +Σ)(k, ω)

(g−1
0 +Σg)(k, ω)

= 1 +
Σf(k, ω)

(g−1
0 +Σg)(k, ω)

, (4.41)

whereΣ
.
= Σg+Σf and formula (4.41) holds for the case of zero mean field. An important

example of this situation is the guiding-centre plasma model (a system of charged rods
moving across a very large magnetic field with E×B motion). In a most elegant paper,
Taylor (1974) found the proper form of D for the guiding-centre model (g−1

0 = −iω) in
thermal equilibrium. He used a linear response formalism that applied only to Gibbsian
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Eq.

Mass operator: Σ(1; 1) = −U3(1, 2, 3)R(2; 2)C(3, 3)U3(2, 3, 1) = Σg +Σf (4.16)

Particle renormalization: Σg(1; 1) = −U3(1, 2, 3)R(2; 2)C(3, 3)Û3(2, 3, 1) (4.39b)

Effective mean field: Σf (1, 1) = −U3(1, 2, 3)R(2; 2)C(3, 3)Û3(2, 1, 3) = ∂δf ·EEE (4.40b)

Nonlinear noise: F int(1, 1) = 1
2
U3(1, 2, 3)C(2, 2)C(3, 3)U3(1, 2, 3) (4.17)

Table 2. Statistical closure in the DIA. See Table 1 for the general form of the Dyson

equations. The symmetrized mode-coupling coefficient is U3(1, 2, 3) = Û3(1, 2, 3) + Û3(1, 3, 2),

where advection is associated with the second argument of Û3.

thermal equilibrium; subsequently Krommes & Similon (1980) showed how Taylor’s result
follows from the DIA. The present formalism recovers those results.

It should be noted that self-consistency is not only responsible for dielectric shielding, it
also affects the form of the renormalized particle propagator g. Whereas passive advection
leads to a generalized diffusion operator for Σg, polarization modifies that operator,
producing among other things a smaller effective diffusion coefficient. This was discussed
by Krommes and Similon for the guiding-centre model; the general polarization effect is
described by the second term in Eq. (4.39a). (The first term in that equation would be
the sole one arising in passive advection because it involves a C with two hatted indices,
i.e., the covariance of the advecting velocity.)

The method of construction guarantees that the formulas (3.32b) and (3.33) for the
dielectric function and shielded response function hold provided that one can identify
in M̂ the analogue of the EEE and ∂ operators; cf. Eq. (3.10b). This appears to be most
useful for cases with a two-level description—for example, involving a velocity space that
with the p̂ index in Eq. (4.32) must be integrated over, as in Klimontovich theory. For the
plasma case, the results are recorded in Table 2. For fluid cases without a phase-space
variable (such as the guiding-centre plasma or the Navier–Stokes equation), D can still
be defined although the implications of this are not fully understood. It is noteworthy
that dielectric response is mentioned nowhere in the most recent book on homogeneous
turbulence (McComb 2014). Indeed, it is unnecessary to explicitly introduce D since
the response function R carries the relevant information. Nevertheless, it is clear that
nonlinear dielectric response operates in Navier–Stokes turbulence. It is not excluded
that new perspectives on certain nonlinear processes in fluid turbulence may be obtained
by expressing them in terms of the nonlinear D.

The key DIA formulas obtained in this section are summarized in Table 2.

5. Some key points about statistical closures, especially for plasma
physicists

We have now gained some intuition about the DIA, and we have seen how to obtain the
dielectric function for turbulence in the DIA. I shall say nothing explicit about practical
calculations involving DDIA. But the discussion in Secs. 3, 4.1, and 4.2 shows that DDIA

is included in the full DIA formalism. Any calculation that obtains statistics in the DIA
(or in any similar closure) is ipso facto calculating the turbulent dielectric function along
the way.
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5.1. Kadomtsev and the DIA

The most general mathematical formulation of the last statement was presumably not
known to Kadomtsev, although it is probable that he appreciated it at least intuitively.
What is clear is that Kadomtsev understood an important deficiency of the DIA,74 which
I shall now describe.
It was already known to Kraichnan in 1959 that the DIA did not predict the famous

k−5/3 inertial-range spectrum of Navier–Stokes turbulence that follows from the x-space
self-similarity considerations of Kolmogorov (1941). [For some careful discussion, see
Frisch (1995).] Instead, the DIA predicts k−3/2, and for a time Kraichnan entertained
the possibility that Kolmogorov was incorrect. However, the tidal-basin measurements
of Grant et al. (1962) confirmed Kolmogorov’s prediction, so Kraichnan was led to
reconsider the structure of the DIA. In 1964 he explained (Kraichnan 1964c) that the
difficulty is that the DIA is not invariant to random Galilean transformations. Ordinary
Galilean invariance implies that under the addition of an infinite-wavelength flow short-
scale eddies should be carried along unchanged. In fact, the DIA is Galilean invariant in
that respect (McComb 2014). But if one considers an ensemble of such flows with random
direction and strength, phase-mixing effects arise as a consequence of ensemble averaging.
Those are captured correctly by the two-time R, as in the stochastic-oscillator model.
However, because of the intimate way in which the DIA couples R(t; t′) and C(t, t′) to
C(t, t) [discussed in mathematical detail by Kraichnan (1964c); see also footnote 33 on
page 16], that phase mixing introduces spurious distortion into the small-scale eddies
(see Fig. 4), which shows up as an incorrect inertial-range spectrum.
Also in 1964, Kadomtsev’s review appeared in Russian. It contains, after some discus-

sion about the differences between resonant and adiabatic wave interactions and the role
of wave packets, the following observation (p. 55):

“[The weak coupling approximation, a.k.a. DIA] over-estimates the part played by
the large-scale fluctuations, which is in fact no more than the convection of higher
modes which are deformed adiabatically in the process.”

Kadomtsev’s discussion was not as crisply technical as Kraichnan’s, but certainly he
understood the intuitive essence of the issue. Because of the publication dates, writing
styles, and lack of cross-references, it seems clear that the analyses were independent.
The issue of random Galilean invariance has received much attention and fostered

many attempts at a cure. In general, it has been understood that the problem cannot
be cured within a systematically renormalized Eulerian formulation (which includes the
MSR formalism). A heuristic Eulerian approximation that does respect random Galilean
invariance is the eddy-damped quasi-normal Markovian closure (Orszag 1970), and various
more or less successful Lagrangian schemes have also been discussed (Kraichnan 1965;
McComb 2014). But it should be emphasized that in many problems of practical interest
the issue is only of secondary importance. In particular, turbulent transport is usually
dominated by the long-wavelength, energy-containing fluctuations, in which case it is
insensitive to the precise form of the inertial range. Although there are situations (for
example, the intermittent mixing of contaminants) in which one cares about detailed
inertial-range structure, they are well beyond the scope of this article; see Falkovich
et al. (2001). Fusion plasma physicists should not be overly concerned with inertial-

74Kadomtsev called the DIA the weak-coupling approximation. The equivalence between the
weak-coupling approximation (formulated by Kadomtsev in the frequency domain) and the DIA
(formulated by Kraichnan in the time domain) was demonstrated by Sudan & Pfirsch (1985).
Some errors in Kadomtsev’s formulation for Vlasov turbulence were corrected by DuBois &
Pesme (1985).
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=>

=>

Correct

Incorrect

Figure 4. Illustration of difficulties with random Galilean invariance. In the top panel, an
infinite-wavelength flow (no shear) translates an eddy unchanged. In the bottom panel, the
average over an ensemble of such flows produces in the DIA a spurious distortion of a typical
eddy, violating random Galilean invariance.

range spectra, although the shapes of those spectra sometimes figure in discussions of
closures for large-eddy simulations.9

5.2. Drift-wave saturation and the mixing-length formula

The DIA for Vlasov turbulence was first discussed by Orszag & Kraichnan (1967);
further contributions were made by DuBois & Espedal (1978), Krommes (1978), and
DuBois & Pesme (1985). However, kinetic DIA calculations proved mostly too hard to
perform at the time. Plasma physicists slowly latched on to the use of the DIA for fluid
models (Krommes 1982; Waltz 1983; Sudan & Pfirsch 1985), though even there it is
rather complicated for anisotropic turbulence. That difficulty fostered the development
of DIA-based Markovian closures for plasma turbulence (Waltz 1983; Bowman 1992;
Bowman et al. 1993; Bowman & Krommes 1997), and those can be used to quantify
some important heuristic drift-wave scalings discussed by Kadomtsev. Here I shall give a
brief introduction. Definitions of the symbols used in the following discussion are given
in Appendix A.

5.2.1. The Hasegawa–Mima equation

More than ten years after Kadomtsev’s monograph, Hasegawa&Mima (1978) proposed
a nonlinear PDE, now known as the Hasegawa–Mima equation (HME), that serves as a
very useful paradigm for understanding the basic physics of drift-wave turbulence. The
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equation is75

( 1︸︷︷︸
(i)

− ρ2s∇2
⊥︸ ︷︷ ︸

(ii)

)∂tϕ+ V∗∂yϕ︸ ︷︷ ︸
(iii)

+VE · ∇(−ρ2s∇2
⊥ϕ)︸ ︷︷ ︸

(iv)

= 0; (5.1)

it has been studied extensively. Indeed, the HME has the same form as the equation of
Charney & Stern (1962) for Rossby-wave turbulence with finite deformation radius76 Ld.
(In the HME, ρs plays the role of Ld.) For infinite Ld, the equation reduces to the
barotropic vorticity equation that is a subject of intense interest in geophysics and related
areas; see various articles in Galperin & Read (2015).
In plasma physics, the interpretations of the various terms of the HME are as follows:

(i) adiabatic response of electrons, streaming along magnetic field lines, to the slowly
changing electrostatic potential of the drift wave; (ii) wave dispersion due to ion polar-
ization drift; (iii) E × B advection of the background density profile; and (iv) E × B

advection of vorticity (frequently called the polarization-drift nonlinearity). The linear
dispersion relation of the HME reproduces Eq. (3.7).
The drift-wave dispersion relation (3.7) contains no linear growth or damping. That

is consistent with the fact that the basic HME is time reversible. That property stems
from the approximate derivation of the HME from kinetic theory, in which the wave–
particle resonance is neglected in the determination of the electron response. That effect
can be restored by hand by calculating the effects of the resonance directly from linear
kinetic theory [see formula (3.5)] and expressing the result for the electron response as
δne/ne = (1−iδ)ϕ, where δ is a wave-number-dependent operator. This changes 1−ρ2s∇2

⊥

to 1−ρ2s∇2
⊥−iδ and leads to the modified linear dispersion relation ωk = ω∗k/(1+k2⊥ρ2s −

iδk)− νik, where an ion damping νi was also added. (Thus δk is proportional to the ratio
of the electron growth rate and the mode frequency.) When the iδ is included in both
the linear and nonlinear terms, the result is called the Terry–Horton equation after the
original research of Terry & Horton (1982). For tutorial purposes, I shall instead assume
that iδ is neglected in the nonlinear term and thus just introduces a linear growth rate,
leading one to another example of a quadratically nonlinear PDE, called the iδ model
(Waltz 1983), that takes the form (4.25) with Lk = −iωk and

Mkpq =

(
cs
ρs

)
b̂ · (p× q)(q2 − p2)

1 + k2
(5.2)

(upon dropping the ⊥ and normalizing lengths to ρs). Although the details of these
various nonlinear equations definitely matter, the basic point is that irreversible effects
can lead to instability and forced, dissipative turbulence. This was already well known
to Kadomtsev.

5.2.2. Drift-wave saturation at the mixing-length level

Kadomtsev did not have the HME available to him, but he did understand the
basic physics of the drift wave, which involves radial cross-field advection of a parcel
of background ion density profile by the E ×B velocity according to

∂tδni = −δVE · ∇ni. (5.3)

75The clearest and most succinct way of deriving the HME is via the cold-ion limit of the
gyrokinetic formalism. Pedagogical discussions can be found in Krommes (2006) and Krommes
(2012b).
76The Rossby radius of deformation is the horizontal scale at which Coriolis forces come into
(geostrophic) balance with horizontal pressure forces. It is a characteristic mesoscale important,
for example, in the theory of ocean circulation at large scales.
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Let ∆t be a characteristic mode period. Then the ion density fluctuation generated under
coherent advection in a time ∆t is

δni

ni
∼ ∆ℓ

Ln
, (5.4)

where ∆ℓ is the distance δVE,x∆t moved by the fluid element and L−1
n

.
= −∂x lnni.

By quasineutrality, the electron density fluctuation must equal this. Since the electrons
are free to stream along the field lines,77 they rapidly adjust to the ambient potential
according to δne/ne = eδφ/Te. If one balances this with the right-hand side of Eq. (5.4)
and uses δVE,x = −(c/B)kyδφ, one is readily led to the linear mode frequency Ω =
ω∗. A more refined argument (Stoltzfus-Dueck et al. 2013) can take account of the
dispersive polarization-drift correction as well and can also explain how dissipation
leads to instability. As the modes grow, the density fluctuations continue to obey
Eq. (5.4), while ∆ℓ increases with δVE . However, ∆ℓ cannot increase indefinitely. When
the turbulence saturates, it will possess a characteristic correlation length Lac. The
coherency of the advection postulated above will be destroyed on that length scale;

thus at saturation ∆ℓ ∼ Lac. Since one has Lac ∼ k
−1

⊥ , where k⊥ is a characteristic
wave number,78 one can rewrite the steady-state balance as k⊥δn ∼ n/Ln, which means
that at saturation the gradient of the typical density fluctuation becomes of the order
of the background profile gradient. This criterion was asserted (with less discussion) by
Kadomtsev (pp. 106–107),79 and it is often quoted. Note that the argument does not
by itself determine Lac. But dimensional analysis of the HME with periodic boundary
conditions shows that the sole perpendicular scale in the problem is the sound radius ρs,
so Lac must scale with ρs. This leads to the saturation level δn/n ∼ ρs/Ln, which
corresponds to fluctuating velocities of the order of the diamagnetic speed V∗.
An alternate term for correlation length in this context is mixing length, after the

famous work of Prandtl (1925) on turbulent jets, and the drift-wave saturation level
estimated80 above has come to be called the mixing-length level. Various authors such
as Connor & Pogutse (2001) cite Kadomtsev (1965) in this context. In fact, however,
Kadomtsev did not actually use the phrase “mixing length” in his Sec. IV.4 where he
discusses turbulent diffusion due to drift waves, though he had introduced the concept
earlier in his review in connection with Reynolds stress, a topic that I shall discuss in
more detail in Sec. 6.1.

Originally Kadomtsev (1962) believed that the cross-field diffusion coefficient due to
saturated drift waves should be the one that Bohm (1949) obtained experimentally
and that is usually quoted as D⊥ = (1/16)DB, where DB

.
= cTe/eB = ρscs. Taylor

(1961) employed Langevin equations to argue that the diffusion of a test ion can never

77This is true provided the parallel wave number does not vanish. The argument must be
modified for k‖ = 0 (zonal) modes. That leads one to a modified HME (Sec. 5.3) that describes
the interactions between drift-wave turbulence and zonal flows.
78This is a simple consequence of dimensional analysis.
79Kadomtsev stated, “For γ ∼ ω, when strong turbulence develops, the oscillation amplitude
increases to such an extent that the perturbation of the density gradient k⊥n

′ becomes of the
order of the mean gradient, i.e. k⊥n

′ ∼ κn [where κ
.
= L−1

n ].”
80The argument is essentially dimensional in nature. As such, it is not a universal result. It is not
possible to define a unique mixing length for physics models involving multiple length scales, as
cautioned by Tennekes & Lumley (1972, p. 57) and Diamond & Carreras (1987). An extended
excerpt from Tennekes and Lumley is reproduced by Krommes (2002, footnote 96, p. 149).
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exceed the Bohm level81 (with some uncertainty in the numerical coefficient). In his book,
Kadomtsev referred to Bohm diffusion but presciently observed (p. 4),

“It has now become evident, however, that the coefficient of turbulent diffusion
cannot be obtained without a detailed investigation of the instability of an inho-
mogeneous plasma and in particular of its drift instability.”

Indeed, the above arguments based on the HME imply that a local gyrokinetic description
must lead to gyro-Bohm diffusion:

D⊥ ∼
(
ρs
Ln

)
DB ≡ DgB, (5.5)

which is much smaller than the Bohm value and has a more favourable scaling with
magnetic field. This scaling follows from the basic dimensional analysis of drift-wave
physics given above and in Appendix A. It can also be recovered from the general estimate
D⊥ ∼ γlin/k2⊥, obtained by both Kadomtsev (Chapter IV.4) and Dupree (1967), if the
linear growth rate is taken to scale with the drift-wave frequency ω∗ and fluctuation
wavelengths are taken to scale with ρs [k⊥ρs = O(1)]: ω∗/k2⊥ = (kyρscs/Ln)/k

2
⊥ =

(kyρs)(ρ
2
s cs/Ln)/(k⊥ρs)

2 ∼ (ρs/Ln)DB. It took a surprisingly long time for this fact
to be fully appreciated, especially in the face of experimental results that often showed
Bohm scaling (Perkins et al. 1993). However, with the advent of modern supercomputers,
it was ultimately possible to give numerical demonstrations (Lin et al. 2002, 2012) that
turbulent gyrokinetic plasmas transition from Bohm to gyro-Bohm diffusion as ρ∗ .

= ρi/a
is reduced. Here a is the minor radius of a tokamak.

5.2.3. Mixing-length saturation and statistical closure

Given that all of these results are essentially dimensional in nature, one can pose
the question, What does statistical closure have to add? One obvious answer is that it
can make quantitative predictions; for example, dimensional analysis cannot pin down
the numerical value of a diffusion coefficient. Closure also shows in detail how the
nonlinear mode coupling works. That is of both conceptual and practical interest since
predictions for the wave-number spectrum can be compared with numerical simulations
or, in principal, with experiments. Early important work along these lines was by Sudan
& Pfirsch (1985), who discussed the relationship between the mixing-length concept and
DIA-type theories. However, since those authors did not consider drift waves, let us
contemplate the statistical analysis of an iδ generalization of the HME.
Detailed solutions of statistical closures such as the DIA must be done numerically

(LoDestro et al. 1991); that is entirely nontrivial in general because of both mode
coupling and especially time-history integrations.82 Therefore let us consider a Marko-
vian approximation, which eliminates the time-history integrals at the price of a less
faithful representation of the two-time correlations. A Markovianized version of the DIA

81Kadomtsev (p. 29) criticized the calculations of Taylor (1961) on the grounds that the diffusion
of a test ion (neither Taylor nor Kadomtsev actually used that nomenclature) differs from
the diffusion of the plasma fluid because of considerations of ambipolarity. As remarked by
Kadomtsev & Petviashvili (1963), “it is hazardous to extend to a total plasma conclusions that
refer only to a single particle, neglecting the correlation of its motion with the motion of the
other particles.”
82The computationally challenging fact that in the original DIA the time-history integrations
go all of the way back to t = 0 motivated Rose (1985) to develop the clever cumulant-
update DIA (CUDIA), in which the integrations are periodically restarted from a time-evolved
state involving non-Gaussian initial conditions. For further discussion and comparisons between
various closures, see Frederiksen et al. (1994).
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provides an evolution equation for the equal-time covariance83 Ck(t) that takes the form
(Kraichnan 1971; Bowman 1992; Bowman et al. 1993; Bowman & Krommes 1997)

∂tCk − 2γlink Ck + 2Re ηkCk = 2Fk, (5.6)

where

ηk
.
= −

∑

p,q

δk+p+q,0MkpqM
∗
pqkθ

∗
kpqCq, (5.7a)

F int
k

.
=

1

2

∑

p,q

δk+p+q,0|Mkpq|2 Re θkpqCpCq. (5.7b)

Here the triad interaction time θkpq is a measure84 of the coherence time between the
three interacting Fourier modes. The difficult coupled-mode nature of this system is
apparent. But for pedagogical purposes, imagine that the spectrum consists of precisely
three modes K, P , and Q. Then it turns out that the steady-state Markovian closure
can be solved analytically because the model contains just one triad interaction time, and
that simple problem is sufficient to show how the theory works. The details are recorded
in Appendix J of Krommes (2002). Of particular interest are the results for the coherent
damping and nonlinear noise,

Re ηk

γlink
= 1− γlink

∆γ
and

F int
k /Ck

γlink
= −γ

lin
k

∆γ
, (5.8)

as well as the total saturation level:

E =

(
∆(γ2)

(∆γ)2

)(
(∆Ω)2 + (∆γ)2

(∆γ)2

)(
Γ 2

M2

)
, (5.9)

where E .
=
∑

k σkCk is an energy-like quantity. The weight factors σk are assumed to
be positive definite and to obey

∑
k σkMk = 0 (MK ≡ MKPQ). The characteristic

mode-coupling coefficient M and growth rate Γ are defined by

1

M2

.
= ∆

(
1

MPMQ

)
, Γ 2 .

=M2∆

[
σK

(
γlinP γlinQ
MPMQ

)]
. (5.10)

In these expressions the ∆ operator sums over all wave numbers (e.g., ∆γ ≡ γlinK +
γlinP + γlinQ ). It can be shown that steady state requires ∆γ < 0. First focus on Eq. (5.8).

Basic RBT would correspond to Re ηk/γ
lin
k = 1 and F int

k /Ck = 0; the actual solution
is clearly different, involving nonvanishing nonlinear noise. (This is not surprising since
both F int

k and ηk are measures of the same basic triadic mode coupling. Furthermore,
as I noted in Sec. 4, nonvanishing noise is required in order that energy is conserved by
the nonlinear terms.) Indeed, the fraction |γk/∆γ| can be larger, possibly much larger,
than one because at least one γlink must be negative, which reduces ∆γ. [This property
was noted in the related numerical work by Hu et al. (1995, 1997) on the system of
Hasegawa & Wakatani (1983); it was responsible for large differences in the measured
flux from the quasilinear prediction.] Nevertheless, the total saturation level is in accord

83In this section I shall drop the hats that indicate Fourier transforms.
84A common formula is θkpq = [(iΩk + ηk) + (k → p → q)]−1. However, the resulting theory
cannot be shown to be realizable for Ωk 6= 0 (Bowman 1992). Bowman et al. (1993) offered a
pragmatic cure that was used in the numerical work cited in the text, but I shall not discuss
that here.
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with expectations. For the typical case85 in which |∆γ/∆Ω| ≪ 1, formula (5.9) becomes

E ∼ Eml .= (∆Ω)2/M2. (5.11)

This is indeed the mixing-length level, as can be seen by taking ∆Ω ∼ ω∗ ∼ cs/Ln and
M ∼ cs/ρs [see Eq. (5.2)]; then

E .
=

〈(
eδφ

Te

)2〉
∼
(
ρs
Ln

)2

. (5.12)

Obviously the details of the wave-number spectrum are complicated, but they are also
predicted by the closure.

This simple example shows how closure can predict the intricacies of the nonlinear
mode coupling and the steady-state balance between linear and nonlinear effects (in a
way that is compatible with the constraints arising from scaling analysis). Details of the
analysis of Markovian closures with many coupled modes can be found in the papers by
Bowman et al. (1993) and Bowman & Krommes (1997) for general three-wave coupling
and the Hasegawa–Mima equation, and by Hu et al. (1995, 1997) for the Hasegawa–
Wakatani equations. A message is that technically one has come a long way from the
early qualitative considerations. However, Kadomtsev’s insights are seen to be upheld;86

they capture the essence of the basic drift-wave paradigm.87

5.3. The impact of zonal flows on the Hasegawa–Mima equation

Zonal potentials are ones with ky = kz = 0 (in slab geometry) or with no variation
within a flux surface (in toroidal geometry). The resulting E×B drifts (mostly poloidal)

85In order that |∆γ/∆Ω| be small, it is necessary that the frequency mismatch is sufficiently large
(i.e., that the waves be sufficiently dispersive). The drift wave is dispersive provided that the
contribution due to the ion polarization drift—the k2⊥ρ

2
s term in the denominator of Eq. (3.7)—is

retained.
86Note that there is a distinction between ηk/k

2
⊥ and the density diffusion coefficient D⊥ for

equations like the HME. D⊥ vanishes for purely adiabatic electron response, whereas ηk does
not. A consequence is that D⊥ acquires an extra factor of γlin/Ω. This was recognized by
Kadomtsev (p. 107).

In more detail, the quantity ηk/k
2
⊥ is a generalization of the Taylor formula (2.17) for a test-

particle diffusion coefficient; it describes a decorrelation or nonlinear scrambling effect due to
the turbulence. An ηk exists even for passive advection. But the diffusion of the plasma density
is subject to the self-consistency constraint that the E ×B velocity and the fluid density are
connected by the functional relationships between the densities ns and the potential φ. For
example, the continuity equation for electron gyrocentres, ∂tne + ∇ · (VEne) = 0, leads after
averaging to the electron gyrocentre flux Γe = 〈δVE,xδne〉. In an iδ model, one has δne,k/ne =
(1− iδk)ϕk. Thus Γe = (cTe/eB)

∑
k
kyδk〈|δϕk|2〉ne. This is an exact formula for the flux, given

the wave-number spectrum of the potential. An estimate using the mixing-length saturation

level (5.12) leads to Γe =

[(
ρs
Ln

)
DB

︸ ︷︷ ︸
DgB

(kyρs)︸ ︷︷ ︸
O(1)

δk︸︷︷︸
O(γlin/Ω)

](
ne

Ln

)
, where k is a typical wave vector.

The quantity in square brackets is the turbulent diffusion coefficient, which is seen to have the
gyro-Bohm scaling reduced by a factor of γlin/Ω. (It is not hard to show, under mild assumptions
about boundary conditions, that the ion diffusion coefficient is equal to the electron one; the
polarization-charge contribution to Γi does not contribute.)
87But, as I have noted previously, one must not carry simple mixing-length arguments too far.
For example, Diamond & Carreras (1987) have discussed the breakdown of such arguments for
a model of resistive pressure-gradient-driven turbulence.
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are called zonal flows (ZFs); they are important in multiple contexts.88 In fusion plasmas,
for example, they play an important role in the regulation of the levels of drift-wave
turbulence and transport, either by shearing of turbulent eddies (Diamond et al. 2005)
or by catalysing the coupling of unstable fluctuations to stable normal modes (Hatch
et al. 2011b).
Zonal flows are strongly nonadiabatic: because they have k‖ = 0, the adiabatic ordering

ω/k‖vte ≪ 1 is violated. Dorland & Hammett (1993) emphasized that Poisson’s equation
must be modified as a consequence, giving rise to an enhanced response for the zonal
modes. In the simplest model, the electron response is taken to vanish altogether for
zonal modes. This can be implemented by writing δne,k/ne = αkδφk, where αk vanishes
for zonal modes and is equal to 1 otherwise. A consequence is that the derivation
of the Hasegawa–Mima equation must be reconsidered; one finds instead the modified
Hasegawa–Mima equation

(α− ρ2s∇2
⊥)∂tϕ+ αV∗∂yϕ+ VE · ∇(α− ρ2s∇2

⊥ϕ) = 0. (5.13)

This equation has been used in various studies related to the physics of zonal flows
(Krommes & Kim 2000; Parker & Krommes 2013); it is further discussed in Sec. 6.2.

5.4. Further developments in closure theory

For other facets of closure theory, I point the reader to the discussion and references in
Krommes (2002) and McComb (2014). The latter focuses on homogeneous turbulence. In
the next section, I shall describe some aspects of the theory of inhomogeneous turbulence.

6. Recent results on inhomogeneous turbulence

The easiest applications of closure approximations are to spatially homogeneous situ-
ations. However, while it is often possible to impose a homogeneous statistical ensemble,
that may not reflect the physical reality. Kraichnan (1964b) pointed out that when
inhomogeneous turbulence is of concern the choice of ensemble is crucial. For example,
it seems counterproductive to describe the visibly banded Jovian atmosphere88 by a
homogeneous ensemble. In the present section, I shall discuss some basic results relating
to inhomogeneous ensembles. They include fundamental ideas about Reynolds stress
(Sec. 6.1), the symmetry-breaking bifurcation to inhomogeneous turbulence (Sec. 6.2),
and some closures particularly suitable for states of inhomogeneous turbulence with
significant mean fields (Sec. 6.3).

6.1. Reynolds stress

Kadomtsev (p. 59) wrote,

“We have shown . . . that the transition to strong turbulence leads to integral
equations in the [DIA], in which the resonant and adiabatic interaction must be
separated. At present we have no rigorous method of performing this separation
and of reducing the integral equations, and the description given by this theory is
inevitably only approximate. We have as yet no indication of the accuracy of this
approximation.

“However, in describing strong turbulence in a plasma we can use an analogy with
ordinary turbulence. Here the principal results have been obtained from a purely

88The book edited by Galperin & Read (2015) is replete with observational data and theoretical
analyses of zonal jets in many natural settings (such as planetary atmospheres) and laboratory
experiments (such as tokamaks).
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phenomenological approach. It is natural, therefore, to use this approach in plasma
turbulence theory.”

In the last paragraph, Kadomtsev was referring to the modelling of the so-called Reynolds
stress by means of “the mixing-length concept introduced by Prandtl (1925).” In its
original interpretation, Reynolds stress τ described the contribution of fluctuations in
the fluid velocity to the mean Navier–Stokes momentum equation:

∂tu+ u · ∇u = −ρ−1
m ∇P − ρ−1

m ∇ · τ + µ∇2u, (6.1)

where89 τ
.
= ρm〈δu δu〉. Prandtl’s estimate for the size of a fluctuating velocity com-

ponent in a free jet was δu ≈ ℓ|∂〈u〉/∂y|, where u is the longitudinal velocity, y is
the transverse coordinate, and ℓ is the transverse mixing length. Kadomtsev (p. 59)
reviewed a solution by Tollmein of the steady-state system of momentum and continuity
equations that results when one takes ℓ = cx, where c is a fitting constant; agreement
with experiment is excellent when c is chosen appropriately.
Note that it is only the divergence of the stress tensor that contributes to the mean

momentum equation. For homogeneous turbulence that divergence vanishes, so inhomo-
geneity is essential.90 As an example, let us discuss the off-diagonal Reynolds stress due to
E×B flows in a 2D model with constant magnetic field. One has τxy ∝ 〈δVE,xδVE,y〉 with
VE ∝ b̂×∇φ̃ and φ̃ being the random electrostatic potential. Contours of constant φ̃ are
the streamlines of the velocity. Consider an elliptical “eddy,” of major axis a and minor
axis b, inclined at random angle θ̃ from the x direction:

φ̃(x, y) =
(c̃x− s̃y)2

a2
+

(s̃x+ c̃y)2

b2
, (6.2)

where c̃ ≡ cos θ̃ and s̃ ≡ sin θ̃. It is straightforward to calculate ṼE,x ∝ −∂yφ̃, ṼE,y ∝ ∂xφ̃,

and the product τ̃xy
.
= δṼE,xδṼE,y. I assume that y is a direction of symmetry.91 The

purely x-dependent part of the result (which after averaging gives the contribution to
∇ · τ ) is

τ̃xy ∝ c̃ s̃

(
c̃2

a2
+
s̃2

b2

)(
1

a2
− 1

b2

)
x2. (6.3)

For the case of circular eddies (a2 = b2 = r2), this vanishes.92 Even for elliptical eddies,
τxy

.
= 〈τ̃xy〉 vanishes by symmetry when it is averaged over a symmetrical distribution

89Kadomtsev and some others define Reynolds stress with a minus sign.
90In fact, even in statistically homogeneous turbulence a single realization is inhomogeneous,
so one can argue that a kind of Reynolds stress operates microscopically even in homogeneous
situations. This idea is behind the popular paradigm (Diamond et al. 2005; Fujisawa 2009)
that zonal flows driven by turbulence back react on the turbulence and limit its magnitude.
Detailed calculations of long-wavelength flow generation using a homogeneous Markovian closure
applied to the modified Hasegawa–Mima equation were done by Krommes & Kim (2000), who
were inspired by the earlier work of Diamond et al. (1998). However, the situation is subtle
because such models assume random zonal flows with zero mean; they provide information
only in a mean-square sense, as discussed by Krommes & Parker (2015). Do not confuse those
homogeneous calculations with the inhomogeneous ones discussed in Secs. 6.2 and 6.3. See also
challenge 6 in Sec. 8.
91One should really refer the y origin of the ellipse to a uniformly distributed random position.
In a torus, one should further generalize the model to account for periodicity in the poloidal
direction.
92This effect of symmetry is relevant to contemporary discussions of issues relating to momentum
conservation and flow generation in gyrokinetics. Those are summarized in a lengthy technical
report by Krommes & Hammett (2013), which contains a large pedagogical component.



53

in θ. But if θ̃ is distributed according to the PDF f(θ) = fs(θ) + ǫfa(θ), where s and a
denote symmetric and antisymmetric parts, then the antisymmetric part contributes
and one finds τxy ∝ ǫ∆x2, where ∆

.
= b−2 − a−2. This example shows the importance

of asymmetry in producing nonvanishing Reynolds stress, and it suggests that toroidal
devices with up–down asymmetry may, in the presence of microturbulence, have larger
Reynolds stresses. Those may be important in limiting the size of the turbulence and in
the generation of intrinsic rotation.93

It is well known that the deformation tensor ∇u of a general flow field u(x) can
be decomposed into a symmetric part (the rate-of-strain tensor S, associated with
both stretching at constant volume and possibly compression) and an antisymmetric
part (associated with vorticity and leading to rigid-body rotation). Therefore tilted
elliptical eddies, hence Reynolds stress, can arise by subjecting a circular eddy to an
inhomogeneous velocity field. One source of inhomogeneity is the generation of zonal
flows due to the (divergence of the) Reynolds stress. As an example, consider a slab zonal
flow with constant shear:94 u = Ω0xŷ, with ∇×u = Ω0ẑ and S = 1

2Ω0(x̂ ŷ+ ŷ x̂) [the

principal axes of which are (1, ±1)T/
√
2]. Tilt arises from the vorticity, and ellipticity (at

constant area) arises from the straining. Thus one has a classic problem of the chicken and
the egg. Inhomogeneous Reynolds stress drives zonal flows, and such stress can arise from
the modulation of homogeneous turbulence by zonal flows; a feedback loop is indicated.
But given homogeneous turbulence, there is no divergence of the Reynolds stress, hence
no zonal-flow generation,90 hence no inhomogeneity, hence no effect due to Reynolds
stress. However, such homogeneous turbulence can be unstable to the generation of
inhomogeneous flows, as I shall describe in the next section. Thus inhomogeneous states
can result in which zonal flows and microturbulence are coupled self-consistently.

6.2. Infinitesimal response, symmetry breaking, and zonostrophic instability

A basic question is, Under what circumstances is a state of steady homogeneous
turbulence unstable to the symmetry-breaking generation of inhomogeneity? This can
be addressed by linearizing around the homogeneous state (allowing for inhomogeneous
perturbations) and inquiring about the onset of a zero eigenvalue that solves a certain
dispersion relation. I shall show, expanding on the original beautiful paper of Carnevale &
Martin (1982), that that dispersion relation is intimately related to a certain approxima-
tion to the inverse of the infinitesimal response function R for the homogeneous turbulent
state. In the theory of zonal-flow generation, the instability of homogeneous turbulence
is called the zonostrophic instability (Srinivasan & Young 2012).
Mention of a zero eigenvalue in the context of homogeneous turbulence might be

confusing. Recall that in earlier sections we saw how the nonlinear dielectric function
participates in the spectral balance of the turbulence by shielding nonlinear noise, which
I argued is important and cannot generally be neglected. Also recall that in steady state
the zeros of D(k, ω) or R−1(k, ω) are in the lower half of the ω plane, not on the real line.
Now the dielectric function (or inverse response function) referred to here relates internal

93I am grateful to G. Hammett (private communications, 2012, 2013) for emphasizing the
possible roles of up–down asymmetries. For some discussion of symmetries in gyrokinetic
turbulence, see Parra et al. (2011). For the importance of up–down asymmetries in flow
generation, see Ball et al. (2014).
94A review of many effects associated with shearing of turbulent eddies, including the suppression
of turbulence and the onset of transport barriers, is by Terry (2000). A region of constant shear
might be reasonable for zonal flows arising from externally imposed radial electric fields. It is
not a good approximation for self-consistently generated zonal flows; Kim & Diamond (2004)
have studied the case of random shearing.
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incoherent noise to the covariance of the fluctuations (for homogeneous turbulence, there
is no mean flow). But if one admits the possibility of inhomogeneity, there will arise
an effective dielectric tensor that operates on an extended vector containing not only
fluctuations but also mean fields. At the symmetry-breaking bifurcation of homogeneous
turbulence to the generation of mean fields, that tensor will develop a zero eigenvalue.
If one writes Z ≡ 〈ψ〉, Eq. (2.6) for zero forcing becomes

∂t1Z(1) = U2(1, 2)Z(2) +
1

2
U3(1, 2, 3)Z(2)Z(3) +

1

2
U3(1, 2, 3)C(2, 3). (6.4)

The linearization of this equation is

∂t1∆Z(1) = U2(1, 2)∆Z(2) + U3(1, 2, 3)Z(2)∆Z(3) +
1

2
U3(1, 2, 3)∆C(2, 3). (6.5)

In particular, I shall linearize around a homogeneous state for which it is assumed
that Z = 0; the terms that vanish with this assumption are underlined. The (generally
inhomogeneous) fluctuation spectrum is assumed to obey the Dyson equation

∂t1C(1, 1
′) = U2(1, 2)C(2, 1

′) + U3(1, 2, 3)Z(2)C(3, 1
′)

−Σ(1, 1)C(1, 1′) + F (1, 1)R(1′; 1). (6.6)

Linear perturbations to the spectrum obey

∂t1∆C(1, 1
′) = U2(1, 2)∆C(2, 1

′) + U3(1, 2, 3)[∆Z(2)C(3, 1
′) + Z(2)∆C(3, 1′)]

−Σ(1, 1)∆C(1, 1′)−∆Σ(1; 1)C(1, 1′) + F (1, 1)∆R(1′; 1) +∆F (1, 1)R(1′; 1). (6.7)

Doubly underlined terms are O(C ∆C); they describe fluctuation–fluctuation interac-
tions. Let us neglect those and focus on the coupling between the mean fields and the
turbulence. Because ∆R = −R∆(R−1)R and

R−1(1; 1) = ∂t1δ(1− 1)− U2(1, 1)− U3(1, 2, 1)Z(2) +Σ(1, 1), (6.8)

one has

∆(R−1)(1; 1) = −U3(1, 2, 1)∆Z(2) +∆Σ(1; 1). (6.9)

The doubly underlined term contains pieces of order C ∆R and R∆C; those can be
ignored because when multiplied by F , as required for Eq. (6.7), they contribute effects
of order C2 or C ∆C. The solution to Eq. (6.7) is then, after some permutation of indices,

∆C(2, 3) ≈ R0(2; 2)U3(2, 3, 1)C(3, 3)∆Z(1) + (2 ↔ 3). (6.10)

[The last term, which ensures symmetry, comes from the first term on the right-hand side
in Eq. (6.9) after using steady-state balance to replace the F in F∆R with R−1C(R−1)T.]
When this solution is inserted into Eq. (6.5), one finds

[∂t1δ(1− 1)− U2(1, 1) +Σ0(1; 1)]∆Z(1) = 0, (6.11)

where

Σ0(1; 1)
.
= −U3(1, 2, 3)R

(0)(2; 2)C(3, 3)U3(2, 3, 1). (6.12)

A consistent (fluctuation–dissipation) approximation (Carnevale & Martin 1982) is to
replace the two-time dependence of C(3, 3) with that ofR(0)(3; 3). Because the coefficients
of ∆Z are all calculated in the homogeneous state, one can Fourier transform as usual.
If one follows the common convention of using q to refer to the wave vector of the mean
field, one then arrives at the dispersion relation

R−1
1 (q, ω) = 0, (6.13)
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Figure 5. (Colour online.) Cartoon of a neutral curve C = C(q) for zonostrophic instability.
Below the neutral curve, the homogeneous turbulent state is stable. Above it, the homogeneous
turbulence is unstable to the generation of inhomogeneous mean fields. Instability first sets in
at a critical wave number qc. For given C in the unstable region. zonal-flow equilibria with a
continuum of q’s are allowed. Further analysis must be done to examine the stability of those
solutions (Parker & Krommes 2014).

where R1 is the first renormalized approximation to R. [In Eq. (6.8), replace Σ by Σ0

and R by R1.] The solution determines the eigenvalue ω as a functional of the level C
of the homogeneous turbulence (as well as q and the various parameters): ω = ωq[C].
Setting ωq[C] = 0 determines the neutral curve C = C(q); larger values of C are unstable
to the generation of inhomogeneous mean fields (see Fig. 5). This process is analogous
to the general phenomenon of pattern formation, as discussed by Parker & Krommes
(2013).95 In the context of the barotropic vorticity equation, the zonostrophic dispersion
relation was analysed in detail in a beautiful paper by Srinivasan & Young (2012). Further
results have been reported by Parker & Krommes (2014, 2015).
This zonostrophic instability is a generalization of the often-discussed modulational

instability (Dewar & Abdullatif 2006; Connaughton et al. 2010), in which one considers
the instability of a fixed “pump” wave at wave vector K to the generation of fluctuations
at wave vector Q with sidebands at P± = −K±Q (see Fig. 6). The relationship between
the zonostrophic and modulational instabilities was first demonstrated by Carnevale &
Martin (1982), though their result was not widely appreciated. It has recently been dis-
cussed in more detail by Parker & Krommes (2015), whose work was further generalized
by Bakas et al. (2015, Appendix C).

6.3. The CE2 and S3T closures

The dispersion relation (6.13) also follows from a superficially distinct closure theory,
the so-called CE2 (second-order cumulant) closure [Tobias et al. (2011), Srinivasan &
Young (2012), and references therein]. In this approximation, the small-scale turbulence
is represented by merely an external white-noise forcing; otherwise, “eddy–eddy interac-

95Such an analogy was already recognized by Kadomtsev [Sec. I.2(a)], who discussed an example
of plasma convection.
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Figure 6. Wave vectors for the modulational instability of a fixed pump waveK to fluctuations
at Q; the sidebands are P±

.
= −(K ± Q). The mode coupling obeys K + P± ±Q = 0. This

process can be extracted from the general dispersion relation for zonostrophic instability by
inserting the background spectrum Ck ∝ δ(k −K) + δ(k+K).

tions” are neglected and the retained interactions are between only the mean fields and
the turbulence. It is left to the reader to learn more about this closure [see the discussion
below as well as various articles in Galperin & Read (2015)] and to ponder why the
dispersion relations should be equivalent.
In the general notation of Eqs. (2.6)–(2.8), the CE2 closure omits the terms of O(δψ2)

in Eq. (2.7) or the third-order cumulant T in Eq. (2.8)—those terms describe the eddy–
eddy interactions—while keeping Eq. (2.6) for the mean field intact. With white-noise
forcing, Eq. (2.8) closes in terms of 〈ψ〉(t), C(t, t), and the known strength of the forcing;
the truncated form of Eq. (2.7) ensures that this approximation is realizable. Tobias et al.
(2011), Tobias &Marston (2013), andMarston et al. (2015) have referred to the numerical
solutions of such truncated cumulant systems as “direct statistical simulations.”
Realizability is an important property of CE2. While one can define higher-order

approximations CEn for n > 2, none of those are realizable.96 Marston (2012) and
Marston et al. (2015) have explored several phenomenologically modified versions of CE3
that appear to pragmatically restore realizability. The presence of eddy–eddy interactions
in those closures leads to results that are superior to those from CE2 in some situations.
However, a more systematic approach is desirable.
Studies of CEn closures (by that name) were preceded by the research of Farrell

and coworkers on the so-called stochastic structural stability theory (SSST or S3T), the
fundamental paper being that of Farrell & Ioannou (2003); see also Farrell & Ioannou
(2015) for an overview. One version of the theory is mathematically identical to CE2,
a philosophical difference being the interpretation of the random forcing. In strict CE2,
the forcing is viewed as being entirely extrinsic—for example, due to modes that are
otherwise unaccounted for. In S3T, the forcing is frequently said to represent the effects
of the eddy–eddy interactions as well as any extrinsic noise. That would be in accord with
a Langevin representation of the turbulence provided that an energy-conserving coherent
damping due to the eddy–eddy terms were also included. Sometimes that has been done,
as in the work of DelSole (2001) and Farrell & Ioannou (2009b); other times it has been

96This follows from a theorem due to Marcinkiewicz (1939), which states that a realizable PDF
is either Gaussian (i.e., it is composed of just the first two cumulants) or possesses an infinite
number of cumulants.
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omitted, as in the application by Farrell & Ioannou (2009a) of S3T to the Hasegawa–
Wakatani system. Omission of that damping fosters uncertainty about some of the details
reported in the latter work (without, however, vitiating the principal message).
Farrell & Ioannou (2015) have reviewed some calculations using S3T and have also

embedded that approximation into a more general framework that they call statistical
state dynamics. The basic philosophy is that working with an ensemble (even one that
is characterized by only the first few cumulants) provides information about cooperative
and self-consistent behaviour that is superior to that gained from studies of individual
realizations. A technical justification for a simple stochastic parameterization of the eddy–
eddy interactions involves the non-normality97 of the linear operator in the presence of
mean fields; consult Farrell & Ioannou (2015, and references therein) for further discussion
of the implications of non-normality.
In the original applications of these types of closures, coupled equations for mean

fields and eddy covariance were obtained by applying a zonal average to the original
PDE. However, Bakas et al. (2015) have generalized the procedure to show that one
can consider the onset of both zonal and nonzonal perturbations; many detailed results
about barotropic beta-plane turbulence are contained in that beautiful paper, which has
implications for drift-wave physics as well.
There are many opportunities for further research. For example, some current work

focuses on applying CE2-type ideas to the study of dynamo action in accretion disks
(Squire & Bhattacharjee 2015). Also, the kinds of inhomogeneous states described in this
section, which involve steady or quasi-steady zonal jets, do not appear to be relevant for
microturbulence in tokamaks; see footnote 90 on page 52 as well as challenge 6 in Sec. 8.

7. Highlights of some research threads

Now that the reader has gained an overview of the subject from a modern perspective,
I wish to provide additional representative references that chronicle the progression of
some lines of plasma turbulence research that emanate from the mid-1960s, as well as
to mention some ideas and techniques that arose only later. It is fascinating to watch
the emergence and development of ideas in the course of a half century of research.
Unfortunately, I cannot give a complete review of the subject, which is vast. Any one
of the subsections below merits a full-length review in its own right, and I have omitted
some important areas altogether; here I merely want to whet the reader’s interest and
provide some entry points to the literature. I restrict my attention to basic conceptual
topics. The consequences of turbulence for plasma confinement are beyond the scope of
this article, although they are obviously of paramount importance.98

7.1. Some ideas discussed by Kadomtsev

7.1.1. Bifurcations

Early in his book, Kadomtsev introduced (p. 5) the topic of bifurcations, either “soft”
(supercritical) or “hard” (subcritical). Hinton & Horton (1971) did a nice bifurcation
calculation of a collisional drift-wave instability. Much more recently, Kolesnikov &

97A non-normal matrix L is one that does not commute with its Hermitian adjoint. The linear
system ∂tψ = L · ψ can exhibit transient growth even when all of the eigenvalues of L are
negative.
98Early results were reviewed in Kadomtsev’s Chapter V, and Kadomtsev & Pogutse (1970)
reviewed turbulence in toroidal systems a few years later. A wealth of more up-to-date
information can be found in the book by Horton (2012).
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Krommes (2005a,b) attempted to consider the transition to ion-temperature-gradient-
driven turbulence in the present of zonal flows, motivated by the numerically observed
phenomenon of the Dimits shift99 (Dimits et al. 2000). Although they used modern tech-
niques such as the centre-manifold theorem (Guckenheimer & Holmes 1983; Kuznetsov
1998), the results were ultimately unsatisfactory; considerable further work is indicated.

Also in the context of bifurcations, Kadomtsev (p. 6) referred to Landau’s scenario
for the transition to turbulence. A revolution occurred when Ruelle & Takens (1971)
argued for a qualitatively different scenario involving strange attractors, which had been
discovered without fanfare years earlier by Lorenz (1963). Some good discussion of issues
and phenomenology related to modern nonlinear dynamics is given by Holmes et al.
(1996).

Subcritical bifurcation provides a route to subcritical or submarginal turbulence, a
difficult topic about which I have said little. The phenomenon was subsequently observed
in a variety of computer simulations, representative examples of which include the works
of Scott (1992) and Drake et al. (1995).100 Itoh et al. (1996) and Itoh et al. (1999)
discussed the topic in terms of nonlinear dispersion relations that follow from crude
statistical closures. There is much more work to do; see challenge 4 in Sec. 8.

7.1.2. Quasilinear theory

Kadomtsev (Sec. I.3) reviewed the basic ingredients of the plasma quasilinear theory,
which had just appeared a few years earlier (Vedenov et al. 1962; Drummond & Pines
1962). About five years later, the monograph of Sagdeev & Galeev (1969, based on
lectures a few years earlier) treated the subject in somewhat more detail. They displayed
an appreciation of the importance of stochastic phase-space trajectories, and they cited
Dupree (1966) for the most rigorous justification of the diffusion operator.101 However,
none of those authors discussed what is now called the Chirikov criterion (island overlap)
for the onset of stochasticity;102 Chirikov’s thesis only appeared a few years later
(Chirikov 1969). That was the tip of the iceberg associated with the emerging awareness
by the plasma community of Hamiltonian chaos and nonlinear dynamics, which gained
force during the 1970s. Modern understanding is described in the books by Lichtenberg
& Lieberman (1992) and (more briefly but very elegantly) by Diacu & Holmes (1996).

7.1.3. Wave kinetics

Kadomtsev discussed wave–wave coupling in his Chapter I.3. That theme was also
taken up by Sagdeev & Galeev (1969); a modern book is by Nazarenko (2011). Recent
advances in the theory of plasma waves are described by Dodin (2014a,b).

99Given a drive parameter λ (e.g., temperature gradient), one might naively expect that
turbulent heat flux should ensue when λ exceeds the threshold λc for linear instability. In fact,
the flux was numerically observed to almost vanish until λ achieved a value λ∗ that significantly
exceeded λc. The distance λ∗ − λc is the Dimits shift. The suppression of flux in the Dimits-
shift regime is due to the excitation of zonal flows (Rogers et al. 2000; Kolesnikov & Krommes
2005a,b).
100For many more references to work on subcritical turbulence, see Yoshizawa et al. (2001).
101An important later paper on quasilinear theory by Kaufman (1972) should also be noted
here.
102The relationships of the Chirikov criterion and Dupree’s resonance broadening to plasma
quasilinear theory were described by Krommes (1984, Sec. 5.5.3, p. 195).
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7.1.4. Noise due to particle discreteness, and the transition to unstable, nonlinearly
saturated turbulence in plasmas

By the early 1960s, one had a clear picture of the consequences of particle discreteness
for a weakly coupled stable plasma in the form of the Balescu–Lenard and Landau
collision operators. The theory was briefly described by Kadomtsev [Sec. II.2(b)] and
treated in more detail by Montgomery & Tidman (1964).
To discuss the qualitative transition from stable to unstable plasma, Kadomtsev

considered (p. 46) the equation

dI

dt
= 2γI + q − αI2, (7.1)

where I denotes spectral intensity, γ is a typical linear growth rate, q is a source of
fluctuations due to moving discrete particles, and α is a mode-coupling coefficient. For
stable plasma, he described the discreteness-induced noise level as a balance between
emission and absorption:103 I = q/(2|γ|). As the modal growth rate transitions through
zero to positive values, nonlinear mode-coupling effects enter and the steady state is given
by I = 2γ/α; see Kadomtsev’s Fig. 11. Detailed treatment of this transition is difficult
even in weak-turbulence theory (Rogister & Oberman 1968, 1969). In principle, it can
be described by the general equations of Rose (1979).
Discreteness-related noise is also important in particle-in-cell (PIC) simulations of

plasmas. For unmagnetized plasmas, the relevant kinetic theory is described by Birdsall
& Langdon (1985, Chapter 12). The theory of noise in gyrokinetic plasma is especially
interesting because the gyrokinetic noise level is substantially lower than that of the
true many-body plasma. Theoretical analysis of gyrokinetic noise in both electrostatic
(Krommes et al. 1986) and electromagnetic (Krommes 1993) regimes were followed by
detailed calculations of the noise level in gyrokinetic PIC simulations (Nevins et al.
2005); the latter work inspired a vigorous and useful debate about signal-to-noise ratios
and resolution requirements in the simulations. The theory was reviewed by Krommes
(2007).

7.2. Some ideas discussed by Dupree and Weinstock

7.2.1. Energy conservation

Dupree’s original resonance-broadening theory did not conserve energy; as I noted
in footnote 37 on page 17, it was appropriate for passive, not self-consistent problems.
This and other difficulties were discussed by Orszag & Kraichnan (1967), whose paper
on variants of the DIA for kinetic plasma turbulence was full of important insights.
Unfortunately, that paper appears to have been mostly ignored for about a decade until
the rise of interest in the mid-1970s in systematically renormalized closures by DuBois
and coworkers, Krommes, and others. Dupree & Tetreault (1978) also discussed the
problem with energy conservation in a restricted context.

7.2.2. Phase-space granulation

Subsequently, Dupree focused his research on considerations of small-scale granulations
and the related topics of “clumps,”“holes,” and coherent structures (areas not discussed
by Kadomtsev). Boutros-Ghali & Dupree (1981) gave a thorough discussion of the con-
sequences of the one- and two-time equations for the two-point correlation function, with

103Kadomtsev’s discussion may foster some confusion. The interpretation of γ as a modal growth
rate makes sense only when Landau damping is weak (kλD ≪ 1). That is not the case for most
of the scales that fit inside of a Debye sphere.



60

reference to coherent and incoherent response. They challenged some of the conclusions
reached by DuBois & Espedal (1978) relating to phase-space granulation and clumps.
However, in the opinion of the present author, DuBois and Espedal were correct.104 For
fluctuations in phase space, the role of coherent structures remains of interest today
(Diamond et al. 2010; Lesur & Diamond 2013). The application of clump-related ideas
to fluid problems is rather subtle, as explained by Krommes (1997). His discussion
was in part motivated by the celebrated Kraichnan model (Kraichnan 1994) of passive
advection involving a random coefficient delta correlated in time but with specified wave-
number spectrum. That model proved to be enormously useful and ultimately led to the
discoveries about anomalous scaling reviewed by Falkovich et al. (2001)—truly one of the
major triumphs of the modern statistical theory of turbulent fluids. To be clear, these
latter results were not motivated by Dupree’s early work; they are just beautiful physics,
and they set a very high standard for the theoretical analysis of turbulent systems.

7.2.3. Averaging and projection operators

The papers of Weinstock (1969, 1970) introduced the concept of an averaging operator,
with which he showed how to interpret and generalize the analyses of Dupree (1966, 1967).
[The systematic use of cumulants (Weinstock 1968) was also important in the discussion.]
An averaging operator is a special case of a linear projection operator P, which obeys
P2 = P. Define also the orthogonal projector Q

.
= 1 − P. Then a dynamical equation

for a field ψ can be projected onto a “relevant” subspace with P, and onto everything
else (the orthogonal subspace) with Q. Elimination of the irrelevant dynamics Qψ then
leads to a formally closed equation for the P projection. Such methodology was used in
a famous paper by Mori (1965), who showed how to use projection operators to derive
generalized Langevin equations, and it figures importantly in modern derivations of linear
and nonlinear theories of transport in many-body systems (Zwanzig 2001).

The elimination of Qψ formally solves the closure problem! Of course, the devil is in the
details. Exactly how to best define relevant is unclear. And even given such a definition,
for nonlinear systems the elimination of the irrelevant dynamics is nontrivial; ultimately,
the various approximate techniques for carrying that out amount to a restatement of
the kinds of approaches employed in traditional closure theory (with all of their difficul-
ties). Nevertheless, Weinstock’s averaging-operator approach elucidated the mechanics of
Dupree’s formalism and clarified the structure of plasma turbulence theory. Projection-
operator methods should be in the toolbox of a well-rounded turbulence theorist, although
they are definitely not a panacea and should be used only with the greatest of care.

7.3. Some miscellaneous topics related to analytical methods

The following subsections mention representative topics that have emerged subsequent
to the early works by Kadomtsev, Dupree, and Weinstock.

104Boutros-Ghali and Dupree wrote, “If by the direct interaction approximation (as applied to
plasma turbulence), we understand a scheme which iterates the coherent response only then
this procedure will break down.” This statement is confusing; there is no ambiguity about the
definition of the complete DIA for a plasma in the absence of particle discreteness effects. As
I have explained, the DIA contains both coherent and incoherent response. However, I confess
to possibly having contributed to the confusion by coauthoring the paper by Krommes & Kleva
(1979), in which a “coherent approximation to the DIA” was considered for the purpose of
elucidating some specific aspects of weak-turbulence theory. (In that paper it was clearly pointed
out that incoherent response was deliberately neglected in most of the discussion.)
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7.3.1. Entropy, dissipation, and phase-space cascades

It is implicit in the spectral balance equations that a forced steady state cannot
be achieved in the absence of dissipation; see, for example, the presence of ν−1 in
Eq. (2.36b). A basic paper on the general relationship between dissipation, entropy,
and spectral cascades is by Krommes & Hu (1994).105 That work focused on fluid
models. However, modern astrophysical and space-physics applications, enlightened by
high-quality telescope and satellite data, have led to considerable interest in cascades
of free energy in phase space. Some beautiful and detailed calculations were done by
Schekochihin et al. (2008) and Schekochihin et al. (2009).

7.3.2. Optimal variables

The statistical closures described in this article are generally applied directly to a
given PDE and are couched in terms of the original independent variables of that
equation. It is not clear that this procedure is optimal from the point of view of capturing
interesting physics. For example, the most elegant formulation of quasilinear theory is in
terms of oscillation-centre variables (Dewar 1973) that remove the nonresonant particle
oscillations in the wave fields. Dewar (1976, 1985) invested considerable effort in trying to
generalize such techniques to turbulent situations. Although that work was not entirely
successful, it was well motivated and highly original; some perspectives and discussion
are given by Krommes (2012a). Further results in this area would be very welcome.

7.3.3. Fractional diffusion

While many aspects of turbulence phenomenology can be satisfactorily described in
terms of classical Brownian motion, Langevin equations, and Fokker–Planck equations,
others cannot. For example, if the conditions of the standard central limit theorem (which
assumes finite variance) are violated, generalized random walks (Lévy processes) become
possible. Those can be described by generalized Fokker–Planck equations that involve
fractional derivatives. Good introductions are given by Klafter et al. (1996), Balescu
(1997), Metzler & Klafter (2000), and Zaslavsky (2002). An example of work along these
lines in the plasma context is by del Castillo-Negrete et al. (2004).

7.3.4. Variational methods

At the heart of the MSR formalism is a cumulant generating functional. Normally
that is used to obtain formally closed Dyson equations that are then approximated. An
alternate approach is to approximate the generating functional directly. One example of
a serious attempt in that direction is by Spineanu & Vlad (2005).

7.3.5. Saddle-point methods

Although I have said little in this introductory article about methods aimed at entire
PDFs, I do not mean to imply that they are not useful or unimportant. They are well
suited to situations involving large intermittency, which manifests as non-Gaussian tails
on PDFs. One technique for addressing that problem is the (saddle-point) method of
instantons (Zinn-Justin 1996); for some plasma-related work, see, for example, Kim et al.
(2003) or Anderson & Xanthopoulos (2010).

7.3.6. MHD turbulence

A major area of current interest is the description and role of electromagnetic effects
in turbulence. Those are relevant to microturbulence in modern, high-pressure toroidal

105The key balances discussed in that paper were verified by the numerical simulations of
Watanabe & Sugama (2004) and Candy & Waltz (2006).



62

devices, and basic electromagnetic corrections to drift-wave theory were already discussed
by Kadomtsev (p. 82). However, he specifically omitted discussion of “problems of
astrophysical application” (p. 4). Recently the theory of macroscopic MHD turbulence,
especially in astrophysics, has developed rapidly; some reviews are by Sridhar (2010) and
Tobias et al. (2013).

7.3.7. Critical balance

MHD turbulence is anisotropic in the presence of a background magnetic field; gy-
rokinetic turbulence is also intrinsically anisotropic. While the statistical closures I have
discussed in this article, such as the DIA, are generally valid for anisotropic turbulence,
the lack of complete symmetry makes the extraction of practical information and un-
derstanding from them entirely nontrivial. A crucial part of the modern insights about
anisotropic turbulence, both for MHD (Goldreich & Sridhar 1995) and more generally
(Nazarenko & Schekochihin 2011), is the conjecture of critical balance. The concept is
defined slightly differently depending on the author; in essence, the turbulence is supposed
to adjust so that the correlation times associated with parallel and perpendicular effects
are comparable. The idea has had a huge impact on one’s understanding of both MHD and
microturbulence in realistic, magnetized situations. For further references to the extensive
MHD literature, see the above-mentioned reviews. In research on magnetic fusion, the
conjecture is supported by both simulations (Barnes et al. 2011) and experiments (Grim
et al. 2013). From the point of view of analytical methods, on which the present section 7.3
focuses, the justification of critical balance has been argued by detailed analyses of the
nonlinear mode coupling (see especially the MHD references) as well as with the aid of
stochastic-oscillator models (Lithwick & Goldreich 2003).

8. Summary; outstanding issues

The new material presented in this article includes (i) arguments based on Novikov’s
theorem that provide a heuristic, x-space derivation of the direct-interaction approxima-
tion (Sec. 4.1); and (ii) an algorithmic approach to the determination of the dielectric
response function D in the DIA to a general quadratically nonlinear PDE (Sec. 4.2).
The general goal of the tutorial was to describe some of the highlights of the statistical

theory of turbulence, motivations being the seminal insights of Kadomtsev on strong
turbulence and the pioneering attempts by Dupree and Weinstock to obtain and deal
with the consequences of a nonlinear D. I mentioned nonlinear incoherent noise and
coherent damping (both present in passive problems) as well as self-consistent dielectric
polarization. Dielectric response is subsumed by the infinitesimal response function R,
which participates along with the covariance C in the steady-state spectral balance for a
self-consistent turbulent system. An approximation to R also determines the dispersion
relation for the bifurcation of homogeneous turbulence into inhomogeneous turbulence
with nonvanishing mean fields; that is of great interest for the problem of zonal-flow
generation. The CE2 and S3T closures (more generally, studies of statistical state
dynamics) have had important successes in elucidating some physics of the interactions
of zonal flows with turbulence.
Specific facts about D are as follows: (i) D−1 is related to the first-order mean response

to perturbations of self-consistent turbulence. (ii) D is a nonlinear functional of the
fluctuation spectrum through all orders. (iii) Nonlinear corrections to D are essential
because they guarantee that the total growth rate (linear plus nonlinear) is negative in
a steady state, as it must be to balance the positive-definite nonlinear noise that arises
from mode coupling. (iv) In a kinetic description, D includes the wave–wave–particle



63

interactions of weak-turbulence theory as well as part of the n-wave coupling processes.
(v) A D can be defined not only for plasmas but for turbulent fluids and additional
nonlinear systems as well. (vi) D is subsumed by the infinitesimal response function R.

Specific facts about nonlinear noise are as follows: (i) Internal nonlinear noise is present
in the statistical description of all nonlinear systems. (ii) Nonlinear noise is necessary in
order to guarantee, along with coherent damping, the conservation of robust nonlinear
invariants. (iii) Nonlinear noise includes part of the n-wave coupling processes of weak-
turbulence theory. (iv) Furthermore, it is required in order to ensure the proper small-
distance behaviour of relative diffusion coefficients.

Some outstanding challenges related to fundamental statistical descriptions include the
following:

1. There is a difficult literature on the kinetic plasma DIA (DuBois & Pesme 1985)
that has more or less ground to a halt in the absence of numerical solutions. It
would be interesting to revisit that, given advances in modern computing; further
insights about the interpretation of quasilinear theory (Laval & Pesme 1984) and
the importance of mode coupling would be forthcoming.

2. Although it is clear how to define the operator Σf .
= ∂δf · EEE that defines

the nonlinear corrections to the background distribution function in the renor-
malized dielectric, the physical interpretation of those terms is still largely absent
for kinetic problems (mostly for lack of trying, although see DuBois & Pesme
1985). A hint comes from the work of Krommes (2009), where it was shown how
the notions of oscillation-centre variables and ponderomotive force are buried in
the renormalizations. An outstanding question is whether such analysis can be
extended to δf . Results here would bear on the question of optimal variables and
might suggest more physically useful approximations.

3. Second-order closures such as the DIA or its Markovian relatives are limited in
their ability to deal with the consequences of coherent structures and intermittency
(Chen et al. 1989; Krommes 1996), for which it is better to focus on entire PDFs.
Kraichnan has proposed an ingenious mapping closure for PDFs (Kraichnan 1991;
Das & Kaw 1995), but many questions remain open. For example, it would be of
great interest to develop a workable mapping closure for the Hasegawa–Wakatani
system. (There are difficulties associated with the treatment of the perpendicular
Laplacian.)

4. The statistical theory of subcritical turbulence should be much further devel-
oped. One needs to meld insights and techniques from nonlinear dynamics (Waleffe
1995, 1997) with systematic statistical closure. Because non-normality is required
for this phenomenon, some of the knowledge that has been gained from research
on CE2/S3T closures might be useful.

5. The theory of the instability of homogeneous turbulence (Sec. 6.2) is in its
infancy. Definite calculations have been done in the CE2 approximation; however,
that neglects eddy–eddy interactions. The forced, dissipative CE2 solution for
the homogeneous turbulence regime is physically simplistic; one should study
perturbations of more realistic homogeneous steady states. One should also study
the consequences of dispersion relations that go beyond Eq. (6.13). Such analysis
should ultimately be conducted with models that include some toroidal effects.

6. Some solutions of the CE2/S3T closure reach a time-independent steady state
(a stable fixed point), which seems to provide a reasonable explanation of the
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basically time-independent zonal jets observed on the large planets. But in other
regimes, solutions can be quasiperiodic or even stochastic (Farrell & Ioannou
2009a, 2015). Stochastic solutions would appear to be relevant to the kinds of
microturbulence observed in magnetic confinement devices, but additional work
needs to be done in order to understand the meaning of such solutions, their
relation to homogeneous ensembles, and their implications for the physics of zonal
flows in tokamaks.

7. Further research should be done to incorporate the salient effects of eddy–eddy
interactions into generalizations of the CE2 closure. First steps have been taken by
Marston et al. (2015), but they raise a variety of questions that remain unanswered.
It is tantalizing to contemplate workable hybrid numerical-plus-closure schemes,
long a holy grail, that are built on CEn. Those too should be formulated in toroidal
geometry.

In this tutorial I have covered considerable ground, from the simplest scaling estimates
of transport coefficients to advanced, renormalized statistical closures. All of this is part
of the subject, and a theorist wishing to work in the field should be aware of all of its
facets. But it is worth inquiring again whether advanced formalism is really necessary.
A stark comparison is between the physics of magnetically confined fusion plasmas and
of the Lamb shift in quantum electrodynamics. Precise calculations of that shift are in
agreement with measurements to a remarkable precision of perhaps ten kilohertz out
of a gigahertz. That is a triumph that will never be matched in fusion research, where
complicated geometries, rich mixtures of physical processes, and hostile environments
for diagnostics lead to substantial uncertainties in both theoretical descriptions and
experimental measurements. But appreciating the structure of the formalism is still
important. For example, an understanding of the form and content of the DIA gives
some perspective to the CE2/S3T closures, which in turn have been useful in interpreting
direct numerical simulations and experimental observations of zonal flows in the natural
world. Nevertheless, if the current state of statistical plasma turbulence theory does not
satisfy your needs, I encourage you to work at improving it. You will enjoy the ride.

In conclusion, I have given a taste of the complications that arise when a statistical
description of a nonlinear PDE is attempted. Kadomtsev closed his review article by
saying (p. 139),

“One must hope that it will be possible in the course of the next few years of hectic
development of the theory, in conjunction with detailed and accurate experiments,
to set up a complete picture of the turbulence of plasmas.”

Unfortunately, fifty years and billions of hours of supercomputer processor time later,
we are still not there—but we are definitely closer. Perhaps this tutorial will provide a
useful launch point for further study of the rich and challenging theory of turbulence in
both plasmas and fluids.

I am grateful to J. Burby, D. Ruiz, and Y. Shi for their candid criticisms of an early
draft of the manuscript, which led to wholesale revisions. Congratulations to E. Shi for
successfully playing the editing game. I gladly incorporated excellent suggestions from
A. Bhattacharjee, I. Dodin, and G. Hammett. The final form of the manuscript benefited
substantially from expert suggestions of an anonymous referee. This work was supported
by the U. S. Department of Energy Contract DE-AC02-09CH11466.
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Appendix A. Common quantities in drift-wave theory

A basic reference quantity in drift-wave theory is the sound speed cs
.
= (ZTe/mi)

1/2,
where Z is the atomic number. From that and the ion gyrofrequency ωci

.
= (qB/mc)i,

one can form the sound radius ρs
.
= cs/ωci. This is the characteristic fluctuation scale

that appears in the Hasegawa–Mima equation (5.1).

Because the electron response to nonzonal perturbations is adiabatic (in the sense
of slow variations), δne/ne ≈ eδφ/Te, it is useful to introduce the normalized potential

ϕ
.
= eφ/Te. Then the E×B velocity is VE

.
= (c/B)b̂×∇φ = DBb̂×∇ϕ, where the Bohm

diffusion coefficient (sans factor of 1/16) is DB
.
= cTe/eB = ρscs. The E ×B advection

of a background ion density profile, described by VE · ∇〈ni〉, thus becomes 〈ni〉V∗∂yϕ,
where V∗ .

= (ρs/Ln)cs = cTe/(eBLn) and it is assumed that ∇ ln〈ni〉 = −L−1
n x̂. [If one

defines V∗s .
= −cTs/(qsBLn), then V∗ ≡ V∗e.] Although V∗ is numerically equal to the

diamagnetic flow speed of the electron fluid for constant Te, the physics of the basic drift
wave has nothing to do with electron diamagnetic flow; as discussed in Sec. 5.2.2, the
appearance of V∗ describes the generation of ion density fluctuations by E×B advection
of the background ion density profile. The Fourier transform of V∗∂yϕ is iω∗ϕk, where
ω∗ .

= kyV∗ is known as the diamagnetic frequency. One has ω∗ = kyρscs/Ln = O(cs/Ln)
for fluctuations with k⊥ρs = O(1). This identifies Ln/cs (basically the time for a sound
wave to cross the system) as a characteristic time for drift-wave dynamics.

Dimensional analysis of the HME shows that the scaling of the basic turbulent diffusion
coefficient D⊥ is not with DB but rather with the gyro-Bohm diffusion coefficient DgB

.
=

(ρs/Ln)DB. This is much smaller than DB and has the more favourable scaling B−2

instead of Bohm’s B−1. (In fact, D⊥ vanishes altogether in the strict, time-reversible
HME. However, the basic gyro-Bohm scaling is reinstated when growth and damping are
introduced, as discussed in footnote 86 on page 50.)

Appendix B. The Furutsu–Novikov theorem

For completeness, I give here a brief derivation of Novikov’s theorem. This is equivalent
to the original procedure of Novikov (1964), but is algebraically more concise. Let φ̃ be

a centred Gaussian random variable with variance σ2, and let F(φ̃) be an arbitrary

differentiable function of φ̃. Then consider the average

〈F(φ̃)φ̃〉 ≡
∫ ∞

−∞

dφF(φ)φ
e−φ2/2σ2

(2πσ2)1/2
. (B 1)

Upon using a generating-function approach, one has

〈F(φ̃)φ̃〉 = ∂

∂η
〈F(φ̃)eφ̃η〉

∣∣∣
η=0

. (B 2)

Upon completing the square, one is led to

〈F(φ̃)eφ̃η〉 =
∫ ∞

−∞

dφF(φ)
e−(φ−σ2η)2/2σ2

(2πσ2)1/2
eσ

2η2/2 (B 3a)

= 〈F(φ̃+ σ2η)〉eσ2η2/2 (B 3b)

= 〈F(φ̃)〉+
〈
dF(φ̃)

dφ̃

〉
σ2η +O(η2). (B 3c)
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Upon evaluating the derivative required by Eq. (B 2), one finds the desired result

〈F(φ̃)φ̃〉 =
〈
dF(φ̃)

dφ̃

〉
σ2. (B 4)

The essence of this procedure is the introduction of η to create an ensemble with
nonzero mean, followed by inquiry about the differential behaviour of statistics in the
modified ensemble. Nontrivial generalizations of this procedure are used in modern field-
theoretic methods such as the MSR formalism (Martin et al. 1973).
The theorem can be generalized to a finite collection of multivariate centred Gaussian

variables φ̃i:

〈F(φ̃)φ̃i〉 =
∑

j

〈
∂F
∂φ̃j

〉
Cji, (B 5)

where Cij
.
= 〈δφiδφj〉 is the covariance matrix. Finally, a further generalization to

a Gaussian random field φ̃(x, t) ≡ φ̃(x), where {x, t} ≡ x are nonrandom observer
coordinates in spacetime, leads to

〈F [φ̃]φ̃(x)〉 =
∫ ∞

−∞

dx

〈
δF
δφ̃(x)

〉
C(x, x), (B 6)

where square brackets denote functional dependence, δF/δφ̃ denotes the functional
derivative [which satisfies δφ(x)/δφ(x′) = δ(x− x′)], and C(x, x′)

.
= 〈δφ(x)δφ(x′)〉.

If φ̃ has nonzero mean, it is easy to show that the previous results generalize straight-
forwardly to include the term 〈F [φ̃]〉〈φ̃〉.

Appendix C. Notation

— Symbols —

a — acceleration

α — switch that vanishes for zonal
modes and equals one otherwise

B — magnetic field

b̂ — unit vector in direction of B

β — standard deviation of random
coefficient at infinite K

C(1, 2) — two-point correlation function

c — speed of light

cs — sound speed: cs
.
= (ZTe/mi)

1/2

χ — propagator

D — dielectric tensor

D — electric displacement:
D = E + 4πP

D — diffusion coefficient

Dv — velocity-space diffusion
coefficient

DB — Bohm diffusion coefficient:
DB

.
= cTe/eB

DgB — gyro-Bohm diffusion coefficient:
DgB

.
= (ρs/Ln)DB

d — dimensionality of space
∆ — infinitesimal perturbation

∆t — characteristic time interval or
mode period

δ — nonadiabatic response× i

δf — nonlinear correction to
distribution function

δk — mode spacing: δk
.
= 2π/L

D — dielectric function

D⊥ — permittivity of gyrokinetic
vacuum: D⊥

.
= ρ2s/λ

2
De

∂ — (q/m)∂/∂v

E — electric field
EEE — electric-field operator: E = EEEf

E — fluctuation spectrum of electric
field

e — magnitude of electron charge

ǫ — positive infinitesimal

ǫp — plasma parameter: ǫp
.
= 1/(nλ3D)
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ε — rate of energy input
η — nonlinear coherent damping
η̂ — additive source in mean equation
F — covariance of random forcing or

incoherent noise; gyrocenter
distribution function

f — one-particle distribution function
f — effective distribution in

renormalized theory (not a PDF)

f̃ — random forcing (covariance F )
g — particle Green’s function
Γ — flux (e.g., of particles)
γ — growth rate
H — Heaviside unit step function
K — Kubo number
k — Fourier wave vector conjugate to

position x

k — characteristic wave number
kD — Debye wave number:

k2D
.
=
∑

s k
2
Ds, where

kDs
.
= [4π(nq2/T )s]

1/2

κ — L−1
n

L — box size
Lk — linear operator
Ln — density gradient scale length
Lac — autocorrelation length
ℓ — mixing length
λD — Debye length: λD

.
= k−1

D

M — mode-coupling coefficient
m — mass
µ — kinematic viscosity
Ñ — Klimontovich microdensity
N — numerator of spectral balance

relation; nonlinear noise
n — density
n — mean density
ν — drag or damping coefficient
Ωk — real part of mode frequency
ω — Fourier variable conjugate to

time t
ωc — gyrofrequency: ωcs

.
= qsB/msc

ω∗ — diamagnetic frequency:
ω∗ .

= kyV∗
ωk — complex mode frequency:

ωk
.
= Ωk + iγk

P — polarization vector
P — pressure
P — projection operator
p — wave vector

φ — electrostatic potential
ϕ — normalized potential: ϕ

.
= eφ/Te

Q — orthogonal projection operator
q — wave vector (often used for zonal

modes)
q — particle charge (qe = −e)
R — mean infinitesimal response

function
R — Reynolds number
ρ — charge density; gyroradius:

ρ
.
= v⊥/ωc

ρm — mass density: ρm
.
= nm

ρs — sound radius: ρs
.
= cs/ωci

S — rate-of-strain tensor
s — species index
Σ — mass operator (coherent

turbulent collision operator)
σ — weight factor relating covariance

to energy
T — temperature
T (1, 2, 3) — three-point correlation

function
t — time
τ — Reynolds stress
τac — autocorrelation time
θ — triad interaction time
Un — nth-order coupling coefficient
u — fluid velocity
VE — E ×B velocity:

VE
.
= (c/B)E × b̂

V — volume of entire system
V — characteristic velocity
V∗ — diamagnetic speed
v — particle velocity
vt — thermal velocity: vt

.
= (T/m)1/2

W — covariance of random coefficient
w(z) — Z(z)/(i

√
π)

X — susceptibility tensor
ξ — auxiliary random variable in

Langevin representation
Z — atomic number
Z(z) — plasma dispersion function
Z(1) — mean field

— Miscellaneous notation —

Ã — random variable
Ã′ — fluctuation: Ã′ .= Ã− 〈Ã〉. See

also δA.
Â(k, ω) — Fourier transform of A(x, t)
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A∗ — complex conjugate of A
A+(t) — H(t)A(t)

A‖ — A · b̂

A⊥ — A−A‖b̂ = b̂× (A× b̂)
A[ψ] — A is a functional of ψ
AT — transpose of A

δA — fluctuation: δA
.
= Ã− 〈Ã〉. See

also A′.
δ(τ) — Dirac delta function
δi,j — Kronecker delta function
δ/δη — functional derivative
ψ(1) — ψs1(x1,v1, t1).
= — definition
〈. . . 〉 — ensemble average

— Abbreviations and acronyms —

CEn — nth-order cumulant expansion

DIA — Direct-interaction approximation

ext — external

int — internal

lin — linear

pol — polarization

PDF — probability density function

RBT — resonance-broadening theory

S3T — stochastic structural stability
theory (also SSST)

tot — total

ZF — zonal flow
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Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann. Phys. (Leipzig)
17, 549–60, A. Einstein, Investigations on the theory of the Brownian Movement, edited
by R. Fürth, translated by A. D. Cowper (Dover, New York, 1956), pp. 1–18.

Eyink, G. & Frisch, U. 2011 Robert H. Kraichnan. In A Voyage Through Turbulence (ed.
P. A. Davidson, Y. Kaneda, K. Moffatt & K. R. Sreenivasan), chap. 10, pp. 329–372.
Cambridge: Cambridge University Press.

Eyink, G. L. & Sreenivasan, K. R. 2006 Onsager and the theory of hydrodynamic turbulence.
Rev. Mod. Phys. 78, 87–135.

Falkovich, G. 2006 Introduction to developed turbulence. In Turbulence and Coherent
Structures in Fluids, Plasmas and Nonlinear Media (ed. M. Shats & H. Punzmann),
pp. 1–20. Singapore: World Scientific.
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Morel, P., Navarro, A. Bañón, Albrecht-Marc, M., Carati, D., Merz, F., Görler, T.
& Jenko, F. 2012 Dynamic procedure for filtered gyrokinetic simulations. Phys. Plasmas
19, 012311 (10 pages).

Mori, H. 1965 Transport, collective motion, and Brownian motion. Prog. Theor. Phys. 33,
423–455.

Mou, C.-Y. & Weichman, P. B. 1993 Spherical model for turbulence. Phys. Rev. Lett. 70,
1101–1104.

Mynick, H. E. 1988 The generalized Balescu–Lenard collision operator. J. Plasma Phys. 38,
303–317.

Nazarenko, S. 2011 Wave Turbulence, vol. 825 of Lecture Notes in Physics. Heidelberg:
Springer.

Nazarenko, S. V. & Schekochihin, A. A. 2011 Critical balance in magnetohydrodynamic,
rotating and stratified turbulence: towards a universal scaling conjecture. J. Fluid Mech.
677, 134–153.

Nevins, W. M., Hammett, G. W., Dimits, A. M., Dorland, W. & Shumaker, D. E. 2005
Discrete particle noise in particle-in-cell simulations of plasma microturbulence. Phys.
Plasmas 12, 122305 (16 pages).

Novikov, E. A. 1964 Functionals and the random-force method in turbulence theory. Zh. Eksp.
Teor. Fiz. 47, 1919–1926 [Sov. Phys. JETP 20, 1290–1294 (1965)].

Ogura, Y. 1962a Energy transfer in a normally distributed and isotropic turbulent velocity
field in two dimensions. Phys. Fluids 5, 395–401.

Ogura, Y. 1962b Energy transfer in an isotropic turbulent flow. J. Geophys. Res. 67, 3143–3149.
Ogura, Y. 1963 A consequence of the zero-fourth-cumulant approximation in the decay of

isotropic turbulence. J. Fluid Mech. 16, 33–40.
Orszag, S. A. 1969 Stochastic acceleration by strong electric fields. In Turbulence of Fluids

and Plasmas (ed. J. Fox), pp. 17–28. Brooklyn, NY: Polytechnic Press.
Orszag, S. A. 1970 Anaytical theories of turbulence. J. Fluid Mech. 41, 363–386.
Orszag, S. A. 1977 Lectures on the statistical theory of turbulence. In Fluid Dynamics (ed.

R. Balian & J.-L. Peube), pp. 235–374. New York: Gordon and Breach.
Orszag, S. A. & Kraichnan, R. H. 1967 Model equations for strong turbulence in a Vlasov

plasma. Phys. Fluids 10, 1720–1736.
Parker, J. B. & Krommes, J. A. 2013 Zonal flow as pattern formation: Merging jets and the

ultimate jet length scale. Phys. Plasmas 20, 100703 (4 pages).
Parker, J. B. & Krommes, J. A. 2014 Generation of zonal flows through symmetry breaking

of statistical homogeneity. New J. Phys. 16, 035006 (28 pages).
Parker, J. B. & Krommes, J. A. 2015 Zonal flow as pattern formation. In Zonal Jets (ed.

B. Galperin & P. Read), chap. V.2.4. Cambridge: Cambridge University Press, in press.
Parra, F. I., Barnes, M. & Peeters, A. G. 2011 Up-down symmetry of the turbulent

transport of toroidal angular momentum in tokamaks. Phys. Plasmas 18, 062501 (14
pages).



76

Perkins, F. W., Barnes, Cris W., Johnson, D. W., Scott, S. D., Zarnstorff, M. C.,
Bell, M. G., Bell, R. E., Bush, C. E., Grek, B., Hill, K. W., Mansfield, D. K.,
Park, H., Ramsey, A. T., Schivell, J., Stratton, B. C. & Synakowski, E. 1993
Nondimensional transport scaling in the Tokamak Fusion Test Reactor: Is tokamak
transport Bohm or gyro-Bohm? Phys. Fluids B 5, 477–498.

Prandtl, L. 1925 Bericht über Untersuchungen zur ausgebildeten Turbulenz. Z. Angew. Math.
Mech. 5, 136–139.

Rogers, B. N., Dorland, W. & Kotschenreuther, M. 2000 Generation and stability of
zonal flows in ion-temperature-gradient mode turbulence. Phys. Rev. Lett. 85, 5336–5339.

Rogister, A. & Oberman, C. 1968 On the kinetic theory of stable and weakly unstable plasma.
Part 1. J. Plasma Phys. 2, 33–49.

Rogister, A. & Oberman, C. 1969 On the kinetic theory of stable and weakly unstable plasma.
Part 2. J. Plasma Phys. 3, 119–147.

Rose, H. A. 1979 Renormalized kinetic theory of nonequilibrium many-particle classical
systems. J. Stat. Phys. 20, 415–447.

Rose, H. A. 1985 An efficient non-Markovian theory of non-equilibrium dynamics. Physica D
14, 216–226.

Rudnick, J. & Gaspari, G. 2004 Elements of the Random Walk: An introduction for Advanced
Students and Researchers. Cambridge: Cambridge University Press.

Ruelle, D. & Takens, F. 1971 On the nature of turbulence. Commun. Math. Phys. 20, 167–
192.

Sagdeev, R. Z. 1979 The 1976 Oppenheimer lectures: Critical problems in plasma astrophysics.
I. Turbulence and nonlinear waves. Rev. Mod. Phys. 51, 1–9.

Sagdeev, R. Z. & Galeev, A. A. 1969 Nonlinear Plasma Theory . New York: Benjamin.
Schekochihin, A. A., Cowley, S. C., Dorland, W., Hammett, G. W., Howes, G. G.,

Plunk, G. G., Quataert, E. & Tatsuno, T. 2008 Gyrokinetic turbulence: a nonlinear
route to dissipation through phase space. Plasma Phys. Control. Fusion 50, 124024 (13
pages).

Schekochihin, A. A., Cowley, S. C., Dorland, W., Hammett, G. W., Howes, G. G.,
Quataert, E. & Tatsuno, T. 2009 Astrophysical gyrokinetics: Kinetic and fluid
turbulent cascades in magnetized weakly collisional plasmas. Astrophys. J. Suppl. Ser.
182, 310–377.

Scott, B. D. 1992 The mechanism of self-sustainment in collisional drift wave turbulence. Phys.
Fluids B 4, 2468–2494.

Smagorinsky, J. 1963 General circulation experiments with the primitive equations. Mon.
Wea. Rev. 91, 99–164.

Spineanu, F. & Vlad, M. 2005 Statistical properties of an ensemble of vortices interacting
with a turbulent field. Phys. Plasmas 12, 112303 (19 pages).

Squire, J. & Bhattacharjee, A. 2015 Statistical simulation of the magnetorotational dynamo.
Phys. Rev. Lett. 114, 085002 (5 pages).

Sridhar, S. 2010 Magnetohydrodynamic turbulence in a strongly magnetised plasma. Astron.
Nachr. 331, 93–100.

Srinivasan, K. & Young, W. R. 2012 Zonostrophic instability. J. Atmos. Sci. 69, 1633–1656.
Stoltzfus-Dueck, T., Scott, B. D. & Krommes, J. A. 2013 Nonadiabatic electron response

in the Hasegawa-Wakatani equations. Phys. Plasmas 20, 082314 (13 pages).
Sudan, R. N. & Pfirsch, D. 1985 On the relation between ‘mixing length’ and ‘direct

interaction approximation’ theories of turbulence. Phys. Fluids 28, 1702–1718.
Taylor, G. I. 1921 Diffusion by continuous movements. Proc. London Math. Soc., Ser. 2 20,

196–212, reprinted in Turbulence: Classic Papers on Statistical Theory, edited by S. K.
Friedlander and L. Topper (Interscience, New York, 1961), pp. 1–17.

Taylor, J. B. 1961 Diffusion of plasma across a magnetic field. Phys. Rev. Lett. 6, 262–263.
Taylor, J. B. 1974 Dielectric function and diffusion of a guiding-center plasma. Phys. Rev.

Lett. 32, 199–202.
Tennekes, H. & Lumley, J. L. 1972 A First Course in Turbulence. Cambridge, MA: MIT

Press.
Terry, P. & Horton, W. 1982 Stochasticity and the random phase approximation for three

electron drift waves. Phys. Fluids 25, 491–501.



77

Terry, P. W. 2000 Suppression of turbulence and transport by sheared flow. Rev. Mod. Phys.
72, 109–165.

Tobias, S. M., Cattaneo, F. & Boldyrev, S. 2013 MHD dynamos and turbulence. In Ten
Chapters in Turbulence (ed. P. A. Davidson, Y. Kaneda & K. R. Sreenivasan), chap. 9,
pp. 351–404. Cambridge: Cambridge University Press.

Tobias, S. M., Dagon, K. & Marston, J. B. 2011 Astrophysical fluid dynamics via direct
statistical simulation. Astrophys. J. 727, 127–138.

Tobias, S. M. & Marston, J. B. 2013 Direct statistical simulation of out-of-equilibrium jets.
Phys. Rev. Lett. 110, 104502 (5 pages).

van Kampen, N. G. 1976 Stochastic differential equations. Phys. Rep. 24, 171–228.
van Kampen, N. G. 1981 Stochastic Processes in Physics and Chemistry . Amsterdam: North–

Holland.
van Kampen, N. G. & Felderhof, B. U. 1967 Theoretical Methods in Plasma Physics.

Amsterdam: North–Holland.
Vedenov, A., Velikhov, E. & Sagdeev, R. 1962 The quasi-linear theory of plasma

oscillations. In Proceedings of the Conference on Plasma Physics and Controlled Nuclear
Fusion Research (Salzburg, 1961) [Nucl. Fusion Suppl. Pt. 2] , pp. 465–475. Vienna:
International Atomic Energy Agency, translated in U.S.A.E.C. Division of Technical
Information document AEC–tr–5589 (1963), pp. 204–237.

Velikhov, E. P., Ginzburg, V. L., Gaponov-Grekhov, A. V., Dykhne, A. M., Keldysh,
L. V., Klimontovich, Yu.L., Kogan, V. I., Menskǐi, M. B., Pitaevskǐi, L. P.,
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