
Prepared for the U.S. Department of Energy under Contract DE-AC02-09CH11466.

Princeton Plasma Physics Laboratory

PPPL-5166

gczechow
Typewritten Text

phampton

phampton
Typewritten Text
5080

phampton
Text Box
SECURING MDSPLUS FOR THE NSTX-U
DIGITAL COIL PROTECTION SYSTEM

phampton
Text Box
Gregory J. Tchilinguirian, Keith G. Erickson

phampton
Text Box
July 2015

Princeton Plasma Physics Laboratory
Report Disclaimers

Full Legal Disclaimer

This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government nor any agency thereof, nor any of
their employees, nor any of their contractors, subcontractors or their employees, makes any
warranty, express or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or any third party’s use or the results of such use of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any agency thereof or its
contractors or subcontractors. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or any agency thereof.

Trademark Disclaimer
Reference herein to any specific commercial product, process, or service by trade name,

trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any agency thereof or its
contractors or subcontractors.

PPPL Report Availability

Princeton Plasma Physics Laboratory:

http://www.pppl.gov/techreports.cfm

Office of Scientific and Technical Information (OSTI):
http://www.osti.gov/scitech/

Related Links:

sdever
Text Box
U.S. Department of Energy

sdever
Text Box

sdever
Text Box
U.S. Department of Energy Office of Science

sdever
Text Box
U.S. Department of Energy Office of Fusion Energy Sciences

http://www.energy.gov
http://science.energy.gov
http://science.energy.gov/fes/

SECURING MDSPLUS FOR THE NSTX-U
DIGITAL COIL PROTECTION SYSTEM

Gregory J. Tchilinguirian, Keith G. Erickson
Princeton Plasma Physics Laboratory, Princeton NJ, USA

gtchilin@pppl.gov

NSTX used MDSplus extensively to record data, relay
information and control data acquisition hardware. For NSTX-U
the same functionality is expected as well as an expansion into the
realm of securely maintaining parameters for machine
protection. Specifically, we designed the Digital Coil Protection
System (DCPS) to use MDSplus to manage our physical and
electrical limit values and relay information about the state of
our acquisition system to DCPS. Additionally, test and
development systems need to use many of the same resources
concurrently without causing interference with other critical
systems. Further complications include providing access to
critical, protected data without risking changes being made to it
by unauthorized users or through unsupported or uncontrolled
methods either maliciously or unintentionally. To achieve a level
of confidence with an existing software system designed with
minimal security controls, a number of changes to how MDSplus
is used were designed and implemented. Trees would need to be
verified and checked for changes before use. Concurrent creation
of trees from vastly different use-cases and varying requirements
would need to be supported. This paper will further discuss the
impetus for developing such designs and the methods used to
implement them.

Keywords— NSTX; Control; Protection; Real-time; Data

I. INTRODUCTION
MDSplus is a versatile software package used for managing

and visualizing data, initializing and recording from hardware
and relaying information between clients and servers. NSTX
has made good use of MDSplus during its years of operation.
Initially it was used to control already aged Tokamak Fusion
Test Reactor (TFTR) era Computer Automated Measurement
and Control (CAMAC) hardware and act as a database for
recording raw and analysis data sets. Simple UNIX user/group
based access control lists (ACLs) were incorporated in its
design, allowing users to be mapped to local or domain
accounts or even to the privilege-less UNIX nobody account as
a catch all for unmapped users. Through logs and ACLs it was
possible to prevent unauthorized users from changing data or
the physical structure of shot trees. Remote access to hardware,
such as CAMAC based equipment could also be provided and
controlled in a similar manner. Through logging and
monitoring it was possible to have a reasonable degree of
attribution if undesired changes were made. These levels of
security were adequate for systems that could do no harm to
the machine itself, short of losing or corrupting post shot data
or configuration nodes.

Over the years a MDSplus has proven to be a reliable
platform for NSTX with familiarity and confidence developing
in both the physicists and engineers who use it. For these
reasons it was determined that NSTX-U would continue to use
MDSplus in a similar manner.

Despite these positives, MDSplus does not provide a rich
platform of tools to ensure that data is not changed or corrupted
by users either maliciously or accidentally. Under the hood the
main protection method is to set nodes containing data that
should be protected (such as raw digitizer data) to only be
writable once via the “write_once” flag. This can easily be
defeated with a few minutes of perusing the (open) source code
or reading the MDSplus web site's documentation. While
UNIX file system permissions also provide a modicum of
protection, users with super user privileges on the server or
other machines where they can switch accounts to one that has
correct privileges to change the protection flag. This is not to
imply that users or administrators are attempting to behave
maliciously, sometimes these sorts of activities are seen as a
method to accomplish a needed task.

 MDSplus also does not provide a good mechanism for
controlling who can create tree and when. It is possible for a
user in the correct group to recreate a “pulse” which effectively
erases the previous data contained within, with no simple way
to tell exactly when and how it happened. A few potential
solutions exist such as making copies of raw data trees
immediately after they are populated or making nightly
backups to tape. Relying on nightly backups is fine for
somewhat minor risks such as losing experimental data or
configuration settings for acquisition or timing hardware, but
for critical machine protection systems such as the Digital Coil
Protection System (DCPS) this is an unacceptable risk. The
ramifications include physical damage due to missing or
corrupted DCPS parameter data which could prove fatal to
NSTX-U.

Potentially less catastrophic risks such as incorrect signal
formats or parameters for initializing acquisition hardware are
accepted and can eventually be found. These risks have a low
impact on the performance or survival of the machine though
they may impact the careers of the physicists and engineers
responsible for them. A machine protection system such as
DCPS requires parameter data perfection. A single incorrect
decimal place could mean the difference between catastrophic
failure or an amazing discovery. A method needed to be
developed to prevent even authorized users from changing
these important parameters once they had been tested and

verified by the engineers responsible for generating and
approving them for use.

II. CONCURRENT RESROUCE MANAGEMENT
Concurrent resource management in MDSplus is handled

by an application level file locking mechanism. For tasks such
as allowing multiple users to read and write to the same tree at
the same time it is an adequate method. Immediately after
completing an NSTX-U pulse, data is written to the shot trees
by processes originating both inside and outside of MDSplus.
An example of an internal MDSplus method would be a long
running mdsipd server that receives incoming data from
CAMAC serial highways which are driven by deeply
integrated software drivers. An external example would be a
computer or standalone digitizer connecting through Ethernet
on a dynamically allocated port. External sources typically
attach to a port on the MDSplus data server which initiates an
xinetd script to open a transient mdsip process. Through these
methods many different data generating sources can write to
MDSplus trees concurrently though not necessarily atomically.

A. Atomic Tree Creation
An atomic method to provide new pulses to clients using a

passkey protected handshake was developed where the client
sets and MDSplus event that, with the correct data payload,
initiates a tree creation process. This process or daemon uses
both its own internal record keeping to keep track of shot
(pulse) numbers. Once created another MDSplus event is set
with the shot number as the payload. The event name contains
a unique identifier that the client must be aware of so that two
clients waiting for a new shot don't get the same number. This

prevents clients from overwriting each other’s data in a
situation where they both request a new shot and wait for the
same event.

 This method was first put to use for the NSTX
engineering test tree (eng_test) and was ultimately found to be
an ideal method to produce new parameter data trees for
DCPS. As a result all of the asynchronous shot trees are
created through this process. Additionally, synchronous tree
creation functionality must be provided and take place during
NSTX-U plasma and test shots so a secondary numbering
system was developed as part of the atomic daemon design.
Normally the MDSplus shot number is tracked by a file
included in the tree path called “shotid.sys”. This binary file is
updated every time a shot is created and subsequently set to be
the “current shot” in MDSplus parlance. Since shots are
typically created and numbered serially this shot or pulse
number usually represents the most recent one. Afterwards
methods like “getCurrent” open the tree and parse the contents
of that file and return the value. When two different pieces of
software, in this case the NSTX-U shot cycle software and the
atomic daemon, create pulses of the same tree in two different
number ranges the potential for a conflict exists. A example of
an undesirable outcome would be NSTX-U shot data being
written to an asynchronously created shot tree created for
testing or development purposes.

Data access can also be affected in that clients attempting
to get the most recent shot data, depending on when they ask,
could get the most recent shot from either range. To prevent
such conflicts a secondary index was developed and
maintained by the atomic shot daemon software. This index is
written to a node in the top level of the model tree so that users
can query the tree using a different method to determine the
most current shot in the atomic series. Additionally, the shot
number is returned as a data payload from the atomic daemon
at creation time so that clients are immediately informed that
their request was fulfilled and a new shot has been created.

III. DATA SECURITY
Access to the DCPS trees varies by each individual tree and

its purpose. For example, general read access is allowed for
the parameter data tree, though, direct access to the server is
restricted to DCPS administrators. Access to the DCPS
parameter tree is provided through skylark, our main MDSplus
data server. A user can connect to skylark and read data from
the tree that exists on the DCPS dataserver. All external
connections are mapped to the UNIX nobody account for
connections originating from non-patch (crossover) cabled
Ethernet adapters. The “nobody” account belongs to no UNIX
groups, cannot log in to a terminal and does not possess the
privileges to change tree files. The tree files themselves must
be maintained as world readable for the data to be made
available.

All DCPS model trees are created via Bash script that
generates TCL or Tree Command Language code that is
subsequently executed by the mdstcl command interpreter.
TCL is specific to MDSplus and is not the more common
language tcl or “Tickle”. Each tree requires over thirty-
thousand lines of generated TCL code to successfully be

*Work supported by U.S.DOE Contract No. DE-AC02-09CH11466ext box

created. Many layers of abstraction exist to allow only a few
variables to correctly generate the trees and allow for rapid
modifications such as additional algorithm types or instances.
One of the requirements of DCPS includes the ability to add or
remove algorithms without the need to recompile the core
software. This design upholds that ideal.

A form of reflection is used to turn configuration strings
into variables that are used in generating the trees. A flag can
be set to execute the TCL code without committing the
changes so that errors can be detected before modifications to
the tree are performed. Each time these changes are made the
tree structure is regenerated and then unique algorithm
identification data or ID's are loaded from a separate routine.
Each ID correctly fingers a specific algorithm type and
instance and allows the DCPS core software to correctly map
them and instantiate them. They are also used to load the
parameter data from files for evaluation and potentially make
them available for protective use. This validation step will be
discussed further in section IV.

A. Access Controls
Other DCPS trees such as the autotester, development and

operations trees are hosted on skylark along with the rest of the
NSTX-U trees. They exist under their own DCPS subtree and
are subtrees themselves. Certain trees that are used by both the
FCC (Fusion Computing Center) and D-site Power Conversion
Junction Area copies of DCPS have additional subtrees for
each copy to archive data to. Trees can only be edited
structurally from skylark with the exception of the parameter
data tree which can only be edited on the DCPS dataserver.
Access to the DCPS dataserver is tightly controlled.

Archival data is protected by use of the MDSplus “write
once” flag. Once data is written to a particular node the node's
data can no longer be changed, without the effort discussed
earlier. Additionally, the date, time and user account that
wrote the data is logged and stored as part of the node's meta-
data. While this protection can be defeated, the restriction to
editing the tree versus writing data to it prevents all but
administrators from changing this attribute and thus the data
once written. This is not the case for parameter data used to
protect the machine, which cannot be manipulated.

II. TREE VALIDATION
 The integrity of the DCPS parameter data tree is of the
utmost importance to NSTX-U. The values contained in each
parameter data set is carefully crafted by engineers and
physicists familiar with the operational envelope [7] of the
device. Physical forces exerted on the structure of the machine
and its coils are calculated in real time and if one of these
forces exceeds the machines ability to withstand them the
DCPS faults and relays this information to protection hardware
that will interrupt the pulse [6]. Given the importance of this
function the values used to configure DCPS and prevent
damage to the machine must be both written to and read from
the tree without any change in precision. Additionally, the
values should not change once they are validated and tested
with the system. An Pre-operational Test Procedures or PTPs
was created for this purpose. The PTP exercised a number of

different code paths and fault limit values, all of which must be
correct for the machine to operate safely
insid

e the predefined envelope [2].

Initially the design of DCPS called for the verification of
tree integrity to be handled by the DCPS core software itself.
While MDSplus does include data validation functionality in
its design, the importance of this particular dataset necessitated
further protection mechanisms. During the design phase it was
proposed that the entirety of the parameter tree data could be
assembled into a large structure and check-summed inside of
the core. It quickly became apparent that an external method
would be not only easier to implement but independent of the
DCPS software itself, which is desirable for a number of
obvious reasons. MDSplus trees are comprised of three files, a
datafile, a tree file and a characteristics file. These files can be
verified independently and the value of their SHA256 stored in
a read only file, in the same directory as the MDSplus troika.
Methods to create these files and parse them were developed

and incorporated in the software used to start the DCPS core.
Upon startup DCPS calls out to the dataserver for verification
that the parameter data shot being used has been checksummed
and that the file checksums of the three tree files have not
changed. If a change is detected DCPS will not run.

IV. CONCLUSION
MDSplus continues to be an important part of NSTX-U and
how it operates. In addition to its previous functions as a
database, CAMAC controller and visualization suite it now is
a major component of the real-time coil protection system
used to protect the machine. While not all of the desired
functionality existed to securely use MDSplus as a tool to
accomplish this difficult task, the flexibility of the system
allowed methods to be developed that ultimately provided
them.

ACKNOWLEDGMENT
Charles Neumeyer created the top level system

requirements document for the overall NSTX-U Digital Coil
Protection System [8]. Ronald Hatcher created the software
requirements document from which this design is derived.

REFERENCES
[1] Ono, M., Kaye, S., Peng, Y., Barnes, G., Blanchard, W., Carter, M., et

al. (2000). Exploration of spherical torus physics in the NSTX device.
Nuclear Fusion, 40(3Y), 557. Menard, J., & Neumeyer, C. (2009).
NSTX Upgrade Scientific Motivation and Project Requirements. 318,
15-16.

[2] Gerhardt, S. P., Andre, R., & Menard, J. E. (2012). Exploration of the
equilibrium operating space for NSTX-Upgrade. Nuclear Fusion, 52(8),
083020.

[3] Neumeyer, C., Avasarala, S., Chrzanowski, J., Dudek, L., Fan, H.,
Hatcher, R., ... & Zhan, H. (2009, June). National Spherical Torus
Experiment (NSTX) Center Stack Upgrade. In Fusion Engineering,
2009. SOFE 2009. 23rd IEEE/NPSS Symposium on (pp. 1-4). IEEE.

[4] Menard, J. E., Gerhardt, S., Bell, M., Bialek, J., Brooks, A., Canik, J., ...
& Zolfaghari, A. (2012). Overview of the physics and engineering
design of NSTX upgrade. Nuclear Fusion, 52(8), 083015.

[5] Menard, J., Menard, J., Canik, J., Covele, B., Kaye, S., Kessel, C., et al.
(2010). Physics design of the NSTX-U. 27th EPS Conf. on Plasma
Physics P.

[6] Woolley, R., Titus, P., Neumeyer, C., & Hatcher, R. (2011). Digital Coil
Protection System (DCPS) algorithms for the NSTX centerstack
upgrade. Fusion Engineering (SOFE), 2011 IEEE/NPSS 24th
Symposium on. IEEE.

[7] Titus, P. H., Woolley, R., & Hatcher, R. (2011). Stress multipliers for
the NSTX upgrade digital coil protection system. Fusion Engineering
(SOFE), 2011 IEEE/NPSS 24th Symposium on. IEEE.

[8] Neumeyer, “Coil Protection System Requirements Document,”
NSTX_CSU-RQMT-CPS-159, unpublished.

Princeton Plasma Physics Laboratory
Office of Reports and Publications

Managed by
Princeton University

under contract with the
U.S. Department of Energy

(DE-AC02-09CH11466)

P.O. Box 451, Princeton, NJ 08543
Phone: 609-243-2245
Fax: 609-243-2751

E-mail: publications@pppl.gov

Website: http://www.pppl.gov

http://www.pppl.gov

	5110 Hammett_shi.pdf
	A Gyrokinetic 1D Scrape-Off Layer Model of an ELM Heat Pulse
	Abstract
	Introduction
	Electrostatic 1D gyrokinetic model with kinetic electrons
	Electrostatic model with a modified ion polarization term

	Numerical implementation details
	Boundary Conditions

	Simulation Results
	Initial Conditions
	Divertor heat flux with drift-kinetic electrons
	Divertor heat flux with Boltzmann electron model

	Conclusions
	Acknowledgments

