
Prepared for the U.S. Department of Energy under Contract DE-AC02-09CH11466.

Princeton Plasma Physics Laboratory

PPPL-5149 

gczechow
Typewritten Text

phampton

phampton
Typewritten Text
5080

phampton
Text Box
 Heat flux viscosity in collisional magnetized plasmas

phampton
Text Box
C. Liu, W. Fox, and A. Bhattacharjee

phampton
Text Box
July 2015



Princeton Plasma Physics Laboratory 
Report Disclaimers 

Full Legal Disclaimer 

This report was prepared as an account of work sponsored by an agency of the United 
States Government. Neither the United States Government nor any agency thereof, nor any of 
their employees, nor any of their contractors, subcontractors or their employees, makes any 
warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, 
completeness, or any third party’s use or the results of such use of any information, apparatus, 
product, or process disclosed, or represents that its use would not infringe privately owned 
rights. Reference herein to any specific commercial product, process, or service by trade name, 
trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, 
recommendation, or favoring by the United States Government or any agency thereof or its 
contractors or subcontractors. The views and opinions of authors expressed herein do not 
necessarily state or reflect those of the United States Government or any agency thereof. 

Trademark Disclaimer 
Reference herein to any specific commercial product, process, or service by trade name, 

trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, 
recommendation, or favoring by the United States Government or any agency thereof or its 
contractors or subcontractors. 

PPPL Report Availability 

Princeton Plasma Physics Laboratory: 

http://www.pppl.gov/techreports.cfm 

Office of Scientific and Technical Information (OSTI): 
http://www.osti.gov/scitech/ 

Related Links: 

sdever
Text Box
U.S. Department of Energy

sdever
Text Box

sdever
Text Box
U.S. Department of Energy Office of Science

sdever
Text Box
U.S. Department of Energy Office of Fusion Energy Sciences

http://www.energy.gov
http://science.energy.gov
http://science.energy.gov/fes/


Heat flux viscosity in collisional magnetized plasmas

C. Liu,1, a) W. Fox,2 and A. Bhattacharjee1, 2

1)Princeton University, Princeton, New Jersey 08544, USA

2)Princeton Plasma Physics Laboratory, Princeton, NJ 08543,

USA

(Dated: 5 April 2015)

Momentum transport in collisional magnetized plasmas due to gradients in the heat

flux, a “heat flux viscosity”, is demonstrated. Even though no net particle flux is as-

sociated with a heat flux, in a plasma there can still be momentum transport owing to

the velocity dependence of the Coulomb collision frequency, analogous to the thermal

force. This heat-flux viscosity may play an important role in numerous plasma envi-

ronments, in particular in strongly-driven high-energy-density plasma, where strong

heat flux can dominate over ordinary plasma flows. The heat flux viscosity can in-

fluence the dynamics of the magnetic field in plasmas through the generalized Ohm’s

law, and may therefore play an important role as a dissipation mechanism allowing

magnetic field line reconnection. The heat flux viscosity is calculated directly using

the finite-difference method of E. M. Epperlein and M. G. Haines [M. G. Haines,

Phys. Fluids 29, 1029 (1986)], which is shown to be more accurate than S. I. Bra-

ginskii’s method [S. I. Braginskii, Rev. Plasma Phys. 1, 205 (1965)], and confirmed

with one-dimensional collisional particle-in-cell simulations. The resulting transport

coefficients are tabulated for ease of application.

a)Electronic mail: cliu@pppl.gov
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I. INTRODUCTION

Recent experiments and theory have demonstrated the interesting interplay between mag-

netic fields and heat flux in plasmas. In particular, in high-energy-density plasmas, strong

magnetic fields, whether self-generated or externally applied, can be advected by the ex-

treme heat fluxes associated with strong localized heating from lasers or currents. Even at

high plasma beta, where the fields may not be expected to play a dominant global energetic

role, narrow regions can arise with highly compressed fields altering force balance, and the

fields can magnetize electrons and inhibit cross-field transport. For example, magnetized

implosions on OMEGA have demonstrated improvement in fusion performance with exter-

nally applied fields of order 10 T, subsequently compressed to 1000’s of T1. Self-generated

magnetic fields may also play roles in controlling the heat transport in coronal plasmas2 and

in ICF hohlraums3.

The interesting new effect in these semi-collisional plasmas is that the heat flux itself

can push magnetic fields around, resulting from the Nernst effect4. This effect results from

the well-known v−3 velocity dependence of the collision frequency in plasmas. Intuitively,

the Nernst effect results if one considers the electron population to be divided into “hot”

and “cold” populations, so that the magnetic fields are frozen to the weakly-collisional hot

population but diffuse with respect to the cold plasma, and more specifically, across the

compensating cold return current. The Nernst effect has received some experimental ob-

servations in laser-produced plasmas, namely observation of extremely fast advection of

self-generated magnetic fields away from a laser focal spot9,10. On the theoretical front,

the Nernst effect leads to a number of effects controlling the magnitude of magnetic fields

generated during laser-plasma interaction, including compressive amplification of magnetic

fields in ablation fronts5–8 or conversely, saturation of self-generated magnetic fields by out-

ward Nernst convection11. Finally, recent simulations including multiple laser-produced

plasma plumes have shown that the Nernst effect can drive magnetic reconnection of the

self-generated magnetic fields.12.

These results call for a detailed theoretical understanding of the role of the heat-flux on

magnetic fields in such plasmas. The evolution of the magnetic field is ultimately derived

from Faraday’s law in association with the generalized Ohm’s law, which in HED plasma
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conditions may be written schematically as4,

E +
v ×B

c
− AH

j ×B

neec
+ AN

Qe ×B

pe
= η‖j‖ + η⊥j⊥ −

∇ · Pe

nee
− AT · ∇Te. (1)

Here the terms on the left-hand-side (LHS) of Eq. (1) represent respectively, the electric

field, advection by bulk plasma flow, the Hall term, and advection by heat flux (the Nernst

effect). (The pre-factors AH , AN represent collisional corrections to these terms, for example

as calculated by Haines (1986)4). Terms on the right-hand-side (RHS) include possible

dissipation mechanisms, including plasma resistivity with the well-known anisotropy parallel

and perpendicular to magnetic field, the electron pressure tensor Pe, and the thermoelectric

effect. The pressure tensor includes electron viscosity effects.

While typically not important in determining the bulk flow, the dissipation terms are

extremely important in the narrow current layers formed by reconnection or shocks. In

magnetic reconnection current sheets, the external drive terms (which in this case can include

a Nernst-effect drive) break down and non-ideal dissipative terms must take over to allow

reconnection13. These non-ideal terms can result from resistivity or off-diagonal terms in the

pressure tensor (stress tensor), which embodies both electron kinetic effects in the current

sheet in collisionless regimes14,15, and also momentum transport resulting from electron

viscosity (resulting in hyper-resistivity)16. Indeed in the results from Joglekar et al (2014),

which studied reconnection in heat-flux-driven regimes, it was found that reconnection in

the reconnection layer was supported by the pressure tensor12. The pressure tensor was

calculated from first principles within a Vlasov-Fokker-Planck code, but the ultimate origins

were not studied.

In this paper, we demonstrate momentum transport originating from gradients in heat

flux, a “heat flux viscosity,” through solution to the kinetic equation. Even though there

is no net particle flow associated with a heat flux, the heat-flux viscosity still exists due to

the velocity dependence of the collision frequency, analogous to the thermal force. Interest-

ingly, we find that some components of the heat-flux viscosity tensor can change sign with

collisionality; this is shown to result from the variation of the momentum diffusivity with

particle energy, from magnetized to unmagnetized energy regimes. We calculate both the

standard flow viscosity and the heat flux viscosity from solution to the kinetic equation,

using the finite-difference method of Epperlein and Haines17, thus generalizing their results.

The finite-difference-method is found to be more accurate than Braginskii’s lowest-order
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polynomial method, which apparently does not capture accurately the momentum diffusiv-

ity in different regions of momentum space. Instead, good results are obtained with direct

numerical solution of the kinetic equation with the finite difference method. Finally, Tte

results obtained by finite-difference-methods are finally confirmed independently with 1-D

collisional particle-in-cell simulations.

II. HEAT-FLUX VISCOSITY CALCULATION

We now calculate the heat-flux viscosity effect from the kinetic equation. We follow

standard techniques appropriate for collisional plasmas, assuming an expansion of the dis-

tribution function in the parameter ε, the ratio of mean free path to gradient scale length,

assumed to be much smaller than 1. For a comprehensive collision operator such as the Lan-

dau operator, the expanded kinetic equations become a set of integrodifferential equations.

To subsequently solve these equations, various polynomial expansion methods have been

introduced, including the Laguerre polynomials of Braginskii18, or Hermite polynomials19.

In the 1980s, Epperlein and Haines17,20 showed that some of Braginskii’s transport coeffi-

cients can exhibit large inaccuracies in certain ranges of Ωτ (Ω is the electron gyrofrequency

and τ is the collision time) and incorrect asymptotic behaviors, because in Braginskii’s work

only the first two terms of the Laguerre polynomial expansion were kept. (We refer to

this method hereafter by LPE2). Epperlein and Haines then developed a finite difference

method (hereafter FDM) to numerically solve the kinetic equation17. Their method gave

more accurate results and more importantly, demonstrated the correct asymptotic behavior

for the transport coefficients. For ease of use, they used rational polynomials to numerically

fit the results, resulting in transport coefficient which had similar form to Braginskii’s but

with fractional error less than 15%. Most recently, Ji and Held21 re-examined the Braginskii

method, and showed that Laguerre polynomial expansion method can in fact have good

agreement with the finite difference method by including very high orders of polynomials

(up to 160 in their paper). However, for a small number of polynomials it appears impossible

to obtain the correct asymptotic behavior.

In this work we calculate both the particle flow viscosity (PFV) and heat-flux viscosity

(HFV) using the FDM method of Epperlein and Haines17. (In their work, Epperlein and

Haines calculated the first-order fluxes (j,qe) using the kinetic equation up to first order,
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i.e. f1. The viscosity, calculated here, requires the next order kinetic equation for the tensor

components f2.) We also compare with a calculation using Braginskii’s LPE2 method to

make contact with those standard results. Recently, Ji and Held21 calculated the flow

viscosity coefficients using their geometric method, and obtained results in good agreement

with (less than 7% deviation) from Braginskii’s LPE2 results. We obtain similar agreement.

We then generalize the calculation to the heat-flux viscosity. In contrast to the flow

viscosity, we find significant deviations between transport coefficients calculated by LPE2

compared with those calculated by FDM. We show through a simple calculation that these

result from errors in the assumed velocity-dependence of the momentum-diffusivity in the

LPE2 expansion. In all cases, we express the final transport coefficients in using the same

notation as Braginskii18, but with fractional error less than 5%.

We now proceed with the calculation. Following standard procedure, the electron distri-

bution function f is expanded in a Cartesian form22,

f = f0 + f1 ·
v

v
+ f2 :

vv

v2
+ · · · . (2)

The stress tensor Π can be obtained from the integration of f2
23,

Π = P− pI2 =
8πm

15

∫
f2v

4dv. (3)

The kinetic equation for f2 is23

∂f2

∂t
+
(
v∇f1 −

v

3
I2∇ · f1

)
+

[
v
∂

∂v

af1

v
− v

3

(
a · ∂

∂v

f1

v

)
I2

]
+ 2Ω× f2

+
3

7
v∇ · f3 +

3

7v4
∂(v4a · f3)

∂v
= C2(f2), (4)

where a is the acceleration force on electrons, Ω is the electron gyrofrequency in the direction

of the magnetic field, and C2 is the collision operator on f2. For simplicity we focus on

electron kinetics and assume the ions are stationary, so we take the the average fluid velocity

C to be zero. On the LHS, the second term is the viscosity effect which characterizes the

contribution to f2 from gradients of f1. The third term is the combined effect of external

forces (e.g. the electric field) and f1. The last two terms are the effects of the higher-order

component f3. The term on the RHS is the collision term.

In this paper we focus on the viscosity effect in a steady state in the presence of a

magnetic field, so we only keep the second and fourth term on the LHS in Eq. (4). Though
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f2 is a traceless symmetric tensor which has 5 degrees of freedom, the two terms are coupled

through the term 2Ω×f2. To decouple the equations, we introduce a complex representation

of the tensors in Eq. (4)23. Define

U =
v

2

[
∇f1 + (∇f1)

T
]
− v

3
I2∇ · f1, (5)

which is similar to the strain rate tensor. We then apply the following recombinations

fa = f2xx + f2yy = −f2zz, Ua = Uxx + Uyy = −Uzz, (6)

fb = f2yz + jf2xz, Ub = Uyz + jUxz, (7)

fc = f2yz − jf2xz, Uc = Uyz − jUxz, (8)

fd = f2xx − f2yy + 2jf2xy, Ud = Uxx − Uyy + 2jUxy, (9)

fe = f2xx − f2yy − 2jf2xy, Ue = Uxx − Uyy − 2jUxy. (10)

The kinetic equation then becomes

− ηjΩfn − Un = C[Fn]. (11)

where η = 0, 1,−1, 2,−2 corresponds to n = a, b, c, d, e. This means that there will be

different transport coefficients associated with the five components of f2.

The electron collision term consists of the electron-electron and the electron-ion collision

operators, C = Cee + Cei. We use the following collision terms23

Cee = n−1νee

[
v2

3
(I02 + J0

−1)
d2f2
dv2

+
v

3
(−I02 + 2J0

−1 + 3I00 )
df2
dv

+ (I02 − 2J0
−1 − 3I00 )f2 + 8πv3f2f0

+v2
[

6

35
(I24 + J2

−3)−
1

15
(I22 + J2

−1)

]
d2f0
dv2

+ v

[
− 6

35
I24 +

1

35
J2
−3 +

4

15
I22 +

1

15
J2
−1

]
df0
dv

]
,

(12)

Cei = −3νeif2, (13)

where νee = [4πne(e
2/me)

2 ln Λ] /v3, νei = [4πni(Ze
2/me)

2 ln Λ] /v3, and

I ij = 4πv−j
∫ v

0

fiv
2+jdv, J ij = 4πv−j

∫ ∞
v

fiv
j+2dv. (14)

Note that there is no difference in the collision term for the five components of f2.

The equations have now been converted to scalar form, and can be solved using the FDM

described in Appendix A in Ref. 17. (The same method is also used to solve the kinetic
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equation for f1 in this paper.) In other words, for a given tensor U we obtain a solution of

f2, and then calculate the anisotropic pressure components from Eq. (3).

f1 can also be expanded using the generalized Laguerre polynomials23,

f1α = vf0(W )
∑
r

qαrL
3/2
r (W ), α = x, y, z (15)

W =
mv2

2T
, f0(W ) = n

( m

2πT

)3/2
exp(−W ).

Using the orthogonality relations of L
3/2
r , we find that the coefficient q0 corresponds to the

mean particle flow j, and q1 corresponds to the heat flux Q,

jα =
4π

3

∫
f1αv

3dv =
nT

m
qα0, (16)

Qα =
4π

3

∫
f1α

(
mv2

2
− 5T

2

)
v3dv = −5nT 2

2m
qα1. (17)

Vice versa, if we apply an f1α which only contains the L
3/2
0 component to Eq. (11), we can

find the off-diagonal pressure components driven by the particle flow, which is the standard

flow viscosity. The associated transport coefficients have been calculated by Braginskii18

using LPE2. If we next apply an f1α with only a L
3/2
1 component, we find the off-diagonal

pressure components driven by the heat flux, from which we can calculate the heat-flux

viscosity coefficients.

Here we present the viscosity coefficients for both electron PFV and HFV. For PFV we

adopt the same notation as Braginskii18. The stress tensor is expressed in terms of the

corresponding tensor W and five viscosity coefficients (and without loss of generality we

take the magnetic field along the z direction),

Παβ = −η0W0αβ − η1W1αβ − η2W2αβ + η3W3αβ + η4W4αβ, α, β = x, y, z (18)
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W0αβ =


1
2
(Wxx +Wyy) 0 0

0 1
2
(Wxx +Wyy) 0

0 0 Wzz

 ,

W1αβ =


1
2
(Wxx −Wyy) Wxy 0

Wyx
1
2
(Wyy −Wxx) 0

0 0 0

 , W2αβ =


0 0 Wxz

0 0 Wyz

Wzx Wzy 0

 ,

W3αβ =


−Wxy

1
2
(Wxx −Wyy) 0

1
2
(Wxx −Wyy) Wxy 0

0 0 0

 , W4αβ =


0 0 −Wyz

0 0 Wxz

−Wzy Wzx 0

 .

(19)

Wαβ =
∂Vα
∂β

+
∂Vβ
∂α
− 2

3
δαβ(∇ · V ). (20)

For the HFV, we first define the Nernst velocity4,

VN =
2

5

Q

neTe
. (21)

The HFV then has an analogous set of viscosity coefficients to the PFV model,

ΠH
αβ = −µ0W

H
0αβ − µ1W

H
1αβ − µ2W

H
2αβ + µ3W

H
3αβ + µ4W

H
4αβ, α, β = x, y, z (22)

where WH has the same elements as W in Eq. (19), with the particle velocity replaced by

the Nernst velocity,

WH
αβ =

∂VNα
∂β

+
∂VNβ
∂α

− 2

3
δαβ(∇ · VN).

Here the coefficients µα are all functions of x = Ωτe, where τe is the electron collision time

τe = 3
4

(√
meT

3/2
e /
√

2πniZ
2e4 ln Λ

)
. We note that the value of µ0 can be obtained by taking

the limit of x→ 0 of µ2(x), and that µ1 = µ2(2x) and µ3 = µ4(2x). Identical relations apply

to the coefficients ηα in the PFV. Therefore we only need the coefficients η2(x), η4(x), µ2(x)

and µ4(x), which are calculated using the FDM.

We further define dimensionless transport coefficients, µcα = µα/(nTeτe) and ηcα =

ηα/(nTeτe). We fit the resulting functions to rational polynomials to obtain the trans-

port coefficients in a form similar to Braginskii. The fitting function we choose is

F (x) =

∑n
j=0 αjx

j+s(∑d
j=0 ajx

j
)r . (23)
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To satisfy the asymptotic behavior obtained from the FDM results, here s is zero for η2, µ2,

and one for η4, µ4, and r = 1. To obtain the best fit, we choose to minimize the sum of

the square fractional error
∑

[1− F (x)/ηc(x)]2. We find that by using n = 1 and d = 3,

compact forms are obtained with the maximal fractional error for every coefficient less than

5% . The polynomial forms are listed below and the polynomial coefficients for different

values of ion charge Z are shown in Tables I & II.

ηc2 =
α1x+ α0

x3 + a2x2 + a1x+ a0
, ηc4 = − x (α′1x+ α′0)

x3 + a′2x
2 + a′1x+ a′0

, (24)

µc2 =
β1x+ β0

x3 + b2x2 + b1x+ b0
, µc4 = − x (β′1x+ β′0)

x3 + b′2x
2 + b′1x+ b′0

. (25)

TABLE I. The fitting coefficients for PFV.

Z=1 Z=2 Arbitrary Z

ηc0 0.73349 1.3044 −1.0543Z−4 + 3.5759Z−3 − 3.6486Z−2 + 0.050576Z−1 + 1.8099

α0 0.59261 0.28720 0.035003Z−3 + 0.36216Z−2 + 0.0056867Z−1 + 0.18974

α1 2.0810 1.4256 0.0021329Z−3 + 0.87129Z−2 + 0.00011515Z−1 + 1.2075

a0 0.81141 0.22098 0.53414Z−3 + 0.14054Z−2 + 0.032489Z−1 + 0.10416

a1 2.6833 1.0392 1.0719Z−3 + 0.89913Z−2 + 0.058879Z−1 + 0.65327

a2 2.0124 1.8963 0.23142Z−3 − 0.12095Z−2 + 0.0082817Z−1 + 1.8937

α′0 0.092478 0.044457 −0.013310Z−3 + 0.079379Z−2 + 0.00020066Z−1 + 0.026202

α′1 1.0216 1.0207 −0.0012185Z−3 + 0.0025143Z−2 + 0.00013602Z−1 + 1.0202

a′0 0.13097 0.017866 0.16567Z−3 − 0.050613Z−2 + 0.011177Z−1 + 0.0046967

a′1 1.3690 0.37529 0.82995Z−3 + 0.32439Z−2 + 0.044833Z−1 + 0.16972

a′2 0.86899 0.64133 −0.053373Z−3 + 0.36517Z−2 + 0.00075059Z−1 + 0.55643

Figure 1 shows the results of the four normalized viscosity coefficients with x ranging

from 10−2 to 102 and the curve of the best-fit polynomials of Eq. (24) and Eq. (25), as well

as the results from a separate LPE2 calculation. (The expressions for η2 and η4 are directly

from Ref. 18.) We can see that for the PFV (η2 and η4) LPE2 in fact agrees well with FDM.

(This is consistent with the findings of Ref. 21, where it was also found that LPE2 produced

good transport coefficients for this viscosity.) However for HFV (µ2 and µ4) there is a large

9



TABLE II. The fitting coefficients for HFV.

Z=1 Z=2 Arbitrary Z

µc0 1.5080 2.9947 −4.6410Z−4 + 13.533Z−3 − 12.089Z−2 + 0.18114Z−1 + 4.5239

β0 6.0388 3.3660 −0.0920357Z−3 + 3.7230Z−2 − 0.0652127Z−1 + 2.4734

β1 −0.43085 −0.57449 0.020755Z−3 + 0.16194Z−2 + 0.0068750Z−1 − 0.62046

b0 3.8611 1.0571 2.3994Z−3 + 0.83225Z−2 + 0.11720Z−1 + 0.51998

b1 2.4339 1.4032 1.4051Z−3 − 0.31397Z−2 + 0.071675Z−1 + 1.2710

b2 2.7209 3.4849 −0.71780Z−3 + 0.021336Z−2 − 0.26964Z−1 + 3.6880

β′0 4.5903 3.2183 −0.34416Z−3 + 2.1972Z−2 + 0.045165Z−1 + 2.6919

β′1 0.98027 0.98295 0.0021991Z−3 − 0.0060078Z−2 − 0.00017356Z−1 + 0.98425

b′0 2.0796 0.34871 2.3101Z−3 − 0.49845Z−2 + 0.15305Z−1 + 0.1450

b′1 1.2464 0.53267 0.47400Z−3 + 0.37693Z−2 + 0.030086Z−1 + 0.36534

b′2 3.4623 2.3921 −0.28879Z−3 + 1.7346Z−2 + 0.039201Z−1 + 1.9772

fractional error between LPE2 and FDM over most of the range of x. In particular, we find

that µ2 reverses sign at x ≈ 7.03 for Z = 1, a behavior totally missed by LPE2. One might

ask whether this negative transport coefficient might lead to some instability in the fluid

equations. However, the coefficients µ2 and µ4 are driven by the heat flux gradient rather

than particle flow, and correspond to an off-diagonal term in the transport matrix. The

negative value of these coefficients does not imply instability in the transport model as long

as all the eigenvalues of the matrix are still positive.

The reason that LPE2 gives accurate results for PFV (η2 and η4) but inaccurate results

for HFV (µ2 and µ4) is understood as follows. In the cartesian expansion adopted, viscosity

is contained in the second-order distribution function f2, which arises in response to the

gradients (shear and compression) of f1. If we apply a delta-function distribution on f1,

namely f1α = δ(v − v0), then we can obtain the Green function of the viscosity coefficient,

which is intuitively the momentum diffusivity as a function of velocity,

Θn =

∫
Gn(v0)f1(v0) dv0, (26)

where the Θn (including real and imaginary parts) correspond to the five components of

10
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FIG. 1. Viscosity coefficients η2, η4, µ2, µ4 as functions of x = Ωτ . The blue circles refer to the

FDM results for Z = 1 and Z =∞. The blue lines are the fitting polynomial results. The red line

is the LPE2 result for Z = 1. The dashed lines in the plot of µ2 correspond to negative value.

viscosity coefficients, and

Gn(v0) =
8πm

15

∫
fnv

4dv. (27)

Here fn is calculated from Eq (11), with Un substituted by vδ(v − v0). The viscosity for

PFV and HFV can then be calculated by applying different forms of f1 in Eq. (26). Due to

the difference in the calculation method, the FDM and LPE2 lead to different forms of the

Green function. Fortunately, we can gain insight by using the Lorentz collision operator (Eq.

(13) in the Z → ∞ limit, in which case the Green function can be calculated analytically.

To do so we rewrite the kinetic equation Eq. (11) for n = b as

− jΩfb − Ub = −3νeifb, (28)
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so that,

fb =
Ub

3νei − jΩ
. (29)

The real and imaginary parts of fb correspond to η2 and η4 for PFV (or µ2 and µ4 for HFV).

The asymptotic behavior of the real part of fb for large v is fb ∼ 3νeiUb/Ω
2. Given that

Ub = vδ(v− v0) and νei ∼ v−3, the resulting Green function Gb goes as Re[Gb] ∼ v20 for large

v.

Figure 2 shows the shape of the real part of Green function (corresponding to η2 and µ2)

for Ωτ = 10, Z = ∞ (Lorentz plasma) from the analytical calculation, FDM and LPE2.

Figure 3 shows the shape of the distribution function f1 for the case with particle flow (no

heat flux), and the case with heat flux (no particle flow).

0.5 1 1.5 2 2.5 3 3.5 4
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3
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v/v
T

FIG. 2. The real part Green function for

Lorentz plasma. The black line is the analyti-

cal calculation. The blue line is the result from

FDM and the red line is the result from LPE2.

Here the blue and black lines overlap.
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0.8

1

FIG. 3. The distribution function f1. The di-

mension is v−3. The red line is the case with

particle flow and no heat flux. The blue line

is the case with heat flux but no particle flow.

Both are normalized with the absolute maxi-

mum to be 1.

We can see that the results from FDM and this analytical calculation are almost identical,

while LPE2 has incorrect asymptotic behavior. LPE2 misweights the momentum transport

in the tails (v/vte → 0 and → ∞). At small velocity, the LPE2 Green function under-

predicts momentum transport, but conversely at large velocity it over-predicts momentum

transport. This can explain why LPE2 can give good quantitative results for PFV but poor

12



results for HFV. As shown in Fig. 3, for particle flow the first order distribution function f1

is always positive, and so the discrepancy between FDM and LPE2 in the low-velocity and

high-velocity can compensate to give an agreement between the two. However, for the heat

flux viscosity, the distribution f1 changes signs (as required for no net particle transport),

so therefore the resulting momentum transport requires balancing positive and negative

momentum transport in the tails. However, the LPE2 Green’s function underweights at

low-velocity but over-weights at high velocity, both adding to the discrepancy.

III. PARTICLE-IN-CELL SIMULATION

We have tested the results discussed above using a collisional particle-in-cell simulation

to directly calculate the electron heat flux viscosity. The simulation adopts a 1D initial

condition (varying along z). The plasma is composed of fixed ions and mobile electrons.

Initially the electron temperature profile in z has a bump at the center. A magnetic field

is applied transverse to the gradient (along x) and is held fixed in space and time. The

temperature gradient will drive heat fluxes in the z direction towards the two boundaries

and cross-field heat fluxes along the y direction. The resulting gradients of the heat flux

will drive off-diagonal terms in the pressure tensor through HFV. Note that in general a

temperature gradient will drive both heat flux and particle flow, both of which can generate

viscosity. However, in this simulation, the bulk electron flow is prevented by the fixed ions

(and the requirement of charge neutrality), so that the heat flux effect dominates here. We

use the following parameters: Electron temperature Te =5keV; case (i) Ω = 0.32ωpe and

Ωτ = 5; case (ii) Ω = 0.064ωpe and Ωτ = 1; case (iii) Ω = 0.064ωpe and Ωτe = 0.2. We also

run a case with zero magnetic field and τe = 3/ωpe. These values are chosen to ensure ε� 1.

The simulation actually employs a 2-D box of size 40de× 80de, and 240× 480 cells. In each

cell we use 8×104 particles to reduce the numerical noise. The simulation is conducted using

the PIC code PSC24.

Fig. 4 shows the off-diagonal pressure component Πyz measured in the simulation for the

first 3 cases. We also plot Πyz calculated using the transport coefficients from Eq. (22) and

Eq. (25), using the heat flux values measured directly from the simulations. The results

using the transport coefficients from LPE2 are also plotted for comparison. We can see that

in all three cases the FDM results give good agreement with the PIC simulation results,

13



while the result from LPE2 gives considerable error. Fig. 5 shows the simulation result for

Πzz for the case with zero magnetic field, which again shows that the FDM calculation is

more accurate than LPE2.

The sign-change of µ2 for Ωτe & 5 (Fig. 1) is a novel effect so it would be interesting if we

could demonstrate its effect in the PIC simulations. However, it turns out that it is difficult

to isolate it from other coefficients. Negative µ2 only occurs in the regime ωτ � 1, where the

temperature gradient drives heat flux along both directions perpendicular to the magnetic

field. As a result, the components in the anisotropic pressure tensor will be affected not

only by µ1 or µ2, but also by µ3 and µ4. We have found that in the regime that µ1 or µ2 is

negative, their contribution to the off-diagonal pressure tensor is subdominant compared to

that from µ3 and µ4. Given that the later does not change sign, the total pressure tensor

component does not change sign when µ2 becomes negative.

IV. CONCLUSIONS

This work has demonstrated for the first time a heat flux viscosity effect—momentum

transport due to gradients in heat flux in the presence of collisions—through direct solution

of the plasma kinetic equations and confirmed through PIC simulations. The results were

calculated directly using the finite-difference method of Epperlein and Haines and showed to

give valid results. We have tabulated the resulting transport coefficients in a form similar to

Braginskii’s for ease of use. The results should be relatively easily applied to fluid simulation

as a new closure term.

The heat flux viscosity couples to the magnetic fields via the generalized Ohm’s law and

therefore may play a role in its dynamics. This might be observed in high-energy-density

regimes where the magnetic fields can be expected to be advected by a strong heat flux which

dominates over ordinary plasma flows. Heat flux viscosity can possibly play an important

role in narrow current layers formed in shocks or in magnetic reconnection current sheets

and may provide the relevant dissipation for magnetic field line reconnection to occur. In a

subsequent paper (written in collaboration with the University of Michigan group), we will

apply the present results to recent numerical simulations of Nernst reconnection in a HED

plasma12.
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FIG. 4. Results of the anisotropic pressure component Πyz for Ωeτ = 5, 1, 0.2. Blue line is the PIC

simulation result. Red line is the result from Eq. (22, 25). Black line is the result of LPE2.
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