PPPL-5170

Electromagnetic Analysis of ITER Diagnostic Port Plugs and Diagnostic Systems during Plasma Events

Y. Zhai, A. Brooks, R. Roccella, J. Guirao, M. Smith, G. D. Loesser, S. Pak, V. Udintsev, R. Feder, D. Johnson

July 2015

Prepared for the U.S. Department of Energy under Contract DE-AC02-09CH11466.

Full Legal Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party's use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Trademark Disclaimer

Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors.

PPPL Report Availability

Princeton Plasma Physics Laboratory:

http://www.pppl.gov/techreports.cfm

Office of Scientific and Technical Information (OSTI):

http://www.osti.gov/scitech/

Related Links:

U.S. Department of Energy

U.S. Department of Energy Office of Science

U.S. Department of Energy Office of Fusion Energy Sciences

Electromagnetic Analysis of ITER Diagnostic Port Plugs and Diagnostic Systems during Plasma Events

<u>Y. Zhai¹</u>, A. Brooks¹, R. Roccella², J. Guirao², M. Smith¹, G. D. Loesser¹, S. Pak³, V. Udintsev², R. Feder¹, D. Johnson¹

¹Princeton Plasma Physics Laboratory, Princeton, NJ, USA ²ITER Organization, Route de Vinon sur Verdon, St Paul lez Durance, France ³National Fusion Research Institute, Yuseong-gu, Daejeon, South Korea

This work is supported by the U.S. DOE Contract No. DE-AC02-09CH11466. All US activities are managed by the U.S. ITER Project Office, hosted by Oak Ridge National Laboratory with partner labs Princeton Plasma Physics Laboratory and Savannah River National Laboratory. The project is being accomplished through a collaboration of DOE Laboratories, universities and industry.

The views and opinions expressed herein do not necessarily reflect those of the ITER Organization

SOFE, June 1-4, 2015, Austin, TX, USA – Zhai

Outline

- Introduction
- EM Global Models
 - VV sector and Port Plug assembly
 - Diagnostic First Wall, Diagnostic Shield Module and PP structure
 - ECE, TIP & Vis/IR systems
 - EM Benchmarks
- Transient Analysis
 - Worst disruption scenarios
 - Eddy current & disruption loads
 - Load reduction/variation
 - Static and transient field maps
- Response Implication
 - DFW, DSM & EPP structure
 - Dynamic impact to diagnostics
- Conclusions

- Diagnostic Port Plugs
 - Provide nuclear shielding & structural support of diagnostic systems while allowing diagnostic access to plasma
 - Design largely driven by EM loads and associate structural responses of PP assembly
- Analysis Models
 - Model description (ANSYS, OPERA and MAXWELL)
 - DINA-Opera interface and EM benchmarks
- Disruption Loads
 - Eddy current and loads on PP structure components
 - DFW-DSM current transfer and loads on in-port diagnostics
- Worst DINA cases
 - 2D DINA scan and 3D analysis validation for in-port diagnostics
- EM Load Response
 - Deflection and dynamic response of PP structure assembly meet requirement but
 - Dynamic impact to in-port diagnostic components can be significant

PP Assembly and In-port Diagnostics

- Structure Components
 - DFWs, DSMs & PP structure
 - Diagnostic components
- Attachment Schemes
 - DSMs: rails, pins and bolts
 - DFWs: pads, keys and bolts
 - Diagnostics: cartridge inserts

TIP

LFSR

Vis/IR

Page 4

ECE

SOFE, June 1-4, 2015, Austin, TX, USA – Zhai

GLOBAL MODELS - DINA-OPERA Interface

- Current drivers
 - Plasma secondary excitation
 - DINA 2010 or 2012 data
- ITER sign and direction convention
 - Plasma current and TF are clockwise (-)
 - Most CS coils are counterclockwise (+)

20 degree sector ITER VV, magnet coils, EPP & UPP structures

UPP

FPP

Material Properties and Electrical Contacts

• DINA plasma disruption scenarios (PP assembly)

MD_UP_LIN36 – Major upward disruption with 36ms Linear Decay MD_DW_LIN36 – Major downward disruption with 36ms Linear Decay **VDE_UP_LIN36 – Upward VDE with 36ms Linear Decay (UPP)** VDE_DW_LIN36 – Downward VDE with 36ms Linear Decay VDE_UP_SF II – Slow fast upward VDE VDE_DW_SF II – Slow fast downward VDE

MD_DW_EXP16 - MD downward with 16ms exponential decay (EPP)

Electrical conductivity (S/M)		
DFWs/DSMs	1.35x10 ⁶ (SS)	
Bolts and Pads	1.35x10 ⁶ (SS)	
Rails and EPP structure	1.35x10 ⁶ (SS)	
VVs	1.35x10 ⁶ (SS)	
Inserts	4.065x10 ⁶ (Al. Bronze)	
TIP mirrors	6x10 ⁷ (Copper)	

top view bottom view

Electric straps are defined as flex spring structure for the generic equatorial & upper ports

Electrical contacts:

- 1. Rectangular inserts (Al. Bronze)
- 2. electrical straps (CuCrZr)
- 3. Vertical support bolts (SS)

0.0

2.0x10⁶

-200

-300

-400

400

R (cm)

Disruption Cases – Port Plug Assembly

VDE_UP_LIN36 – Upward VDE with 36ms Linear Decay (UPP) MD_DW_EXP16 – MD downward with 16ms exponential decay (EPP) Plasma currents vary in both magnitude and location during disruption events 1.8x10⁷ Current R 500 1.6x10 Ζ 400 1.4×10^{7} UPP 300 1.2x107 200 1.0x10⁷ Current (A) 100 8.0x10⁶ Z (cm) 6.0x10⁶ 0 4.0x10⁶ -100 **MDUPLIN36**

Plasma disruption scenarios studied for PP assembly

600

500

400

300

Eddy Current in VV during MDUPLIN36

🕄 🗋 china eu india japan korea russia usa

EM Benchmarks

china eu india japan korea russia usa

5% difference between OPERA and ANSYS but 5-10% difference in the dominant moments with MAXWELL

Better agreement (<10%) found when summations of absolute force magnitude over parts are plotted

All three models use 25 m outer air boundary, 5 & 10 cm mesh sizes and 1.35e6 S/m steel conductivity

Page 9

EM Benchmarks

EM Benchmarks

OPERA and ANSYS ~5% difference in dominant moment, OPERA & ANSYS <10% difference with MAXWELL Better agreement (<10%) found when summations of absolute force magnitude over parts are plotted Moment at center of rear flange of EPP structure: ($r_{c_r} z_c$)= (11.5, 0.62) m

SOFE, June 1-4, 2015, Austin, TX, USA – Zhai

EM Loads on EPP & UPP Assembly

Noments at center of PP back flange (closure plate)

Eddy Current and Loads on DFW-DSM

Page 13

EM Loads on DFWs

Radial/poloidal moments dominant: 125/80 kNm for EDFW; 120/135 kNm for UDFW

EM Loads on DSMs – MDDWEXP16

EM Moments (kNm)

- 800 kNm moment for DSMs; 300 kN poloidal force on left and right DSM but opposite polarity
- ~500 kJ net energy loss on full EPP (90% on DFW-DSM)
- ~60 kJ energy loss on EPP structure
- ~5-6 kJ loss on top and bottom rails
- ~135 kA current flows in the eddy loop at front top and bottom of EPP structure

DINA Scan – Worst Disruption for Diagnostics

Dina Model Plasma and Passive Structure Grid

Small components with short time constant (little inductive coupling, L/R<1 ms), max dB/dt to select worst disruption

Large components with longer time constants (significant inductive coupling), max dB during plasma events used to select worst disruption

Max dBz (T) - large component

Worst case for full EPP structure (MDDWEXP16) <u>not worst</u> for in-port components (TIP mirror) 3D analysis to be performed to extract EM loads & validate the worst case from 2D DINA scan

EM Loads – Significant Variations

Components	EM Moments (kNm)	
components	Equatorial port	Upper port
Full PP structure	4000-4500	2000
DSM	900	650
DFW	125	135
LFSR front	3	n/a
VisIR front	n/a	1-3
TIP mirrors (Cu)	1	n/a
ECE mirrors	0.01	n/a
VisIR mirrors	0.01	<0.1

Page 18

ECE DSM **Electrical contacts significantly** impact loads

Significant load reduction from large to small components

Torque density for large components (800-950 kJ/m³) but an order of magnitude lower torque density in small in-port diagnostic components LFSR ECE

SOFE, June 1-4, 2015, Austin, TX, USA – Zhai

TIP DSM & Diagnostics – Eddy Current & EM Loads

Eddy Current and EM Loads on Diagnostics

Max Forces ~200-250 N

Max moments ~1 kNm

Order of magnitude smaller current density as ECE shutters shielded electromagnetically by DFW/DSM

No electrical contact with Cartridge; loads increase significantly when in contact at cartridge attachment

Magnetic Field Maps

- Transient elemental forces mapped onto structural model for dynamic analysis
- Dynamic response of full PP assembly under transient EM loads
 - May have significant impact to in-port diagnostic components
 - DSM to PP structure attachment shall meet tight tolerance to remove gaps (rattling)

High frequency components may participate in system dynamic response, in addition to inertia effect (mass).

Static equivalent approach (1.5 DAF for low frequency seismic loads) may or may not apply to response under disruption loads.

Conclusions

- Global EM models are developed and benchmarked for ITER PP and diagnostics
- EM disruption loads are extracted for full PP assembly and in-port diagnostics
- DINA scan over 30 scenarios performed to identify worst case for diagnostics
- Worst case for full PP assembly may not the worst for in-port diagnostics
- EM Loads
 - Max net moments on EPP and UPP structure are 4.5 MNm and 2 MNm
 - Dominant moments on DFWs are 125/80 kNm (EDFW); 120/135 kNm (UDFW)
 - Significant variation on diagnostics (component location, size & electrical contact)
- Dynamic impact to in-port diagnostics
 - Reduce/remove gap in DSM to PP structure attachment system design
 - Shock isolator for in-port system attached to DSM to avoid large impact loads
- Static and transient field maps developed for in-port component design
- Assessment of uncertainties
 - DINA-OPERA interfaces and model mesh size
 - Critical electrical contact size and location

Backup Slides

EM Load Summary on Vertical Drawers

Observations

- Drawer radial moment always dominant but M₇ also important **800**
- Poloidal force is larger than radial force
- Unlike radial moment all other loads tend to change polarity
- MDUP is the worst load case

V-Drawers	Total Force (kN)	Total Moment (MNm)
MD_UP_LIN36	269.6	1.13
MD_DW_LIN36	262.1	1.09
VDE_UP_LIN36	211.9	0.68
VDE_DW_LIN36	231.4	0.85

- For a single vertical drawer
- Max and min of all three drawers
- Peak over 36 ms disruption
- Moment at drawer mass center

Princeton Plasma Physics Laboratory Office of Reports and Publications

Managed by Princeton University

under contract with the U.S. Department of Energy (DE-AC02-09CH11466)

P.O. Box 451, Princeton, NJ 08543 Phone: 609-243-2245 Fax: 609-243-2751 E-mail: <u>publications@pppl.gov</u> Website: <u>http://www.pppl.gov</u>