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Generation of large-scale magnetic fields by small-scale dynamo in shear

flows

J. Squire∗ and A. Bhattacharjee

Max Planck/Princeton Center for Plasma Physics,

Department of Astrophysical Sciences and Princeton Plasma Physics Laboratory,

Princeton University, Princeton, NJ 08543, USA

Abstract

We propose a new mechanism for turbulent mean-field dynamo in which the magnetic fluctuations result-

ing from a small-scale dynamo drive the generation of large-scale magnetic fields. This is in stark contrast

to the common idea that small-scale magnetic fields should be harmful to large-scale dynamo action. These

dynamos occur in the presence of large-scale velocity shear and do not require net helicity, resulting from

off-diagonal components of the turbulent resistivity tensor as the magnetic analogue of the “shear-current”

effect. Given the inevitable existence of non-helical small-scale magnetic fields in turbulent plasmas, as

well as the generic nature of velocity shear, the suggested mechanism may help to explain generation of

large-scale magnetic fields across a wide range of astrophysical objects.
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Astrophysical magnetic fields are observed to be well-correlated over length and time scales far

exceeding that of the underlying fluid motions. Beautiful in its regularity, the 22-year solar cycle

is the most well-known example of this behavior [1]. Such large-scale structure is puzzling given

that strong magnetic fields are expected to emerge through the stretching and twisting of field

lines by smaller scale turbulence. As the primary theoretical framework to study such behavior,

mean-field dynamo theory examines how large-scale magnetic fields develop due to these small

scale turbulent motions. This splitting between scales is captured by the mean-field average; the

average of a small-scale quantity vanishes by definition (〈b〉 = 0), while the average of a large-

scale field is itself (〈B〉 = B). An average of the induction equation, which governs evolution of

the magnetic field within magnetohydrodynamics (MHD), leads to [2]

∂tB = ∇ × (U × B) + ∇ × E +
1

Rm
∇2B, (1)

where Rm is the magnetic Reynolds number, a dimensionless measure of the plasma resistivity,

and U and B are the large-scale velocity and magnetic field. The electromotive force, E = 〈u × b〉,

is the average of the small-scale fields (u and b) and responsible dynamo action. In the early phases

of a dynamo, the mean-fields can be considered a small perturbation to the underlying turbulence.

Combined with an assumption of scale-separation between small-scale and mean fields, this allows

a Taylor expansion [3, 4] of E in terms of B,

E = α ◦ B + β ◦ ∇B + . . . , (2)

where α, β are the tensorial transport coefficients, calculated from the small-scale fields [5]. Since

these depend on the large-scale fields, a solution to Eq. (1) requires knowledge of how E changes

with B (and possibly U), essentially a statistical closure for inhomogenous MHD.

Historically, much work has focused on kinematic dynamo theory, in which u is uninfluenced

by the magnetic field [3]. Kinematic theory predicts large-scale dynamo instability when the fluid

motions possess helicity,
´

u · ∇ × u dx , 0 [2]. However, the applicability of such predictions

has been called into question by a number of authors [6, 7]. In particular, above modest Reynolds

numbers in both helical and non-helical flows, the small-scale dynamo [8] causes b to grow and

saturate much more rapidly [9] than B. This violates the kinematic assumption, both because u is

altered before B grows significantly and because a dynamically important b exists independently
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of B. The buildup of small-scale fields is the origin of “α-quenching”, in which the mean-field

saturates well before reaching amplitudes consistent with observation [10–13] due to the adverse

influence of b. Here we show that in turbulence with large-scale velocity shear, it is possible

and realizable to have the small-scale dynamo enhance the growth of the large-scale dynamo.

We demonstrate this both with statistical simulation [14], in which the effect is very clear but

applies rigorously only at low Reynolds numbers, and through calculation of transport coefficients

from direct numerical simulations (DNS). In addition, analytic results obtained using the second-

order correlation approximation (not presented here) agree with τ-approximation analyses [15], in

contrast to previous kinematic studies [16–18]

Our calculations are carried out within the shearing box formalism, with homogenous Cartesian

geometry and periodic boundary conditions in the shearing frame. A large-scale velocity shear

U0 = −S xŷ is imposed across the domain. This commonly-used setup is designed to represent

a small “patch” of turbulent fluid in large-scale velocity shear. Using the Snoopy code [19] for

DNS, we non-helically force the velocity at small scales and study the generation of larger scale

magnetic fields, in a similar way to previous authors [20, 21]. The mean-field average is defined

as an average over the radial (x) and azimuthal (y) directions, such that the mean magnetic fields

B depend only on z. We also include the effect of system rotation through a mean Coriolis force in

DNS studies, since shear typically arises due to differential rotation in astrophysical objects. The

rotation Ω is aligned with ẑ (antiparallel to ∇ × U0), perpendicular to the flow.

For the chosen horizontal average, inserting Eq. (2) into (1) gives

∂tBx = −αyx∂zBx − αyy∂zBy − ηyx∂
2
z By + ηty∂

2
z Bx

∂tBy = −S Bx + αxx∂zBx + αxy∂zBy − ηxy∂
2
z Bx + ηtx∂

2
z By, (3)

using velocity shear U0 but neglecting other mean velocities, and defining ηit ≡ ηii + Rm−1 . Here

αi j and ηi j are the α-effect and turbulent resistivity tensors respectively, with the 4 components of

ηi j relatable to the βi j3 elements of the full tensor [Eq. 2]. Due to homogeneity and reflectional

symmetry (vanishing net helicity), αi j must vanish when averaged over a suitably large time or

number of realizations [3]. There is no such constraint on ηi j, and ηyx is very important throughout

this work due to its coupling with the shear. In particular, neglecting fluctuations in α and assuming

diagonal resistivities are equal (ηtx = ηty = ηt), the least stable eigenmode of Eq. (3) for a mode of
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FIG. 1. Time development of the mean-field energy, EB =
´

dz B2/2, in quasi-linear statistical simulation.
Small-scale fields are forced at k f = 6π, Rm = urms/ηk f ≈ 5 (here η is the resistivity, Pm = Rm/Re = 1),
S = 2 and the box has dimensions

(
Lx, Ly, Lz

)
= (1, 1, 4) with resolution (28, 28, 128). As well as forcing the

momentum equation, the induction equation is forced to excite homogenous magnetic fluctuations so as to
emulate a small-scale dynamo. Total forcing energy is kept constant in each simulation, but the proportion
of magnetic forcing is increased from 0 to 0.8. As this is done, the growth rate of the mean-field increases
enormously due to the magnetically driven dynamo.

vertical wavenumber k grows at

γ = k
√
ηyx

(
−S + k2ηxy

)
− k2ηt. (4)

Since S � ηi j, dynamo action is possible without an α effect if ηyx < 0.

Subsequent to early analytic work [16], it was found that kinematically ηyx > 0 (at least at

low Rm), and several authors have concluded that this coherent shear dynamo cannot explain

observed field generation [17, 18, 21]. Instead, a popular theory is that temporal fluctuations in

αi j cause an incoherent mean-field dynamo. Importantly, in such a dynamo, B (z, t) cannot have a

constant phase in time as it grows, since the average of B over an ensemble of realizations vanishes,

implying B must be uncorrelated with itself after t &
(
k2ηt

)−1
[22]. While such incoherent dynamos

are certainly possible in a variety of situations, here we argue for a different situation—magnetic

fluctuations act to substantially decrease ηyx, causing the onset of a coherent large-scale dynamo

that overwhelms the incoherent dynamo in some situations.

Our first method illustrating this effect is quasi-linear statistical simulation. By linearizing the

equations for the small-scale fields, one can directly write down the equation for the small-scale

statistics as a function of the large-scale fields [14, 23, 24]. This yields E, which can be fed

directly into Eq. (1) resulting in a closed system of equations. Importantly, since the statistics are
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FIG. 2. Example spatiotemporal By evolutions for non-rotating (a-b) and Keplerian rotating (c-d) turbu-
lence at Rm = urms/ηk f ≈ 15 (k f = 6π, η = 1/2000, Pm = 8), S = 1, in a box of dimension (1, 4, 2) with
resolution (64, 128, 128). The first examples in each case [(a) and (c)] show By when a coherent dynamo
develops, while the second examples [(b) and (d)] illustrate the case when it is more incoherent. The main
factors in distinguishing these are the coherency in phase of By over some time-period and the amplitude at
saturation, which is larger in the coherent cases. In general the rotating simulations are substantially more
coherent. The hatched area illustrates the region of small-scale dynamo growth. The fitting method used to
compute transport coefficients (see Fig. 3) is applied between the dashed lines (t = 50→ 100).

calculated directly [18], there is no possibility of an incoherent dynamo, and the method offers a

direct probe of the coherent effect. Due to the lack of a small-scale dynamo in this approach, we

drive homogenous small-scale magnetic fluctuations by forcing the induction equation. Results

are illustrated in Fig. 1, successively increasing the proportion of magnetic forcing from pure

velocity forcing, with the total energy injection kept constant. The presence of the magnetically

driven dynamo is evident, becoming slightly unstable when magnetic forcing accounts for 0.4 of

the total and increasing the growth rate thereafter. This sustained period of exponential growth

due to magnetic fluctuations is not possible to see in DNS, since the mean-field will immediately

come into approximate equipartition with the small-scale field due to the finite size of the system.

The formal applicability of statistical simulation is limited to low Rm due to the quasi-linear

approximation. Our second method utilizes DNS to show that small-scale fields arising consis-

tently through the small-scale dynamo can drive a coherent large-scale dynamo. To this end, we

directly calculate transport coefficients from nonlinear simulation before and after the saturation
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of the small-scale dynamo. We choose moderate Reynolds numbers [20], small enough such that

there is no transition to self-sustaining turbulence (although effects may be similar even when this

occurs [25]), and run ensembles of 100 simulations both with and without Keplerian rotation. At

these parameters, the prevalence of the coherent large-scale dynamo depends on the realization

(see Fig. 2), and it appears that the coherent effect cannot always overcome fluctuations in E im-

mediately after small-scale saturation, although the dynamo always develops after a sufficiently

long time [e.g., Fig. 2(d) near t = 150]. This behavior seems generic when the coherent dynamo

is close to its threshold for excitation and we have observed similar structures when the induction

equation is driven directly at lower Rm. Notwithstanding this variability in the dynamo’s qualita-

tive behavior, measurement of the transport coefficients illustrates that the ηyx coefficient decreases

after the magnetic fluctuations reach approximate equipartition with velocity fluctuations at small

scales.

At low times, we use the test-field method to measure the kinematic α and η, fixing the mean

field and calculating E, with no Lorentz force [3, 21]. Since the small-scale dynamo grows quickly,

test-fields are reset every t = 5. After small-scale saturation, standard test-field methods are

inapplicable [26]. Instead, we extract B and E simulation data and calculate
(
αi j, ηi j

)
directly

from Eq. (2) by computing
´

dzEiB for each of B =
(
Bx, By, ∂zBx, ∂zBy

)
. This method is very

similar to that presented in Ref. [27]; however, we impose the constraints ηyy = ηxx, αxx = αyy and

αyx = ηxy = 0, and solve the resulting equations in the least-squares sense. While these changes

may appear to make the method less accurate, they in fact achieve the opposite by reducing the

influence of Bx, which is both very noisy and strongly correlated with By (through −S Bx) and Ey

(through ∂tBx = −∂zEy + . . . ). (These correlations are very harmful to the quality of the fit, for

instance causing unphysical negative values for ηyy [27]). It is straightforward to show that the

systematic errors caused by our constraints on the transport coefficients should be less than 1% for

the shear dynamos studied here, so long as ηxx ≈ ηyy. We have verified the method agrees with the

test-field method through application to low Rm shear dynamos [28], where the rotation can be

used to test nonhelical dynamos over a range of ηyx. Due to the short time-window, measurements

of the transport coefficients after small-scale saturation vary significantly between realization, as

should be expected from Fig. 2. Nonetheless, an average over the ensemble illustrates a statistically

significant change in ηyx that is consistent with observed behavior.

Results are illustrated in Fig. 3. In the kinematic phase without rotation, we see ηyx =

(4.1 ± 1.6) × 10−4, in qualitative agreement with previous studies [21]. With rotation, we find
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FIG. 3. Measurements of the turbulent transport coefficients for 100 realizations of the simulations at the
same parameters as those in Fig. 2; (a) ηxx coefficients, no rotation, (b) ηyx coefficients, no rotation, (c)
ηxx coefficients, rotating, (b) ηyx coefficients, rotating. Unfilled markers in each plot (circles and squares
for non-rotating and rotating runs respectively) show coefficients measured from each of the individual
realizations, with mean values displayed with solid markers and the shaded regions indicating error in the
mean (2 standard deviations). Black markers illustrate the kinematic transport coefficients, with grey shaded
regions indicating the error. After saturation of the small-scale dynamo, we calculate ηi j by solving Eq. (2)
approximately at each time-point (see text), taking the mean from t = 50 to t = 100. This limited time-
window is chosen to avoid capturing the saturation phase of the large-scale dynamo, since ηi j is presumably
modified in this phase. In both methods used to compute transport coefficients, we have also calculated the
corresponding α coefficients. In all cases these are zero to within error as expected, and the scatter between
simulations is of a similar magnitude to that of ηi j if their different units are accounted for (it is necessary
to divide α by a characteristic k value).

ηyx = (0.6 ± 1.2) × 10−4, consistent with a reduction in ηyx due to the Ω × J effect [5]. After

saturation of the small-scale dynamo, ηyx = (−0.1 ± 1.0) × 10−4 for the non-rotating case, while

ηyx ≈ − (2.0 ± 0.8) × 10−4 in the rotating case—the same reduction in each to within error. Values

for the diagonal resistivity are smaller after saturation, as expected since the velocity fluctuation

energy decreases (by a factor ∼ 1.4). The values of
(
ηxx, ηyx

)
show that the dynamo is slightly sta-

ble on average in the non-rotating case and marginal in the rotating case. However, the coefficients

vary significantly between realizations, sometimes yielding larger growth rates, and measurements

match observed growth of the mean-field for individual realizations. We illustrate this in Fig. 4,
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FIG. 4. Evolution of the mean-field magnitude for a sample of the ensemble of rotating simulations

(Figs. 2-3). Here B, the mean-field magnitude, is
√
|B̂1

x|
2 + |B̂1

y |
2 where B̂1

i is the largest scale Fourier mode
of Bi. In each plot the solid blue curve shows data taken from the simulation. The dashed red curve shows
the corresponding expected evolution, using the calculated values of the transport coefficients, smoothed in
time using a Gaussian filter of width 5. Finally, the dotted yellow curve illustrates the expected evolution
with all α coefficients artificially set to zero. We list the measured mean of ηyx in each plot to show that lower
values do generally lead to substantially more growth of the mean field as expected for a coherent dynamo.
For reference, at the measured ηxx ≈ 0.006, the coherent dynamo is unstable below ηyx = −0.00036.

which demonstrates consistency between the measured transport coefficients and mean-field evo-

lution by solving Eq. 3 directly, for a sample of the rotating simulations. In addition, by artificially

removing αi j coefficients, we illustrate that cases with more negative ηyx are driven primarily by

this, rather than a stochastic-α effect. We thus conclude that small-scale magnetic fluctuations act

to decrease ηyx, and that in some realizations (or after a sufficiently long time period) a coherent

large-scale dynamo develops as a result.

To summarize, in this letter we have demonstrated that small-scale magnetic fluctuations, ex-

cited by small-scale dynamo action, can drive large-scale magnetic field generation. The mecha-

nism is a magnetic analogue of the “shear-current” effect [15, 16], arising through the off-diagonal

turbulent resistivity in the presence of large-scale shear flow. We have demonstrated its existence
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numerically using both direct numerical simulation, with measurements of mean-field transport

coefficients before and after small-scale dynamo saturation, and through quasi-linear statistical

simulation.

More work is needed to precisely assess regimes in which the magnetically driven dynamo

might dominate, as well as its behavior at higher Reynolds numbers where self-sustained turbu-

lence is possible [25]. Another interesting question regards whether a magnetic dynamo can re-

main influential in the presence of net helicity and an α-effect, particularly as small-scale dynamo

may be suppressed by shear [29]. While such questions may be difficult to answer definitively, the

generic presence of magnetic fluctuations in plasma turbulence gives us some confidence that the

proposed mechanism could cause large-scale dynamo growth in the wide variety of astrophysical

systems with velocity shear.
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