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ABSTRACT
Nonhelical shear dynamos are studied with a particular focus on the possibility of coherent dynamo action. The
primary results – serving as a follow up to the results of Squire & Bhattacharjee [arXiv:1506.04109 (2015)]
– pertain to the “magnetic shear-current effect” as a viable mechanism to drive large-scale magnetic field
generation. This effect raises the interesting possibility that the saturated state of the small-scale dynamo
could drive large-scale dynamo action, and is likely to be important in the unstratified regions of accretion
disk turbulence. In this paper, the effect is studied at low Reynolds numbers, removing the complications
of small-scale dynamo excitation and aiding analysis by enabling the use of quasi-linear statistical simulation
methods. In addition to the magnetically driven dynamo, new results on the kinematic nonhelical shear dynamo
are presented. These illustrate the relationship between coherent and incoherent driving in such dynamos,
demonstrating the importance of rotation in determining the relative dominance of each mechanism.
Keywords:

1. INTRODUCTION
Understanding the origin and sustenance of astrophysical

magnetic fields remains an outstanding theoretical challenge.
Turbulent dynamo, in which chaotic fluid motions act to am-
plify or maintain a magnetic field against dissipation, seems a
likely explanation, but many questions about such processes
remain. Interestingly, magnetic fields are generically ob-
served to be correlated over larger scales than the underly-
ing fluid motion, and much of dynamo theory has focused
on these “large-scale” dynamos. The well known α-effect
(Krause & Rädler 1980) may explain such behavior, but re-
quires some breakage of symmetry in the underlying turbu-
lence (e.g., net fluid helicity). In addition, while the lin-
ear (kinematic) regime of such dynamos may be well un-
derstood, there are still significant difficulties regarding dy-
namo saturation (see Brandenburg et al. 2012 and references
therein) including whether it is even possible for large scale
fields to grow to observed amplitudes – the problem of α-
quenching (Kulsrud & Anderson 1992; Gruzinov & Diamond
1994; Bhattacharjee & Yuan 1995; Boldyrev et al. 2005; Cat-
taneo & Hughes 2009). Large scale velocity shear – ubiqui-
tous in astrophysical systems due to gravitational forces – may
have some very important role to play. Most obviously, shear
affects the dynamo through simple stretching of the mean field
(the Ω effect), but a variety of other more subtle effects may
also enhance dynamo action in various ways (e.g., Vishniac
& Cho 2001; Blackman & Brandenburg 2002; Brandenburg
2008; Tobias & Cattaneo 2014). In addition, shear seems to
allow the growth of large scale dynamos without net helicity
or inhomogeneity in the turbulence (Brandenburg et al. 2008;
Yousef et al. 2008b). Such dynamos may play a fundamen-
tal role in a variety of astrophysical processes where a high
degree of symmetry is present, for instance, the mid-plane of
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ionized accretion disks.
These non-helical shear dynamos have been an object of

fascination in the dynamo literature for some years. Two
fundamentally different explanations have been proposed for
how large-scale fields can be generated without any symmetry
breaking process. The first – the so-called “shear-current ef-
fect” – is in essence an off-diagonal turbulent resistivity (Ro-
gachevskii & Kleeorin 2003, 2004). When coupled with the
shear, even rather small values of this transport coefficient
can overcome the standard (diagonal) turbulent resistivity and
cause growth of a mean-field dynamo. The second explana-
tion – the stochastic-α effect – relies on the idea that even if
the mean α-coefficients vanish, sufficiently strong fluctuations
can lead to mean-field growth (Vishniac & Brandenburg 1997;
Silant’ev 2000; Heinemann et al. 2011). This dynamo is not
mean-field in the usual sense since it relies on the finite size
of the system to cause mean-field growth; nonetheless, given
that the universe is sampling a single realization of turbulence,
not the ensemble average, such effects could be entirely phys-
ical. At the present time, much of the community appears to
have converged on the idea that non-helical shear dynamos are
incoherent in nature; i.e., the stochastic-α effect is more im-
portant than the shear-current effect. The primary reasoning
is that the crucial transport coefficient required for the shear-
current effect appears to have the incorrect sign, at least at
moderate Reynolds numbers (Rädler & Stepanov 2006; Rudi-
ger & Kitchatinov 2006; Brandenburg et al. 2008). At the
same time, given the variety of different, but related, incoher-
ent dynamo mechanisms that have been considered (Silant’ev
2000; Heinemann et al. 2011; Mitra & Brandenburg 2012;
Richardson & Proctor 2012; Sridhar & Singh 2014), it seems
likely that such effects could be relatively generic.

Here, following up on a recent paper (Squire & Bhattachar-
jee 2015b), we consider the possibility of large-scale coher-
ent non-helical shear dynamos in the regime of low Reynolds
numbers. We propose a fundamentally different mechanism
to those discussed above – that a coherent large-scale mag-
netic field can be excited by small-scale magnetic fluctua-
tions. Why should this be important? In any magnetohydro-
dynamic (MHD) system above low magnetic Reynolds num-
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ber, the dynamo at smallest scales in the turbulence grow the
fastest due to the small-scale dynamo (Schekochihin et al.
2007). Such growth is sufficiently rapid that it always over-
whelms the large-scale field growth and thus a large-scale
field must be able to grow on top of both velocity and mag-
netic fluctuations (Kulsrud & Anderson 1992; Boldyrev et al.
2005; Cattaneo & Hughes 2009). This idea is at the heart
of α-quenching, where the small-scale magnetic fluctuations
quench the growth of the large-scale field before it has a
chance to reach significant amplitude. Our proposal is that
for non-helical shear-dynamos, the effect of the small-scale
dynamo is positive, enhancing the large scale dynamo growth
rate.

In this paper we focus on understanding such a magnetic
dynamo in the low Reynolds number regime. In this regime
the problem becomes substantially simpler, due to the greater
applicability of quasi-linear approximations and the lack of
a small-scale dynamo (Yousef et al. 2008a). This enables
the effects of velocity and magnetic fluctuations to be stud-
ied separately (e.g., through driving the induction equation),
as well as allowing simple calculation of transport coefficients
and fluctuation statistics. We see that with sufficiently strong
small-scale magnetic fluctuations, the character of the ob-
served large-scale dynamo changes, becoming more coher-
ent in time and saturating at higher field strengths. That this
is a coherent dynamo effect is confirmed through numerical
evaluation of the relevant transport coefficients. In a recent
paper (Squire & Bhattacharjee 2015b), we have considered
the more relevant case where the magnetic fluctuations are
self-consistently excited by the small-scale dynamo at higher
Reynolds numbers, driving a large-scale dynamo once they
reach saturation.

In addition to studying the magnetic dynamo, we re-
examine the kinematic dynamos presented in Yousef et al.
(2008a,b), since it is necessary to understand the intricacies of
the kinematic dynamo before moving on to the magnetically
driven case. We find that the dynamo seen by Yousef et al.
(2008a) is indeed a stochastic-α effect, of the type suggested
by Heinemann et al. (2011), in their non-rotating examples.
However, anti-cyclonic (e.g., Keplerian) rotation can substan-
tially alter the picture, causing a coherent dynamo to become
possible by changing the sign of the off-diagonal resistivity.
This behavior is well explained by theΩ× J, or Rädler, effect
(Krause & Rädler 1980; Moffatt & Proctor 1982). Although
not commented on by Yousef et al. (2008a), our conclusions
are entirely compatible with their results, nicely explaining
the observed trends in growth rates.

One of our primary motivations in this work has been im-
proving understanding of the dynamo observed in zero-net
flux magnetorotational (MRI) turbulence simulations (Bran-
denburg et al. 1995; Hawley et al. 1996; Lesur & Ogilvie
2008b). Given that such turbulence is simply a shear flow
with the addition of Keplerian rotation, the results presented
here should be applicable to some degree. Of course, self-
sustaining MRI turbulence is highly nonlinear and linear dy-
namo results will be generally inapplicable. Instead, one can
consider the presence of a large-scale dynamo instability as
an indication that the turbulence will always be accompanied
by large scale structures. Given that MRI turbulence is both
rotating and has strong magnetic fluctuations, it seems rea-
sonable to surmise from the conclusions reached in this pa-
per that a coherent dynamo plays an important role. Fur-
thermore, our recent statistical calculations (see Sec. 3) of
the nonlinear saturation of unstratified MRI turbulence have

shown nice agreement with aspects of self-sustained nonlin-
ear simulations, in particular regarding the dependence on Pm
(Squire & Bhattacharjee 2015a). Since a coherent dynamo is
the only possible mechanism in such calculations, this pro-
vides strong evidence to support the relevance of the magneti-
cally driven shear dynamo to MRI turbulence. Our results re-
garding the MRI dynamo mechanism are qualitatively consis-
tent with previous computational and analytic studies (Lesur
& Ogilvie 2008a,b). For the purposes of understanding MRI
turbulence, the nonlinear behavior of the dynamo will be im-
portant but we leave this complex topic to future work (Ro-
gachevskii & Kleeorin 2004; Lesur & Ogilvie 2008a).

1.1. Outline
Since results on both the magnetically driven and kine-

matic dynamo are presented, we feel it helpful to provide a
“roadmap” for paper’s structure. This is intended to outline
how the central results relate to each other, and convey our
motivations for structuring the paper as follows.

As discussed, the most important results of this paper are
those regarding the “magnetic shear-current effect,” which act
as a follow up to Squire & Bhattacharjee (2015b) in the sim-
pler low Rm regime. However, to be able to convincingly
interpret results – in particular observations of magnetic dy-
namo in nonlinear simulation – it is necessary to first explore
the kinematic dynamo, its primary driving mechanisms, and
its dependence on physical parameters. Thus, we first present
results (Sec. 4) on the dynamo mechanism in the simulations
of Yousef et al. (2008a,b), which show that the this kine-
matic dynamo is primarily incoherent (although coherent ef-
fects become important with rotation) and provides a compar-
ison point for later results on the magnetic dynamo. This sec-
tion also acts to illustrate the effectiveness of the quasi-linear
and statistical simulation methods in disentangling incoherent
and coherent dynamo mechanisms, and demonstrates that the
direct measurement of transport coefficients yields results in
agreement with other methods.

The magnetic shear-current effect dynamo is then studied in
Sec. 5. To argue for its existence, we use the same tools as for
the kinematic dynamo: qualitative examination of the dynamo
from direct numerical simulation, statistical simulations at the
same physical parameters as in the kinematic case, and direct
measurement of transport coefficients. We hope that together
these methods provide a strong argument for the existence of
the effect and its potential importance in dynamo theory.

These sections on the kinematic and magnetic shear dy-
namos are preceded by a theoretical discussion of the dif-
ferent dynamo mechanisms that are possible in this geom-
etry (Sec. 2), and an explanation of the numerical methods
(Sec. 3), including the quasi-linear approximation and statis-
tical simulation methods (CE2). The primary purpose of the
theoretical discussion is to explain the differences between in-
coherent and coherent dynamos, and what properties might
be used to distinguish these. A different stochastic dynamo
mechanism (Silant’ev 2000; Sridhar & Singh 2014), based on
the work of Kraichnan (1976), is discussed in App. A, where
we come to the conclusion that this dynamo is unlikely to be
causing observed field generation due to the effects of off-
diagonal α fluctuations. We finish the paper in Sec. 6 with
conclusions, including a detailed comparison with previous
works, as well as suggestions for future studies.

Throughout this paper, our nonlinear simulations will uti-
lize a similar numerical setup to that of Yousef et al. (2008a),
with tall boxes (Lz � Lx = Ly) to enhance scale separation,
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and relatively small Reynolds numbers (Re = Rm = 100) to
avoid the complications of the small-scale dynamo.

2. SHEAR DYNAMOS
In this section we conceptually examine the possibilities

of incoherent (stochastic alpha), and coherent (shear-current)
dynamos, arising from nonhelical turbulence in a Cartesian
shearing box. Specifically, we consider an imposed linear ve-
locity shear, U0 = −S xŷ, and mean-fields are defined by sim-
ple averaging over the horizontal (x and y)directions. (Note
that S is defined with a negative sign so as to conform to
conventions in the literature on astrophysical shear flows). A
more comprehensive exploration of possible dynamo mecha-
nisms in this geometry can be found in Mitra & Brandenburg
(2012).

In the conventional way, we start by defining mean and fluc-
tuating fields through the relation BT = BT +b = B+b, where
BT is the full turbulent magnetic field and ·̄ is the mean-field
average (simply a spatial average over x and y). We shall also
make use of the ensemble mean, denoted 〈·〉, which is the av-
erage over an ensemble of realizations at the same physical
parameters. Averaging the induction equation [see. Eq. (5)]
leads to the standard mean field dynamo equations for the
mean magnetic field B (Moffatt 1978; Krause & Rädler 1980)

∂t B = ∇ × (U0 × B) + ∇ × E +
1

Rm
4B. (1)

Here E = u × b is the electromotive force, assumed to be of
the form Ei = αi jB j + ηi jkB j,k + . . . due to scale separation,
and Rm is the magnetic Reynolds number (inverse normalized
resistivity). Due to the fact that B is a function only of z, from
∇ · B = 0 we obtain Bz = 0, and there are only 4 non-zero
components of the ηi jktensor,3 see Brandenburg & Sokoloff
(2002); Rädler & Stepanov (2006). Expanding Eq. (1) one
obtains

∂tBx = −αyx∂zBx − αyy∂zBy − ηyx∂
2
z By + ηyy∂

2
z Bx

∂tBy = −S Bx + αxx∂zBx + αxy∂zBy − ηxy∂
2
z Bx + ηxx∂

2
z By,

(2)

where the ηi j are defined as the various non-zero components
of ηi jk. At this stage, the α or η are not assumed constant
in time, space, or over realizations (i.e., αi j ,

〈
αi j

〉
) – in-

deed with the mean-field average taken over a finite sized
domain they can fluctuate strongly. General symmetry argu-
ments (Rädler & Stepanov 2006; Brandenburg et al. 2008)
show that

〈
αi j

〉
= 0, while there are no such constraints on

the form of ηi j when effects that break the isotropy of the tur-
bulence are present (e.g., shear, rotation). We shall assume
that the diagonal components of the resistivity, ηyy and ηxx,
are positive, since the scale separation assumptions of mean-
field theory will presumably become invalid if this is not the
case.

The two fundamental dynamo mechanisms we will exam-
ine in this work are:

Coherent shear dynamo This dynamo arises primarily from
the coupling between the off-diagonal resistivity ηyx
and the shear term −S Bx. Specifically, for Eq. (2) with
αi j = 0 and ηyy = ηxx = ηt (equality of the diago-

3 Specifically ηi3k = 0 since Bz = 0, and ηi jk = 0 if k , 3 since ∂x B =
∂y B = 0.

nal resistivities is just for simplicity, the dynamo is not
changed qualitatively by relaxing this), it is straightfor-
ward to show that an eigenmode with the spatial struc-
ture Bi = Bi0eikz has the growth rate

γη = k
√
ηyx

(
−S + k2ηxy

)
− k2ηt. (3)

Neglecting ηxy by assuming |k2ηxy| � S for all k for
which scale separation holds, positive dynamo growth
is possible if −S ηyx > 0, k

√
−ηyxS > k2ηt. The

maximum growth rate is γη = |S ηyx|/4ηt, obtained at
k =

√
|S ηyx|/2ηt (if this wavenumber fits in the box).

For a single mode of this dynamo, Bx and By are π out
of phase, Bx = −k

√
|ηyx/S |By, and their phases are con-

stant in time, meaning Re〈BxB∗y〉 =
√
〈BxB∗x〉〈ByB∗y〉. A

nonzero ηyx can arise from the effect of shear, the shear-
current effect (Rogachevskii & Kleeorin 2003), from
rotation (Krause & Rädler 1980; Rädler et al. 2003),
the Ω × J (or Rädler) effect, or from a combination of
both. Since with the shear-current effect, ηyx ∝ S , the
maximum growth rate of the coherent dynamo should
scale as γ ∼ S 2 (this also holds with rotation if Ω/S is
fixed, e.g., Keplerian rotation).

Stochastic alpha effect This dynamo arises from the combi-
nation of zero-mean αyy fluctuations and the mean shear
S . Consider Eq. (2) with ηxy = ηyx = 0, 〈αi j〉 = 0,
and again take ηyy = ηxx = ηt. For simplicity,4 we
set αxy(t) = αyx(t) = αxx(t) = 0, assume white noise
fluctuations in αyy, 〈αyy (t)αyy (t′)〉 = 〈α2

yy〉δ (t − t′), and
again take Bi = Bi0eikz. One can show using standard
techniques (Vishniac & Brandenburg 1997) that while
〈Bi (t)〉 decays due to turbulent resistivity, it is possible
for 〈BiB∗j〉 to grow at the rate

γα =

k2S 2
〈
α2

yy

〉
2


1/3

− k2ηt. (4)

Thus, positive dynamo growth is possible if fluctua-
tions in α are sufficiently large. The maximum growth
rate of this dynamo is γ = 0.074 S

√
Dyy/ηt , obtained

at k =
√

S (Dyy/54η3
t )1/4. Note that in any single re-

alization of this dynamo, as observed in simulation,
Bx and By will grow approximately exponentially; the
fact that 〈Bi〉 = 0 would only become apparent if a
large ensemble of simulations were carried out at the
same physical parameters (with the same initial con-
ditions for the mean field). Importantly, initial condi-
tions must be forgotten over the timescale associated
with the turbulent resistivity, t ∼ (k2ηt)−1 (since 〈Bi(t)〉
simply decays exponentially), which implies that the
dynamo cannot have a constant phase as it grows in
time. For a single mode of the dynamo, Bx and By
are on average π/4 out of phase (as for the coherent
α shear dynamo), Re〈BxB∗y〉 = 2−1/2

√
〈BxB∗x〉〈ByB∗y〉.

The stochastic-α dynamo will also have a dependence

4 When the shear is larger than fluctuations in α,
{
αxy, αyx, αxx

}
are each

subdominant to αyy in their effect on the growth rate, see Mitra & Branden-
burg (2012).
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on the horizontal domain size, since averaging over
a larger domain will decrease the size of the fluctua-
tions in α, thus decreasing the magnitude of the growth
rate. More information, including the effects of other
nonzero α coefficients and correlations between differ-
ent αi j, can be found in Mitra & Brandenburg (2012).
The stochastic alpha dynamo has also been derived
from the MHD equations directly by quasi-linearly con-
sidering a collection of forced shearing waves (Heine-
mann et al. 2011; McWilliams 2012). A fundamentally
different type of stochastic-α shear dynamo has also
been proposed and studied in Silant’ev (2000); Sridhar
& Singh (2014). We explore this further in App. A,
where we arrive at the conclusion that the effect is un-
likely to be driving the large scale dynamos studied in
this manuscript due to the adverse effect of off-diagonal
α fluctuations.

Of course, in a real turbulent situation, these two dynamos can
be mixed, and distinguishing the two may be rather difficult.
In particular, the ηi j coefficients discussed for the coherent
shear dynamo will also fluctuate in time and the mean fields
will generally be noisy, even if the stochastic alpha effect is
not the dominant dynamo driver. In this work we will use a
variety of methods to compare the two in different physical
situations, from directly calculating transport coefficients, to
simply observing mean-field temporal evolution.

It is interesting to note that the growth rate of a stochastic-α
dynamo can be arbitrarily increased or decreased by chang-
ing the volume of the mean-field average. In particular, an in-
crease in the volume of the average by a factor a must lead to a
reduction in the magnitude of 〈α2〉 by a also, assuming the tur-
bulence in each sub-volume is statistically independent. With
smaller 〈α2〉, a reduction in the dynamo growth rate would
result. In fact, we see this effect explicitly in the simulations
presented in Sec. 4 by simply doubling the horizontal dimen-
sions of our domain, keeping all other parameters fixed.

3. EQUATIONS AND NUMERICAL METHOD
In this section we outline the equations solved, as well as

outlining our quasi-linear and statistical methods. The fun-
damental equations are the nonlinear magnetohydrodynamic
equations with a background shear flow U0 = −S xŷ and pos-
sible rotation
∂UT

∂t
− S x

∂UT

∂y
+ (UT · ∇) UT + 2Ω ẑ × UT + ∇p =

S UT x ŷ + BT · ∇BT + ν̄∇2UT + σu,

∂BT

∂t
− S x

∂BT

∂y
= −S BT x ŷ + ∇ × (UT × Bt) + η̄∇2Bt + σb,

∇ · UT = 0, ∇ · Bt = 0. (5)

Here Ω is a mean rotation of the frame, and ν̄ and η̄ are the nor-
malized viscosity and resistivity respectively. Since all quan-
tities are normalized to one it is convenient to define Re = 1/ν̄
and Rm = 1/η̄ for the Reynolds and magnetic Reynolds num-
ber. The driving noise (σu and σb) is non-helical and white
in time, localized in wavenumber around k = 6π with width
6π/5, and is used to generate an homogenous bath of small
scale velocity and/or magnetic fluctuations,5 UT and BT in
Eq. (5) denote the full turbulent fields (UT is the velocity not

5 This forcing is of the same form as Yousef et al. (2008a).

including the background shear) – while this notation may
seem cumbersome, for the remainder of the article we will
split BT and UT into their mean (B = BT , U = UT ) and fluc-
tuations (u, b). We have deliberately not normalized Eq. (2)
with respect to the rotation Ω as is standard in MRI studies
(Balbus & Hawley 1998), so as to allow study of shear without
rotation. Throughout this work we consider initially homoge-
nous turbulence with zero average helicity. We use a Cartesian
box of dimensions

(
Lx, Ly, Lz

)
with periodic boundary condi-

tions in z and y, and shearing periodic boundary conditions in
x.

Our primary tool for solving Eq. (5) is the SNOOPY code
(Lesur & Longaretti 2007). This solves Eq. (5) with a Fourier
pseudo-spectral method in the shearing frame, using standard
methods for dealiasing and remapping. Our standard simula-
tion setup is to seed from random Gaussian initial conditions
in u and B at a very small amplitude and reasonably large
scales (wavelengths greater than ∼ 0.2). The forcing, σu (and
sometimes σb), causes a small scale turbulent bath of fluctu-
ations, and we study growth of the dynamo on larger scales
than the forcing (i.e., k < 15). As in Yousef et al. (2008a), the
separation of scales between mean-fields and fluctuations is
aided by choosing a box that is very elongated in the z direc-
tion, Lz > Lx, Ly, We study the development of the dynamo
by numerically averaging B over x and y to obtain the mean
magnetic fields, B, see Sec. 2. Overall, the numerical setup of
our nonlinear runs is nearly identical to that of Yousef et al.
(2008a), aside from the addition of forcing in the induction
equations in some simulations. The Reynolds numbers as de-
fined are with respect to the large scale shear. It is also useful
to keep in mind more standard definitions of these using the
small-scale velocity, denoted Rm f and Re f . Since we use the
same forcing spectrum throughout this work, these are related
to Rm and Re through

Rm f =
urms

k f
Rm = 0.053urmsRm

with the similar definition for Re f . Most of the calculations
presented in this work have Re f = Rm f ≈ 5.

3.1. Quasi-linear method and statistical simulation
For certain aspects of this study, we have found it to be

very useful to study the dynamo using a quasi-linear model
and statistical simulation in addition to the nonlinear MHD
equations. Here we outline these methods and the motivation
behind them. More details can be found in Farrell & Ioannou
(2014); Squire & Bhattacharjee (2015a).

The basic idea of the quasi-linear model is to split the mean
field and fluctuations before solving the equations, neglecting
nonlinearities in the fluctuation equations. The equations are
thus easily derived by substitution of UT = U +u, BT = B+ b
into Eq. (5), followed by a split of each equation into a mean
and fluctuating part. This leads to(

∂t − S x∂y

)
U = −2Ω ẑ × U + S Ux ŷ+

ν̄∂2
z U +

(
−u · ∇u + b · ∇b

)
,(

∂t − S x∂y

)
B − S Bx ŷ + η̄∂2

z B + ∇ × (u × b),

∂zBz = ∂zUz = 0 (6)
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for the mean-fields, and(
∂t − S x∂y

)
u = −2Ω ẑ × u + S ux ŷ + ν̄∇2u − ∇p−

(u · ∇U +U · ∇u) + (B · ∇b + b · ∇B) + σu, (7a)(
∂t − S x∂y

)
b = S bx ŷ + η̄∇2Bt + ∇ × (u × B)

∇ × (U × b) + σb, (7b)
∇ · u = 0, ∇ · b = 0.

for the fluctuating fields. Note that only the fluctuations are
driven by noise. In some cases, it is also convenient to not in-
clude the nonlinear stress feedback on the mean-fields, keep-
ing these static in time by simply setting ∂tU = ∂t B = 0.
This allows the calculation of the transport coefficients di-
rectly [e.g., ηyx, or αyy (t) in Eq. (1)] for the chosen form of
Bx, By, or even U, and is essentially a quasi-linear test field
method.

Statistical simulation — Noticing that Eqs. (7) are linear and
driven by white noise, we can solve for its statistics directly.
This method has been termed Stochastic Structural Stability
Theory (S3T) (Farrell & Ioannou 2003) or the Second Order
Cumulant Expansion (CE2) (Marston et al. 2008) – we will
use the term CE2 in this work. In the context of Eqs. (6) and
(7), we form the equation for the second order statistics of u
and b,

C =

(
〈uu†〉 〈ub†〉
〈bu†〉 〈bb†〉

)
.

This is
∂tC = AC + CA† + Q, (8)

where 〈σ (t)σ (t′)〉 = δ (t − t′)Q (withσ representing both the
u and b noise) and A (U, B) is the linear operator in Eq. (7);
i.e., Eq. (7) is equivalent to

∂t

( u
b

)
= A

( u
b

)
+

(
σu
σb

)
.

If we then set f (u, b) =
〈

f (u, b)
〉

in Eq. (6), we can drive the
mean-fields with the deterministic nonlinear stresses obtained
through simultaneous solution of Eq. (8). Note that equating
f (u, b) with

〈
f (u, b)

〉
is not valid due to the finite size of

our system and the fluctuating nature of horizontal averaged
quantities (see Sec. 2), we discuss this in more detail below.

We use a Fourier pseudo-spectral numerical method for
both direct quasi-linear simulation (DQLS) [Eqs. (7) and (6)]
and solving the the CE2 equations [Eqs. (8) and (6)]. The
codes are written in c++with MPI parallelization, and use 3/2
dealiasing with the remapping method of Lithwick (2007).
Since one solves for the inhomogenous fluctuation statistics
in z, the CE2 code requires a grid of size Nx × Ny × (mNz)2

(where m is the number of variables), and CE2 calculations
can be relatively expensive. The codes have been verified
and tested in a variety of ways; see Squire & Bhattacharjee
(2015a) for more information.

Discussion of the quasi-linear method — The quasi-linear
model involves a rather drastic approximation to the full non-
linear equations. What do we gain by studying such a system?
Generally, such models have allowed a simpler interpretation
and study of large scale structure growth in turbulence, and
been rather useful in a variety of geophysical, plasma, and
fluid dynamics problems (see, for example, Farrell & Ioan-

nou 2009, 2012; Tobias & Marston 2013; Parker & Krommes
2013). In previous work (Squire & Bhattacharjee 2015a) we
have found surprisingly good agreement between saturated
states of CE2 for the MRI system and nonlinear simulation,
in particularly a strong scaling with magnetic Prandtl number.

In the context of the work presented here, the methods pro-
vide a simple way to calculate transport coefficients by fix-
ing the fields in both the magnetically driven and kinematic
cases, followed by an unambiguous check that a mean-field
dynamo can be observed at the same physical parameters.
While versions of the (nonlinear) test-field method exist that
explicitly take into account magnetic fluctuations (Rheinhardt
& Brandenburg 2010), these are relatively complicated and
in the early stages of development. However, the most im-
portant benefit of the quasi-linear methods is afforded by the
comparison between CE2 and DQLS. This provides an un-
ambiguous test of whether the dynamo is coherent or inco-
herent, since statistical averages are inserted directly into the
CE2 mean-field equations and an incoherent dynamo is not
possible. Thus, if similar results are observed between CE2
and DQLS, we can be sure that the dynamo arises through
ηi j transport coefficients. Another interesting aspect of CE2
is that long periods of exponential growth in the mean-field
can be observed, even when strong small-scale magnetic fluc-
tuations are present (e.g., due to magnetic driving). This is
in contrast to DNS or DQLS, where it is generically diffi-
cult to observe exponential dynamo growth in the presence
of strong magnetic fluctuations, since the finite size of the do-
main causes the mean-field to come into near equipartition
with the fluctuations almost instantaneously.

Finally, we note that CE2 calculations in fixed mean fields
are in essence the same calculation as the semi-analytic results
presented in Sridhar & Singh (2010); Singh & Sridhar (2011).
Our results agree with their findings in the rotation-less case
with only momentum equation forcing.

4. KINEMATIC DYNAMO
Before exploring the dynamo with magnetic fluctuations it

is important to fully understand the kinematic dynamos pre-
sented in Yousef et al. (2008a). With this aim, we have re-
produced many of their simulations across a variety of S , Ω
and Lz, to better understand the fundamental dynamo mecha-
nisms. We present the most relevant of these results here.

For the kinematic dynamo we drive only the momentum
equation in Eq. (5) (i.e., σb = 0), and at these Reynolds num-
bers the small scale field arises purely from tangling of the
mean-field by velocity, ∇ × (u × B), an effect which is quite
distinct from the small-scale dynamo (Schekochihin et al.
2007). In both the rotating and non-rotating cases, we see a
mean field dynamo above some threshold in Lz and 〈σ2

u〉 i.e.,
the dynamo is only excited in a sufficiently tall box if driven
hard enough. Given the scaling of the growth rates in Eqs. 3
and 4 and the fact that ηt is the sum of a turbulent and physical
resistivity, this behavior is expected for both incoherent and
coherent dynamos.6 Our main finding is that the non-rotating
case is a stochastic alpha dynamo (essentially that explored
analytically in Heinemann et al. 2011, but including non-zero
kz) but that rotation qualitatively changes the mechanism, de-
creasing ηyx to negative values and causing the dynamo to be-

6 One might expect the dynamo to disappear again if 〈σ2
u〉 is increased

further, due to the increase in ηt causing the dynamo to become stable. This
behavior is seen in the quasi-linear case, but it seems that at these parameters
in the nonlinear runs, a small-scale dynamo is excited before this occurs.
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Figure 1. (a-c) Illustration of By (z, t) from non-rotating turbulence with
S = 2, Lz = 16, urms = 0.8, for DNS, DQLS, and CE2 from (a)-(c). In
the two direct runs (a) and (b), we remove the exponential growth (i.e., plot
e−γt By (z, t) where γ is the measured growth rate) so that the full time evo-
lution can be observed. (d) Growth in time of the mean field for the nonlin-
ear equations (solid,blue), quasi-linear DNS (dashed,red) and CE2 (dash-dot,
yellow), each at the same physical parameters as in (a). While both nonlinear
and quasi-linear DNS exhibit a positive mean-field dynamo, the CE2 calcu-
lation does not, illustrating the dynamo must be incoherent. The dotted black
line shows the energy of u fluctuations.

come more coherent.
In both the non-rotating and rotating cases we run DNS,

DQLS, and CE2 calculations at identical parameters. The pur-
pose of this comparison is primarily to illustrate the difference
between CE2 and DQLS (due to the incoherent mean-field dy-
namo), while showing that the nonlinear case exhibits a qual-
itatively similar dynamo to DQLS. Although the spatiotem-
poral evolution of the mean-field is similar in each case, we
shall see that the DNS and DQLS runs exhibit slightly differ-
ent growth rates. This can be attributed to inaccuracies in the
quasi-linear approximation at these Reynolds numbers.

NON-ROTATING DYNAMO Fig. 1 illustrates the growth of the
nonrotating dynamo using DNS, DQLS and CE2, at S = 2
and Lz = 16, Lx = Ly = 1. As in Yousef et al. (2008a),
we use a resolution (32, 32, 512) for DNS and DQLS, but use
(32, 32, 256) for the CE2 run since the algorithm scales with
N2

z so is quite computationally expensive.7
Firstly, it is worth noting that the mean-field, as plotted in

7 We have verified that identical results are obtained at half this resolution
and are confident that Nz = 256 is sufficient to resolve all important scales.

Figure 2. Same as Fig. 1 but for Keplerian rotating turbulence, urms = 0.75
(velocity flucutations are suppressed slightly by the rotation). In contrast to
Fig. 1, the CE2 calculation also shows a growing dynamo, albeit at a much
smaller growth rate, illustrating that the dynamo is partially coherent.

Fig. 1(a-b), is truly a “large-scale” dynamo. We can estimate
the wavenumber of By as approximately 3 × 2π/Lz ≈ 1.2, far
smaller than the forcing scale, k f = 6π. Next, let us com-
pare the CE2 with the the nonlinear and quasi-linear DNS. It
is evident that the dynamo in this case is purely incoherent –
while slow mean-field growth is observed in DNS and DQLS,
the magnetic field simply decays in the CE2 simulation in ex-
actly the way that would be expected due to a positive ηyx
coefficient. It is also worth noting the qualitative appearance
of the mean-fields, which appear to wander randomly, as ex-
pected due to a stochastic-α effect. A final piece of evidence
for the incoherency of this non-rotating dynamo comes from
doubling the box size in the x and y dimensions, keeping all
other parameters fixed8 (not shown). This causes the growth
rate of the mean-field dynamo to change from γ = 0.062 [for
the dynamo in 1(a)] to being almost stable, γ = 0.0096, and
since a coherent dynamo should be mostly unaffected by such
a change (unless the added wavenumbers significantly affect
the transport coefficients), this constitutes a simple check of
the dynamo’s incoherency without using of the quasi-linear
approximation.

8 We would like to thank A. Schekochichin for suggesting this numerical
experiment.
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Figure 3. Spatiotemporal evolution of log10

(∣∣∣By (z, t)
∣∣∣) at S = 1, L = 32,

for (a) nonrotating case (urms ≈ 0.47), (b) Keplerian rotation (urms ≈ 0.43,
again velocity fluctuations are slightly suppressed by rotation). The log color
scale is chosen so as to easily see the mean-field phase evolution. The differ-
ence in the two dynamos is evident from the evolution of the phase of By as
the dynamo grows. While in the non-rotating case the phase wanders some-
what randomly, as is characteristic of an incoherent dynamo mechanism (see
Sec. 2), we see a relatively constant phase of By in the case with rotation.
Note also the faster growth rate of the rotating dynamo.

ROTATING DYNAMO In Fig. 2, we illustrate the same calcula-
tions as Fig. 1, but with a Keplerian Coriolis force [Ω = 2/3S
in Eq. (5)] added. While the dynamo in the quasi-linear and
nonlinear direct simulations are similar (with a slightly higher
growth rate) to the non-rotating case, the CE2 dynamo is
markedly different, exhibiting mean-field growth. This illus-
trates that adding net rotation to the system enabled a coherent
dynamo, which can be understood as arising from a change in
sign of ηyx (see also Figs. 5-6 below). This effect is simply
the well-known Rädler, or Ω × J, effect (Krause & Rädler
1980; Moffatt & Proctor 1982). This idea seems to have been
missed in Yousef et al. (2008a), who state “There does not
appear to be much difference, qualitative or quantitative, be-
tween the rotating and nonrotating cases.” The finding agrees
with analytic results (Squire & Bhattacharjee 2015c), which
show that the contributions to ηyx from rotation and the shear
have identical forms, and together give ηyx ∝ S − 2Ω. For
Keplerian rotation this is slightly negative, leading to the pos-
sibility of coherent dynamo growth. Finally, we have again
doubled the horizontal dimensions of the box for this rotat-
ing case (not shown), which causes the dynamo growth rate
to drop from γ = 0.067 [in Fig. 2(a)] to γ = 0.041. A com-
parison with the results in the previous paragraph (γ = 0.062
and γ = 0.0096 in the narrow and wide boxes respectively)
shows that although in the narrow box (Lx = Ly = 1) rotation
causes only a minor difference to the growth rate (because the
stochastic-α effect significantly overwhelms the coherent dy-
namo), in the wider box (where fluctuations in α have been
significantly reduced), the difference in growth rates is much
more substantial. This behavior is consistent with the rotating
dynamo being driven through a combination of stochastic-α
and coherent effects [see Eq. 9 below], with the coherent effect
being mostly unmodified by the change in box dimensions.

While the By(z, t) evolution pictured in Figs. 1(a) and 2(a)
looks qualitatively rather similar between the rotating and
non-rotating runs, this is not always the case. In Fig. 3 we
compare spatiotemporal evolutions of By(z, t), in a longer box
(Lz = 32) with less driving noise, which causes a lower
growth rate and a decrease in the relative important of the
stochastic-α effect compared to the coherent dynamo. As
is evident, the two dynamos are qualitatively different, with
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Figure 4. Growth rate of Brms as a function of 2Ω/S , for fixed shear S = 2,
and velocity driving u2

rms ≈ 1 (except for the point Ω = 0, for which
u2

rms ≈ 1.5). The shaded region shows where the flow is hydrodynami-
cally unstable (neglecting dissipation), and the dashed vertical line shows
the SOCA prediction for where the coherent dynamo growth rate vanishes.
Of course, due to the strong stochastic alpha effect, the dynamo can still grow
even when the predicted coherent growth rate is zero or negative. The dotted
line is an approximate fit of predicted growth rate, Eq. (9), to the data, using
ηt = urms/3k f = 0.018, ηyx = 0.0007 × (2Ω − S ), and 〈α2

yy〉 = 6.2 × 10−5.
Error bars are estimated by fitting the growth rate to half of the time-series
data for each run.

the phase of By wandering quasi-randomly in the non-rotating
case, while in the rotating case it is approximately constant
in time. This constant phase is not consistent with a dynamo
driven purely by the stochastic α effect (see Sec. 2).

From Figs. 2 and 3, we thus interpret the Keplerian rotat-
ing shear dynamo around these parameters as being driven by
both incoherent and coherent mechanisms. This interpreta-
tion is entirely consistent with all numerical results given in
Yousef et al. (2008a,b). In particular, their Fig. 5 illustrates
that the addition of rotation enhances the growth of the dy-
namo in all cases. Furthermore, while γ ∼ S for the non-
rotating dynamo, with rotation it is evident that the growth
of γ is somewhat faster than linear in S . Since one expects
γ ∼ S 2 for a coherent dynamo (since ηyx itself must scale lin-
early with S for small S ), their observed trends are consistent
with the dynamo being driven through a mix of incoherent and
coherent mechanisms. We note that a consideration of wider
boxes would increase the importance of the coherent effect in
comparison to the incoherent effect, widening the difference
between rotating and non-rotating dynamos.

VARYING THE ROTATION As one final test of the importance
of net rotation in this system we have run a series of simula-
tions, increasing the rotation from Ω = −1 (cyclonic rotation)
to Ω = 4 (anticyclonic rotation). Results from this series of
simulations are illustrated in Fig. 4. As expected, we see a
substantial increase in dynamo growth rate as the rotation be-
comes anticyclonic, in broad agreement with the SOCA pre-
diction ηyx ∝ S − 2Ω. Due to the presence of the stochastic
α effect, one would not expect a linear scaling of γ with Ω.
Instead, the growth rate (including an ηyx and fluctuating αyy)
is the most positive root of9

−4
〈
α2

yy

〉
k2S 2 − 4ηyxk2S ξ + ξ3 = 0, (9)

where ξ = 2ηtk2 + γ (Mitra & Brandenburg 2012). We plot
a fit of Eq. (9) to the data in Fig. 4 [with ηt = urms/3k f ,
ηyx = ηyx0(2Ω − S )], illustrating good agreement away from

9 In reality, one will also see a change in growth rate due to ηxy and fluctu-
ations in the other α coefficients, but these effects seem minor and are ignored
here.
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Figure 5. Transport coefficients for the kinematic non-rotating dynamo ηxx
(solid line and circle markers, blue) and ηyx (dashed line and square markers,
black) as a function of Re (at Pm=1), for S = 2. The curves show the quasi-
linear results, calculated using CE2, while the markers show the nonlinear
test-field calculations with error bars (see text). As is common, coefficients
are normalized by the “high-conductivity” SOCA turbulent resistivity η0 =
urms/(3k f ). Across all simulations, the absolute level of the forcing (i.e., σu)
is kept constant at the same level as Fig. 1, which means that the lower Re
simulations have somewhat lower urms.

the instability boundaries (Ω = 0 and Ω = S/2). Close to the
boundary, it seems that some other nonlinear effect may be
important, increasing the growth rate on the cyclonic side and
decreasing it on the anticyclonic side.

4.1. Direct calculation of transport coefficients
To validate and quantify the conclusions discussed above,

in this section we directly calculate the transport coefficients,
comparing results from CE210 and the test-field method
(Brandenburg & Subramanian 2005) (implemented within the
framework of the SNOOPY code). The CE2 calculations are
carried out by fixing the mean fields, By = By0 cos(2πz/Lz),
and driving linear fluctuations to calculate their statistics and
thus the transport coefficients. These calculations, since they
are quasi-linear in the shearing frame, are fundamentally the
same as those presented in Sridhar & Subramanian (2009);
Sridhar & Singh (2010); Singh & Sridhar (2011) for the non-
rotating case.11

Test-field method calculations are carried out in the stan-
dard way (Brandenburg et al. 2008) by solving the momen-
tum equation with no Lorentz force, using this velocity field
to drive a small-scale magnetic induction equation

∂t bq = ∇×
[
u × Bq + U × bq + (u × bq − u × bq)

]
+η̄4b (10)

for a set of test-fields bq and specified mean-fields Bq (we
chose a sinusoidal form for Bq). There is no small-scale dy-
namo at these parameters, which simplifies the calculation
since bq arises purely due to the presence of Bq. Calculations
are run from t = 0 → 1000, with the error in the transport
coefficients estimated by dividing the time-series into N seg-
ments and calculating the standard deviation of the mean.12

10 DQLS gives identical results to CE2, albeit with errors due to the ran-
dom noise.

11 The only substantial difference is the forcing – a singular forcing
σu ∼ δ

(
k − k f

)
is used in Singh & Sridhar (2011), while we use the same

forcing as detailed in Sec. 3. Of course, our calculation is numerical rather
than analytic and it is trivial to add the effects of rotation (this is difficult an-
alytically although perturbative methods may be feasible, see Leprovost &
Kim 2008).

12 We generally take N = 100, but results are quite insensitive to this
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Figure 6. Same as for Fig. 6 but with Keplerian rotation. Note that ηyx < 0
in this case, so we plot −ηyx so as to utilize a log scale.

Results are illustrated in Figs. 5 and 6. We see that in
both cases the quasi-linear and nonlinear coefficients agree
at lower Rm as expected, diverging somewhat past Rm & 70.
In agreement with our conclusions from simulations earlier in
the section, ηyx > 0 in the non-rotating case, while ηyx < 0
with rotation, showing that a coherent dynamo is possible at
sufficiently small kz. It is also worth noting that the magni-
tude of ηyx is less in the rotating case, as known from SOCA
calculations (Rädler & Stepanov 2006; Squire & Bhattachar-
jee 2015c). For Rm = 100, as used in Figs. 1 to 4, there
are some differences between quasi-linear and nonlinear re-
sults due to inaccuracies in the quasi-linear approximation,
which explains the discrepancy in dynamo growth rates ob-
served13 in Fig. 2. Interestingly, given the controversies sur-
rounding the kinematic “shear-current” effect (Rogachevskii
& Kleeorin 2003), nonlinear corrections appear to be particu-
larly important for ηyx without rotation (this coefficient shows
the largest discrepancy between the nonlinear and quasi-linear
calculations).

In addition to the results for ηyx and ηxx shown, we have also
calculated ηxy and ηyy by setting Bx = Bx0 cos (k1z), By = 0.
We find that ηxx = ηyy to a high degree of accuracy, while
ηxy, which is positive, is mostly unaffected by rotation. Its
magnitude (compared to the other η) depends strongly on the
shear and Reynolds number. Due to the dominance of the
shear, such an ηxy has little effect on the growth rate, even
though its magnitude is larger than that of ηyx. In addition
to the results illustrated and discussed above, we have also
verified the expected linear dependence of ηyx on S at low
Rm and confirmed that the transport coefficients change very
little with Lz over the range Lz = 1→ 8.

5. MAGNETICALLY DRIVEN DYNAMO
Having now broadly understood the shear dynamos of

Yousef et al. (2008b,a), we examine the effect of small scale
magnetic fluctuations. Before presenting numerical results,
it is helpful to explain in more detail exactly what we is
meant by a magnetically driven linear dynamo. Similar ideas
have been considered before (e.g., Rädler et al. 2003; Park &
Blackman 2012), see Rheinhardt & Brandenburg (2010) for a
particularly thorough analysis.

As is obvious from Eq. (1), an unstable dynamo requires in-

choice.
13 It seems that for Fig. 1, the lower values of ηxx and ηyx in comparison

to the quasi-linear runs cancel each other, leading to the same growth rate.
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Figure 7. (a-c) Illustration of By (z, t) from non-rotating turbulence, using
σb = σu with S = 2, Lz = 16, for DNS, DQLS, and CE2 from (a)-(c).
These parameters are identical to Fig. 1, but with σb = σu = σ/2, where
σ is the driving noise used in Fig. 1. Part (d) shows the growth in time of
the mean-field for (solid,blue) nonlinear equations; (dashed,red) quasi-linear
DNS (the dotted black line shows the fluid energy in the nonlinear run). (e)
mean-field growth from CE2. As shown by the CE2 growth, the coherent
dynamo is much stronger than in the kinematic case, but because the direct
simulations (a-b) start from high amplitudes, it is hard to see the exponential
dynamo growth phase in these simulations.

homogeneity in the fluctuations u and b, such that ∇ × E , 0.
Since we assume initially homogenous fluctuations (termed
u0 and b0), this inhomogeneity must be introduced by B,
which is assumed small. Considering the linearized fluctu-
ation equations for simplicity (this is just the quasi-linear dy-
namo, which we know works in any case),14 it is evident that
the kinematic dynamo arises from inhomogeneity induced in
b fluctuations through the term ∇× (u0 × B) in the fluctuation
induction equation [Eq. (7b)]. This leads to an inhomogenous
contribution to E through u0 × binhom. In contrast, in the pres-
ence of b0, an inhomogenous part of u will arise from the
Lorentz force b0 · ∇B + B · ∇b0 [see Eq. (7a)], giving a con-
tribution to E through uinhom × b0. Without a mean-field flow,
such a contribution is not possible from the induction equa-
tion alone. In calculating the transport coefficients (Secs. 4.1
and 5.2) we have verified that artificial removal of the Lorentz
force causes the transport coefficients to return to their kine-
matic values. It may be interesting in future work to examine

14 Inclusion of nonlinear terms introduces several additional complexities,
see Rheinhardt & Brandenburg (2010).

Figure 8. Same as Fig. 8, but using Keplerian rotation (cf. Fig. 2). The
behavior is broadly similar to Fig. 8, with a slightly higher coherent growth
rate because the velocity fluctuations have a positive effect in this case.

in the vorticity dynamo (i.e., generation of U) in more detail,
in particular its interaction with the magnetic dynamo (Cour-
voisier et al. 2010). These effects are almost certainly much
more important in the non-rotating case.

Before proceeding it is worth commenting on an impor-
tant difference between the magnetic shear-current effect dis-
cussed below and the standard magnetic α-effect. This differ-
ence stems from the fact that the magnetic α-effect can have
either sign, since it is related to the small-scale current helic-
ity, αM ∼ − 〈b · ∇ × b〉. In practice, as the small-scale dy-
namo grows in the presence of helical velocity fluctuations,
αM grows with the opposite sign to the kinematic α-effect15

– the origin of catastrophic quenching (Blackman & Field
2002; Brandenburg & Subramanian 2005). In contrast, since
the magnetic shear-current effect drives the dynamo through
a resistivity, η ∼ 〈b2〉, its sign is fixed. This implies that the
the source of magnetic fluctuations can be the small-scale dy-
namo, in some sense the inverse of quenching. In a recent
paper (Squire & Bhattacharjee 2015b), we have shown that
this mechanism is realizable at higher Rm where the small-
scale dynamo is unstable. In particular, we see a decrease in

15 One possible exception to this that may be very important could occur
in the presence of magnetic instabilities, for instance the MRI. In this case it
seems more likely that the magnetic α effect might overwhelm the kinematic
effect, since b fluctuations do not arise purely as a consequence of small-scale
dynamo action (Gressel 2010; Park & Blackman 2012).
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ηyx after saturation of the small-scale dynamo, which can in
turn drive a coherent large-scale dynamo.

5.1. Numerical experiments on the magnetic dynamo
Here, we argue for the existence of the magnetic dynamo

through numerical experiments, in a similar way to the dis-
cussion in Sec. 4. Since there is no small-scale dynamo due
to the low Reynolds numbers, we excite homogenous mag-
netic fluctuations (b0) by forcing the induction equation with
σb (the statistical properties of which are chosen to be the
same as σu).

Figures 7 and 8 illustrate the comparison between DNS,
DQLS, and CE2, at identical parameters to Figs. 1 and 2 and
using the same total forcing level (i.e., σb = σu = σ/2, where
σ is the driving noise used in Figs. 1 and 2). The most obvi-
ous difference – comparing Figs. 7 and 8 to Figs. 1 and 2 –
is the much higher amplitudes in the direct numerical simu-
lations (both quasi-linear and nonlinear). This is not due to
the mean-field dynamo and simply results from the approxi-
mate equipartition of B with b due to the finite size of the do-
main. This occurs almost immediately because of the strong
b0. Thus, the strong magnetic fields observed at later times in
the direct simulations are in the nonlinear saturation regime
of the dynamo, where ηyx might be expected to change sign.
Since this paper is concerned with the linear growth phase, we
shall not analyze this saturation phase in detail.

In contrast, CE2, by eliminating all fluctuations in E, al-
lows the mean-field exponential growth phase to be observed
despite the presence of strong magnetic fluctuations. (We re-
mind the reader here that the fundamental model used in CE2
is identical to DQLS, the only difference arises from statis-
tics being directly inserted into E to drive the mean-fields.)
Comparing with Figs. 1(d) and 2(d), we see that in both cases
the mean-field growth is substantially faster; that is, the mag-
netic fluctuations are contributing significantly to mean-field
growth through the shear-current effect. In fact, since the
growth rate is still strong in the non-rotating case [Fig. 7(e)],
it is clear that the magnetic ηyx significantly overwhelms the
(positive) kinematic ηyx, for the same forcing level σu = σb.
Thus we have a mean-field dynamo driven by the magnetic
shear-current effect. Moreover, the magnetic fluctuations pro-
duce a stronger dynamo driving than the velocity fluctuations.

Quantitative comparison of the CE2 calculations with the
direct simulations is not possible due to the importance of
nonlinear effects on the dynamo in the direct runs. While there
appears to be an exponential growth phase in each direct case
(before t ≈ 100), it is somewhat too short to say for sure. In
both the nonlinear and quasi-linear runs the wavelength ap-
pears to be significantly shorter (kz ≈ 4π/Lz → 6π/Lz) than
in CE2, for which the growing mean-field is the largest mode
in the box. Since a stochastic-α effect is expected to be im-
portant (presumably at a similar level to the kinematic case),
this is not surprising; α fluctuations will act to increase the
growth rate, decreasing the wavelength of the most unstable
mean-field mode. The nonlinear and quasi-linear evolutions
are broadly similar, although the nonlinear runs saturate at
slightly lower amplitudes than the quasi-linear cases (a de-
tailed comparison is not possible without running an ensemble
of such simulations). Given this similarity – combined with
the knowledge that the DQLS mean-field is, at least partially,
driven by a coherent effect (the CE2 dynamo is unstable) – we
conclude that this magnetic shear-current effect should also be
playing a significant role in both the rotating and nonrotating
direct numerical simulations [Figs. 7(a) and 8(a)].

NONLINEAR DNS Knowing that the magnetic fluctuations can
drive the coherent mean-field dynamo, it is helpful to examine
the qualitative changes that occur as b0 is increased. As a
simple numerical experiment with the nonlinear equations, we
start from pure velocity forcing and increase the driving in the
induction equation, while keeping the total forcing, σu +σb =
σ, fixed. (While we have carried out these experiments both
with and without Keplerian rotation, we present only the non-
rotating cases here as the rotating results are similar.)

Results in the rangeσb = 0→ 0.5σ are illustrated in Fig. 9.
At σb = 0, we see a similar dynamo to that in Fig. 1, al-
though it is a little weaker due to the lower urms and choice
S = 1. This is a stochastic-α effect, as seen by the slowly
growing mean-fields that wander significantly in phase. Let us
now consider the more interesting behavior of the other cases,
σb = 0.1σ, σb = 0.2σ and σb = 0.5σ. Firstly, note that the
larger mean-fields compared to the kinematic case are purely
due to equipartition of B with b, as in Fig. 7(a). Instead,
our main result is the substantial qualitative difference in the
appearance of the mean-field evolution between σb = 0.1σ
and the cases with higher magnetic forcing. Specifically, at
σb = 0.1σ one observes a wandering mean-field as well as
possibly a slow growth, behavior we interpret as a stochastic-
α effect near its saturated state. In contrast, at σb = 0.2σ and
σb = 0.5σ, a relatively fast growth of B is observed until sat-
uration at substantially larger values than seen at σb = 0.1σ.
In addition, the profile of By (z, t) for σb & 0.2σ is relatively
constant in phase, suggesting that the dynamo is coherent.

This behavior again suggests that a coherent dynamo can
be driven by small-scale magnetic fluctuations – the magnetic
shear-current effect. This dynamo saturates at larger field
strengths than the stochastic-α dynamo, with the saturation
amplitude being roughly independent of the level of magnetic
fluctuations [as seen by comparison16 of Figs. 9(c) and (d)].
Note also that this dynamo field appears to show quasi-cyclic
behavior of some sort in its nonlinear regime [in Fig. 9(d) the
large scale field reappears again at later times]. The reason
for this interesting behavior and its relevance to other dynamo
cycles (e.g., in MRI turbulence, Lesur & Ogilvie 2008b) re-
mains unclear, and given its apparent origin in nonlinear dy-
namo physics, we leave its study to future work.

To ensure the observed behavior is robust, we have rerun
each of the simulations in Fig. 9 several times, varying the ini-
tial conditions and random number seed. These (not shown)
have illustrated that the σb = 0.1σ simulations occasionally
excite the coherent dynamo similar to that in Fig. 9(c-d), and
will eventually do so if evolved for a sufficiently long time. In
addition, the σb = 0.2σ occasionally fails to excite the coher-
ent dynamo as quickly as observed in Fig. 9(c). This brings
us to the conclusion that the coherent dynamo can be excited
for σb & (0.1 → 0.2) × σ and the simulation outcome de-
pends on properties of an individual realization around this
boundary. We have failed to find coherent dynamo excita-
tion at σb = 0.05σ, having tested a number of realizations
over very long time periods. This dependence on realization
is very similar to the behavior observed in shear-dynamos at
higher Rm, where the small-scale dynamo acts as the source
of b0 fluctuations (Squire & Bhattacharjee 2015b).

5.2. Direct calculation of transport coefficients

16 Note that the different z domain size must be taken into account to com-
pare Fig. 9 with Fig. 7(a).
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Figure 9. Low Rm driven DNS at S = 1, Lz = 8, and no rotation, with σu + σb = σ chosen to be constant in each simulation (the level is such that urms ≈ 0.2
when only velocity forcing is used). From left to right we take (a) σb = 0, (b) σb = 0.1σ, (c) σb = 0.2σ (d) σb = 0.5σ. The top row of each subfigure illustrates
the time development of By (z, t), the bottom row illustrates the kinetic energy (dashed, blue) and magnetic energy (solid, red).

As in Sec. 4.1 we can directly calculate the transport coeffi-
cients of the magnetic dynamo by fixing the mean-fields and
driving magnetic fluctuations. Within quasi-linear theory, this
is a straightforward generalization of kinematic calculations,
and the transport coefficients in the presence of both magnetic
and velocity fluctuations will be the sum of those calculated
with one or the other, η = ηu + ηb. However, inclusion of
magnetic fluctuations in the nonlinear test-field method can
be more complex (Rheinhardt & Brandenburg 2010), and the
linearity of the transport coefficients is lost, η , ηu + ηb (al-
though of course at low Rm nonlinear results must approach
the quasi-linear results). Because of this, we present only
quasi-linear results for the magnetic dynamo coefficients, and
leave magnetic test-field method studies to future work.

Fig. 10 illustrates ηyx and ηxx when only magnetic fluctua-
tions are present, as calculated by setting σu = 0 and fixing
By in CE2, with the same technique as detailed in Sec. 4.1.
Most notably, we see both that ηyx and ηxx are negative, both
with and without rotation, and are of similar magnitudes. Im-
portantly, a comparison of Fig. 10 with Figs. 5-6 shows that
ηyx is substantially larger in magnitude than the kinematic
value, which implies that when brms ∼ urms the magnetic
contribution should dominate. For example, without rota-
tion, the quasi-linear magnetically driven ηyx is larger than
the quasi-linear kinematic ηyx by approximately a factor of 2
at Rm = 100, meaning the presence of magnetic fluctuations
could change the sign of ηyx and excite a coherent large-scale
dynamo once brms & urms/2. This prediction is not far off
the observed transition at σb ≈ 0.2σ in Fig. 9, with the dis-
crepancy presumably arising due to inaccuracies in the quasi-
linear approximation, as well as the additional presence of an
incoherent dynamo mechanism. Note that ηxx in the magnetic
case is much smaller than the kinematic value and will cause
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Figure 10. Transport coefficients for the magnetic dynamo −ηxx (solid, blue)
and −ηyx (dashed, red) as a function of Re (at Pm = 1), for S = 2 and
(a) Ω = 0 (b) Keplerian rotation Ω = 4/3. (Note that both ηxx and ηyx
are negative). The calculations are carried out at Lz = 4 using CE2 (as for
the kinematic case, there is very little dependence of Lz). Coefficients are
normalized by the urms values from Figs. 5 and 6, such that the values of the
u and b transport coefficients can be directly compared.

only a very small (probably unnoticeable) change to ηxx un-
less urms � brms. This is basically in agreement with the
well-known result that magnetic fluctuations do not signif-
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icantly quench the turbulent resistivity. [In analytic SOCA
calculations with the shear added perturbatively (Squire &
Bhattacharjee 2015c) the contribution of brms to ηxx is exactly
zero].

Overall, we see that results of Fig. 10 agree well with our
conclusions from earlier in the section and from Figs. 7, 8,
and 9. Magnetic fluctuations in the presence of shear cause a
significant negative contribution to ηyx, which can overwhelm
(or enhance in the presence of rotation) the kinematic coeffi-
cient. Thus, with sufficiently strong magnetic fluctuations, a
non-helical coherent large-scale dynamo is possible through
the magnetic shear-current effect.

6. DISCUSSION AND CONCLUSIONS
The main purpose of this work has been to propose and ex-

plore numerically a novel possibility for large-scale magnetic
field generation in turbulent plasmas – the magnetic shear-
current effect. The basic idea is that in the presence of large
scale velocity shear, small-scale magnetic fluctuations pro-
duce an off-diagonal turbulent resistivity (ηyx) with the cor-
rect sign to cause mean-field dynamo instability when coupled
with the shear. This is the magnetic analogue of the contro-
versial shear-current effect (Rogachevskii & Kleeorin 2003,
2004) and the Ω × J (or Rädler) effect (in the presence of
shear). Importantly, this effect opens the possibility of the sat-
urated small-scale dynamo driving the large-scale dynamo, in
stark contrast to standard α-quenching ideas where the small-
scale dynamo is harmful to mean-field growth. Reassuringly –
and unlike the kinematic shear-current effect – the sign of the
magnetic effect agrees between analytic SOCA calculations
(Squire & Bhattacharjee 2015c), the τ-approximation (Ro-
gachevskii & Kleeorin 2004), and quasi-linear theory (Singh
& Sridhar 2011; magnetic results presented here). In addi-
tion, all three closure methods agree that the magnetic effect
is substantially larger than the kinematic effect (for similar
fluctuation levels brms ∼ urms), and perturbative MRI shearing
wave calculations (Lesur & Ogilvie 2008a) have also found
similar results. We hope that this agreement speaks to the ro-
bustness of the effect in comparison to its kinematic cousin,
at both high and low Reynolds numbers.

In addition to the magnetic dynamo, we have presented re-
sults concerning the kinematic shear dynamo, as studied pre-
viously by a number of authors (e.g., Rogachevskii & Klee-
orin 2003; Yousef et al. 2008a; Brandenburg et al. 2008; Singh
& Jingade 2013). Our primary result is the qualitative (and
quantitative) change in the mean-field dynamo that occurs due
to the addition of rotation. This is caused by the well-known
Ω × J (or Rädler) effect (Krause & Rädler 1980), which for
anticyclonic rotation will cause the off-diagonal resistivity ηyx
to have the required sign for a mean-field dynamo (Moffatt &
Proctor 1982). We have seen in a variety of examples how
this can cause a change in the mean-field dynamo from being
completely driven by fluctuations in α (the stochastic-α ef-
fect), to being at least partially driven by the off-diagonal tur-
bulent resistivity. The change is observable both qualitatively,
in the spatiotemporal evolution of By, and quantitatively, in an
increase in the dynamo growth rate.

This paper has focused on the dynamo at low Reynolds
numbers, similar to that studied by Yousef et al. (2008a,b).
This choice has the advantage of both removing the complica-
tions of small-scale dynamo from the problem, and enabling
the use of the quasi-linear approximation (Sridhar & Subra-
manian 2009; Squire & Bhattacharjee 2015a) with some de-
gree of accuracy. The former advantage allows clean and

straightforward separation of kinematic and magnetic effects,
while the latter enables the use of statistical simulation tech-
niques (CE2) that make the differences between incoherent
and coherent dynamos particularly transparent. Nonetheless,
precisely by enabling these simplifications, the low Reynolds
number case is also less interesting. In particular, the mag-
netic fluctuations cannot arise self-consistently through the
small-scale dynamo, which is far more natural than a direct
forcing of the induction equation (except perhaps in the pres-
ence of magnetic instabilities such as the MRI). To rectify
this, in a recent paper (Squire & Bhattacharjee 2015b) we give
numerical results that illustrate that the magnetic fluctuations
arising from the small-scale dynamo can indeed cause a co-
herent large scale dynamo through ηyx.

Given the historical controversy surrounding some aspects
of the shear dynamo, we feel it helpful to give a brief sur-
vey of the relationship to several previous works. As men-
tioned in the main text, our results here on the kinematic
dynamo agree very nicely with numerical results in Yousef
et al. (2008a,b). In particular, our conclusion that rotation
fundamentally changes the shear dynamo is nicely supported
by Yousef et al. (2008a) Fig. 5, and can even be observed
in the spatiotemporal plots of their Fig. 4. We also find ba-
sic agreement with the quantitative results of Brandenburg
et al. (2008), for instance, the transport coefficient calcula-
tions showing ηyx > 0, since these are carried out kinemati-
cally (neglecting the Lorentz force). However, we tentatively
propose a different interpretation of their Fig. 8 (and possi-
bly Fig. 7), whereby the magnetic shear-current effect is act-
ing to drive the observed mean-field dynamo coherently (note
the high Pm, which should lead to strong magnetic fluctua-
tions). In support of this we note the very coherent appear-
ance of the dynamo, as well as the near cyclic behavior in
the saturation phase (cf. Fig. 9). Of course, more work is
needed to assess this possibility more thoroughly. Similarly,
the Rm > 1 simulations of Singh & Jingade (2013) (Figs. 6-
8) may permit a similar explanation, although it is unclear
whether there is truly a small-scale dynamo here. Finally,
we mention again the analytic work of Rogachevskii & Klee-
orin (2004), where the magnetic shear-current effect is derived
within the τ-approximation, although the authors do not com-
ment on the result extensively. Specifically, it is clear from
their Fig. 3 that the magnetic effect is far stronger (when the
mean-field is zero) than the kinematic effect, in broad agree-
ment with our results in this work and Squire & Bhattacharjee
(2015c).

Of course, since this work has explored only the low
Reynolds number regimes, a variety of future studies will
be important. While we have illustrated that the magnetic
shear-current effect can arise from the small-scale dynamo in
Squire & Bhattacharjee (2015b), more work will be needed
to more precisely assess regimes in which the effect may pre-
vail. Of particular interest will be the interaction of the ef-
fect with magnetic helicity conservation arguments. This has
been explored analytically and using quenching models in Ro-
gachevskii et al. (2006) (see also the appendix of Branden-
burg et al. 2008), but more numerical studies would be needed
before any definite conclusions can be drawn. It would also
be interesting to explore the relevance of the magnetic shear-
current effect in flows with helicity and a deterministic α ef-
fect. Is it possible that the effect could be present, perhaps
after saturation of the αΩ dynamo? This may also be com-
plicated by recent results showing that shear may help to en-
hance helical dynamos by reducing the small-scale field gen-
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eration (Cattaneo & Tobias 2014; Tobias & Cattaneo 2014).
Finally, we note the likely applicability of the magnetic

shear-current effect to self-sustaining magnetorotational tur-
bulence, where magnetic fluctuations are often substantially
stronger than velocity fluctuations. With the confluence of
magnetic fluctuations and anti-cyclonic rotation, it seems
reasonable to surmise that the magnetic shear-current effect
should be important. Dynamo cycles observed in unstrati-
fied magnetorotational turbulence bear some resemblance to
the quasi-periodic behavior the saturated state of the magnetic
dynamo (Fig. 9), and it has been concluded previously that
the dynamo arises through a negative ηyx (Lesur & Ogilvie
2008a,b). In addition, some of the most solid evidence for the
effect’s importance comes from the CE2 simulations in Squire
& Bhattacharjee (2015a). Here, since the kinematic effect is
far too weak and incoherent effects are excluded, the magnetic
shear-current effect is the only possible mechanism to drive
the dynamo. The agreement between the saturation of the dy-
namo in CE2 and nonlinear self-sustaining MRI turbulence
simulations, in particular through the Pm dependence, pro-
vides solid evidence that the MRI dynamo is indeed driven
by the magnetic shear-current dynamo studied in this work.
Interactions between this effect and the α-effect due to ver-
tical stratification (Gressel 2010) may help to provide sim-
ple mean-field models that could be helpful in observationally
useful disk models.

Whatever the outcome of the variety of questions proposed
in the previous paragraphs, given the generic presence of ve-
locity shear flows and magnetic fluctuations in astrophysical
plasmas, it seems likely that the proposed effects should find
application across a wide variety of objects and phenomena.
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APPENDIX

A. STOCHASTIC-α SHEAR DYNAMOS: SOME NOTES ON PREVIOUSLY PROPOSED MECHANISMS

There has been a wide variety of literature on stochastic-α dynamos in shear flows. Here we consider the relationship between a
number of these works, and explain some fundamental differences that would have important consequences for their observation
in simulations. We feel that this discussion is suitable for presentation in this work, since our primary purpose has been to propose
an alternative to the stochastic-α mechanism.

At least two fundamentally different dynamo mechanisms are possible from fluctuations in the α effect with zero mean. The
first, which has been explored for a variety of perspectives in Vishniac & Brandenburg (1997); Proctor (2007); Brandenburg
et al. (2008); Bushby & Proctor (2010); Heinemann et al. (2011); Richardson & Proctor (2012); Mitra & Brandenburg (2012);
McWilliams (2012), has the property (discussed in Sec. 2) that 〈B(t)〉 decays in time, and only 〈B2〉 undergoes exponential
instability. We will term this the incoherent stochastic-α mechanism. (We remind the reader that 〈·〉 refers to an ensemble
average, while · refers to the mean-field average.) The second mechanism, which is in essence the Kraichnan-Moffat dynamo
(Kraichnan 1976; Moffatt 1978), has been explored in the context of shear flows in Silant’ev (2000); Sridhar & Singh (2014),
and does exhibit growth of 〈B(t)〉. We shall term this the coherent stochastic-α mechanism. Since part of our argument for the
prevalence of coherent dynamo in some of our numerical experiments has centered on the requirements on mean-field evolution
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imposed by 〈B(t)〉 = 0, it seems worth explaining in more detail the coherent stochastic-α mechanism and its relation to the
incoherent variety.

In its absolute simplest form, the dynamo in Kraichnan (1976); Sridhar & Singh (2014) can be described as resulting from

∂t B = ∇ × [α(x, t)B] + ηT∇
2B, (A1)

where α(x, t) is a spatiotemporal fluctuating α-effect, assumed to arise from smaller scale fluctuations, and ηT is the turbulent
resistivity. One then specifies that 〈α〉 = 0, 〈α(x, t)α(x′, t′)〉 = 2A(x, x′)D(t, t′), and forms the equation for 〈B〉

∂t〈B〉 = ∇ × (VM × 〈B〉) + ηK∇
2〈B〉, (A2)

where ηK ≡ ηT −A(0), and VM ≡
´ ∞

0 dτ〈α(x, τ)∇α(x, 0)〉. For sufficiently strong α fluctuations, instability arises for 〈B〉, because
ηK becomes negative. Note that for such an instability the smallest scales of the mean-field grow the fastest. Sridhar & Singh
(2014) give a variety of interesting extensions to this model, including the effects of non-zero α correlation time τα, and shear
(which changes the dynamo only if τα , 0).

Why is it that this dynamo seems to be mean-field in the true sense – 〈B〉 grows exponentially – while this is not true for
the incoherent stochastic-α dynamo? This question is important for understanding the shear dynamo, since a dynamo arising
though this coherent stochastic-α mechanism will have very different properties. While it seems that all previous treatments of
this dynamo have considered a spatiotemporal fluctuating α coefficient, this is not the fundamental difference. In particular, if we
simply assert that α(x, t) = α(t) the dynamo can still exist with ηK ≡ ηT − α2/2, although VM = 0. The answer to this question is
given in Mitra & Brandenburg (2012) Sec. 3.3, where they examine the effects of mutual correlations between α coefficients. In
particular (now considering specifically a horizontal mean-field average such that we have only a 2-D system), they find that in
the presence of mutual correlations between α coefficients,〈

αi j(t)αkl(t′)
〉

= D
i j
klδ(t − t′), (A3)

the ensemble averaged mean-field 〈B〉 = (〈Bx〉, 〈By〉) satisfies the equation

∂t 〈B〉 =

(
−k2(ηT +D

yx
yx −D

yy
xx) k2(Dyy

xy −D
yx
yy)

−S + k2(Dxx
yx −D

xy
xx) −k2(ηT +D

xy
xy −D

xx
yy )

)
〈B〉 . (A4)

Evidently, from Eq. (A1), in the coherent stochastic-α mechanism, αxx(t) = αyy(t), while αyx(t) = αxy(t) = 0. This implies
Dxx

yy = Dxx
xx = D

yy
yy = 〈α2〉/2, while all other Di j

kl vanish. Thus, one obtains exactly the same instability from Eq. (A4), since
ηT −D

yy
xx can be negative.

We thus see that the coherent stochastic-α mechanism requires the rather specific situation of strong diagonal α fluctuations,
but very weak off-diagonal α fluctuations (since Dyx

yx = 〈α2
yx〉/2, and similarly for αxy). While the exact result Eq. (A4) is only

valid for α with no spatial dependence, it seems almost certain that similar conclusions will hold if spatial variation is also
included. Is it realistic for the correlation between αxx and αyy to greatly exceed the fluctuations in αyx and αxy (their difference
must also overcome ηT )? Possibly, for instance if the fluctuations in αi j arose purely from fluctuations in small-scale helicity,
but this situation strikes us as unlikely. In any case, it seems that more work, both numerical and analytic (e.g., inclusion of αyx
and αxy in the much more thorough calculations of Sridhar & Singh 2014), would be needed to thoroughly assess this possibility.
Overall, the confluence of factors against the coherent stochastic-α dynamo – the requirement for very strong α fluctuations, the
significantly adverse effect of off-diagonal α, and the fact that one would observe a mean-field that grows much faster on the
smallest scales – leads us to conclude that this mechanism has probably not been observed in previous numerical experiments on
shear dynamo.
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