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Steady-state benchmarks of DK4D: a time-dependent, axisymmetric drift-kinetic

equation solver

B.C. Lyons,1 S.C. Jardin,2 and J.J. Ramos3

1)Princeton University, Princeton, New Jersey, 08544, USA

2)Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543-0451,

USA

3)Plasma Science and Fusion Center, Massachusetts Institute of Technology,

Cambridge, Massachusetts 02139-4307, USA

The DK4D code has been written to solve a set of time-dependent, axisymmetric,

finite-Larmor-radius drift-kinetic equations (DKEs) for the non-Maxwellian part of

the electron and ion distribution functions using the full, linearized Fokker-Planck-

Landau collision operator. The plasma is assumed to be in the low- to finite-

collisionality regime, as is found in the cores of modern and future magnetic con-

finement fusion experiments. Each DKE is formulated such that the perturbed

distribution function carries no net density, parallel momentum, or kinetic energy.

Rather, these quantities are contained within the background Maxwellians and would

be evolved by an appropriate set of extended magnetohydrodynamic (MHD) equa-

tions. This formulation allows for straight-forward coupling of DK4D to existing

extended MHD time evolution codes. DK4D uses a mix of implicit and explicit tem-

poral representations and finite element and spectral spatial representations. These,

along with other computational methods used, are discussed extensively. Steady-

state benchmarks are then presented comparing the results of DK4D to expected an-

alytic results at low collisionality, qualitatively, and to the Sauter analytic fits for the

neoclassical conductivity and bootstrap current, quantitatively. These benchmarks

confirm that DK4D is capable of solving for the correct, gyroaveraged distribution

function in stationary magnetic equilibria. Furthermore, the results presented demon-

strate how the exact drift-kinetic solution varies with collisionality as a function of

the magnetic moment and the poloidal angle.
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I. INTRODUCTION

There are many circumstances in which understanding and modeling the dynamics of

high-temperature plasmas requires a comprehensive model that incorporates both magne-

tohydrodynamic (MHD) and neoclassical physics. For example, neoclassical tearing modes

(NTMs) can occur when the temperature and pressure profiles flatten across a seed magnetic

island in the core of a tokamak plasma, causing a reduction in the neoclassical bootstrap cur-

rent within the island. Since the bootstrap current outside of the island remains unaffected,

the resulting hole in the bootstrap current profile can lead to further growth in the island

size1,2. If the island grows large enough to alter the macroscopic magnetic equilibrium, the

plasma can become MHD unstable and confinement is lost. A study on the Joint European

Torus3 (JET) found that these NTMs are the single most common root cause of disruptions4.

Avoidance of these modes is expected to place a severe limit on plasma β for ITER5,6. Thus,

a good understanding of, and predictive capability for, NTMs are crucial to the success of

the ITER campaign.

Edge-localized modes (ELMs) provide another example of MHD phenomena that are

strongly affected by neoclassical physics. The stability of certain types of ELMs is widely

believed to be determined by the peeling-ballooning mode which is driven by both the

pressure and current profiles in the edge7–11. As the pressure gradients can be quite strong

in H-mode pedestals, the bootstrap current can make up a large fraction of the total current

density in the edge. Thus, an accurate model for the bootstrap current is important for

simulating peeling-ballooning, and thus ELM, stability.

A realistic and accurate numerical study of NTMs and ELMs, in addition to several other

plasma instabilities, such as sawtooth modes12, must accurately account for both the kinetic

trapped particle dynamics that produce the bootstrap current and the magnetohydrody-

namic evolution of the plasma equilibrium due to changes in the current profile. Further-

more, because many MHD phenomena are inherently three-dimensional, the code must work

for nonaxisymmetric magnetic geometries. While sophisticated, three-dimensional MHD

time-evolution codes exist (e.g., NIMROD13 and M3D-C 1 [14]), it is more difficult to find

kinetic neoclassical codes that can be coupled to these MHD codes to enable such a study.

The XGC015 and DKES16 codes do solve for neoclassical physics in 3D toroidal geometries.
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XGC0, however, is a PIC code that requires enormous computing power and is thus not

well-suited for efficient coupling with an MHD code. DKES uses a variational method to

calculate neoclassical quantities but uses the Lorentz collision operator, which includes only

pitch angle scattering. While this is the dominant process for electron-ion collisions in low-

collisionality plasmas (such as those found in the cores of reactor-grade, toroidally-confined

plasmas that we would like to study), energy scattering is just as important for like-particle

collisions17,18. As Belli and Candy have shown19, the use of model collision operators to

study the bootstrap current, even ones substantially more sophisticated than the Lorentz

operator, can lead to errors of 5-10% compared to the full Fokker-Planck-Landau collision

operator. Several other neoclassical codes are widely used in the community, including

NCLASS20, CQLP/CQL3D21,22, and NEO19,23. The NCLASS code uses a truncated form

of the Hirshman-Sigmar24 moment expansion of the collision operator and evaluates just

the corresponding lower moments of the distribution functions. The CQLP/CQL3D codes

include the complete, nonlinear Fokker-Planck-Landau collision operator, while the NEO

code19 uses the complete, linearized Fokker-Planck-Landau collision operator. Both then

solve for the full distribution functions. All of these codes, however, assume a 2D axisym-

metric toroidal geometry, limiting their use in studies of three-dimensional MHD instabili-

ties. Furthermore, none of these codes was designed to couple to a three-dimensional, time-

dependent MHD code and could require significant modifications to ensure self-consistency.

We, therefore, have begun development of a new code that is applicable to the cores of

high-temperature fusion plasmas, has the potential to study neoclassical dynamics in three

spatial dimensions, and can self-consistently and efficiently couple to a magnetohydrody-

namics solver. An appropriate analytic model that could form the basis of such a code has

been developed in Refs. 17 and 18. It features a Chapman-Enskog-like25, coupled system

of ion and electron fluid and drift-kinetic (DKE) equations in general 3D real space and 2D

(gyroaveraged) velocity space with linearized Fokker-Planck-Landau collision operators. The

equations follow an asymptotic expansion in the small parameter δ ∼ ρi/L≪ 1, the ratio of

the ion Larmor radius to the macroscopic scale length. Additional orderings of small mass

ratio between electrons and ions, and of low collisionality relevant to the high temperature

plasmas of interest to fusion, are assumed. The expansions are carried out consistently to

the frequency scale where collisions begin to influence the dynamics.
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In Ref. 26, we presented the Neoclassical Ion-Electron Solver (NIES) which solved a

reduced, low-collisionality version of this drift-kinetic formulation. Successful benchmarks

of the NIES results to the Sauter equations27 indicate that this formulation is both correct

and computationally tractable. This has given us confidence to continue our pursuit of a

numerical solution to the full formulation of Refs. 17 and 18. In this paper, we present

the DK4D code which solves the time-dependent, finite collisionality ion and electron drift-

kinetic equations in axisymmetric magnetic geometries to first order in each species Larmor

radius parameter.

In Section II, we describe the DKEs solved by DK4D and explain all assumptions that we

have made. Section III explains the computational methods used to solve the DKEs, which

are largely based on the successful methods used by the NIES code. Finally, we present results

from DK4D in Section V, particularly qualitative comparisons to the NIES formalism at low

collisionality, the behavior of the exact drift-kinetic solution as the collisionality is varied,

and benchmarks of the steady-state solutions to the Sauter equations. Note that convergence

studies and additional details for DK4D can be found in the lead author’s Ph.D. thesis28.

II. ANALYTIC MODEL

We want to solve the time-dependent, finite-collisionality DKEs of Refs. 17 and 18,

restricted to first-order in the Larmor radius parameter and to axisymmetric geometries.

We work in a five-dimensional phase space. The three-dimensional configuration space, x, is

represented in flux coordinates defined by a normalized flux variable Φ̃, a poloidal angle θ,

and the toroidal angle ζ . In such coordinates, the axisymmetric magnetic field is defined as

B = ∇ψ ×∇ζ + I∇ζ = ψ′∇Φ̃×∇ζ + I∇ζ, (1)

where ψ is the poloidal flux divided by 2π, ψ′ = dψ/dΦ̃, and I = RBζ for major radius R

and toroidal magnetic field strength Bζ . The three-dimensional velocity space variable is

w = v − us, referenced to the frame of the relevant species s’s macroscopic flow velocity,

us. In the following discussion, the species that is being considered, and thus the definition

of w, will be obvious. The gyro-averaging of the kinetic equations that results in our drift-

kinetic equations eliminates the need to consider the gyroangle α, allowing us to consider
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a two-dimensional velocity space consisting of w = |w| and y = cosχ, where χ is the pitch

angle.

We will be solving the DKEs for f̄NMs, the non-Maxwellian part of the gyroaveraged

distribution function for species s. This is the difference between the full, gyroaveraged

distribution function, f̄s, and an evolving Maxwellian, fMs, such that

f̄NMs = f̄s − fMs = f̄s −
n

(2π)3/2 v3ths
exp

(

− w2

2v2ths

)

, (2)

where n is the density and vths is the thermal velocity for particles with mass ms and temper-

ature Ts = msv
2
ths. In this Chapman-Enskog-like expansion25, the density, momentum, and

temperature are entirely contained within the Maxwellian part of the distribution function

and are evolved by an appropriate set of MHD equations. Note that in this formulation, the

plasma is taken to be quasineutral with only electrons of charge −e and a single ion species

of charge +e. Thus, we consider a single density n = ne = ni.

We make two other assumptions about our plasma configuration. Firstly, we take the

density and temperatures to be flux functions, allowing us to drop terms proportional to

parallel gradients of those quantities in both DKEs. Secondly, we take Te = Ti since we do not

have any external heat sources in this formulation to drive a temperature imbalance, allowing

us to drop terms proportional to (Te − Ti) in the electron DKE. While these assumptions

simplify the DKEs somewhat, they do not alter the structure of the equation in any significant

way. Importantly, dropping these terms preserves the property of this formulation that f̄NMs

carries no net density, momentum, or temperature. This provides self-consistency with the

MHD equations by ensuring that these low-order moments are only present in the Maxwellian

part of the distribution function. Furthermore, these assumptions could be relaxed by simply

restoring the dropped terms, without requiring a major reformulation of the code.

Given all this, the axisymmetric drift-kinetic equation for species s, reduced from the
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more general DKEs derived in Refs. 17 and 18, can be written as

∂f̄NMs

∂t
+ wyb · ∇f̄NMs −

1

2
w
(

1− y2
)

b · ∇ lnB
∂f̄NMs

∂y
= 〈Css + Css′〉α

+

{

wy

nTs

[

2

3
b · ∇

(

ps‖ − ps⊥
)

−
(

ps‖ − ps⊥
)

b · ∇ lnB − F coll
s‖

]

+ P2(y)
w2

3v2ths
(∇ · us − 3b · [b · ∇us]) +

1

3nTs

(

w2

v2ths
− 3

)

∇ · (qs‖b)

− ς (es) I

3msΩs

[

1

2
P2(y)

w2

v2ths

(

w2

v2ths
− 5

)

+
w4

v4ths
− 10

w2

v2ths
+ 15

]

b · ∇ lnB
dTs
dψ

}

fMs, (3)

where B = |B|, b is the unit vector in the direction of B, es is the species’ charge, ς (es) is the

sign of the charge, Ωs = eB/ms is the gyrofrequency, and Pl is the lth Legendre polynomial.

The gyroaverged collision operator is taken in the linearized Fokker-Planck-Landau form

〈Css + Css′〉α =νDs(w)L[f̄NMs]− νsfMs
vths
v2ths′

b · J
esn

ξs′y

+
νsv

3
ths

w2

∂

∂w

{

ξs

[

w
∂f̄NMs

∂w
+

w2

v2ths
f̄NMs

]

+ ξs′

[

w
∂f̄NMs

∂w
+

msw
2

ms′v
2
ths′

f̄NMs

]}

+
νsvths
n

fMs

(

4πv2thsf̄NMs − Φs[f̄NMs] +
w2

v2ths

∂2Ψs[f̄NMs]

∂w2

)

. (4)

where J is the current density and the collision frequency is

νs =
e4n ln Λs

4πǫ20m
2
sv

3
ths

, (5)

where ln Λs is the Coulomb logarithm and ǫ0 is the permittivity of free space. We have

defined

νDs(w) =
νsv

3
ths

w3
[ϕs − ξs + ϕs′ − ξs′] , (6)

while the error function is

ϕs = ϕ

(

x =
w

vths

)

=
2√
2π

∫ x

0

dt exp
(

−t2/2
)

, (7)

the Chandrasekhar function is

ξs = ξ

(

x =
w

vths

)

=
1

x2

[

ϕ(x)− 2x√
2π

exp
(

−x2/2
)

]

, (8)

and the Lorentz operator is

L[f ] = 1

2

∂

∂y

[

(

1− y2
) ∂f

∂y

]

. (9)
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The Rosenbluth potentials, Φs and Ψs, found in Eq. 15 are defined by a set of Poisson

equations:
d

dw

(

w2∂Φs
∂w

)

+
∂

∂y

[

(

1− y2
) ∂Φs
∂y

]

= −4πw2f̄NMs (10)

and
d

dw

(

w2∂Ψs

∂w

)

+
∂

∂y

[

(

1− y2
) ∂Ψs

∂y

]

= w2Φs. (11)

Importantly, these coupled equations contain no Φ̃ derivatives of f̄NMs, Φs, or Ψs. Thus, we

can solve the DKEs independently on each flux surface.

In addition to the differential terms on the left-hand side of Eq. 3 and contained in the

collision operator, this drift-kinetic equation is driven by moments of f̄NMs. In particular,

we define three gyrotropic moments: the pressure anisotropy

(

ps‖ − ps⊥
)

= 2πms

∫ ∞

0

dww4

∫ 1

−1

dy P2 (y) f̄NMs, (12)

the parallel heat flux

qs‖ = πms

∫ ∞

0

dww5

∫ 1

−1

dy yf̄NMs, (13)

and the parallel component of the collisional friction force

F coll
s‖ = − 2msνs

3
√
2πes

b · J− 2πmsνsv
3
ths

∫ ∞

0

dw

∫ 1

−1

dy yf̄NMs, (14)

where s′ = i if s = e and vice versa.

Note that in the ion drift-kinetic equation, we drop all terms involving cross-species

collisional interaction, namely Fcolli in Eq. 3 and all terms containing s′ = e in Eq. 4.

III. COMPUTATIONAL METHODS

A. Time advance and discretization

In order to solve for f̄NMs, we advance the DKE in time, simultaneously with the Poisson

equations for the Rosenbluth potentials. To do this properly, we must consider the various

timescales that are found within these equations. In particular, the left-hand side of Eq. 3

is characterized by a transit timescale, τts = qR/vths for safety factor q, while the collision

operator is characterized by a collisional timescale, τcs = ν−1
s . The cores of modern, high-

temperature magnetic confinement fusion experiments operate in low-collisionality regimes,
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that is

ν̂ = ν∗ǫ
3/2 =

τts
τcs

≪ 1, (15)

where ǫ is the inverse aspect ratio, ν∗ is the more conventional collisionality parameter used

in neoclassical theory, and we have again assumed that Te = Ti. Thus, there exists a large

separation of timescales within the DKEs. Furthermore, we must consider the timescales

found in the MHD equations that get coupled to the DKEs. Ideal MHD activity is char-

acterized by the Alfven time, τA = a
√
µ0min/B, where a is the minor radius and µ0 is

the permeability of free space, while transport phenomena evolve on the resistive timescale,

τr = µ0σa
2, where σ is the conductivity. While the Alfven time is typically within an order

of magnitude of the transit time for these tokamaks, it is typically much shorter than the col-

lision time. Furthermore, the resistive time is much longer than any of the other timescales,

typically exceeding the ion collision time by five to six orders of magnitude.

As we can expect the drift-kinetic equations to evolve to steady-states within several

collision times, we can use two different ways of solving the time-dependent DKEs, depending

on the application. If we are considering only stationary equilibria or magnetic configurations

evolving on the resistive timescale, then the DKEs can just be solved to steady-state for a

given configuration. Alternatively, if we are concerned with changes to the configuration

occurring closer to the Alfven timescale, then the DKE could be evolved for the length of

a single MHD time step when coupled with an MHD time-evolution code. In M3D-C 1, for

example, it is typical to take time steps on the order of ten or a hundred Alfven times. The

DKE solve would have to be done in iteration with M3D-C 1 without the assumption that the

distribution functions would evolve to a steady-state as the magnetic configuration evolves.

Furthermore, given the wide range in the timescales of interest, it is appropriate to con-

sider implicit methods that would allow us to avoid any numerical stability limits on the

time steps that we could take. Of main concern are the differential terms in the DKEs. One

would expect the hyperbolic transit terms on the left-hand side of Eq. 3 to create a stabil-

ity condition that would restrict time steps to something on the order of the grid spacing

over the thermal speed if treated explicitly. Likewise, the collision operator contains both

hyperbolic and parabolic terms that could limit the time step to the order of the collision

time. As we may wish to consider timescales significantly longer than transit or collision

times, we treat all of these differential terms in the DKEs implicitly. The other homogeneous
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terms in the DKEs are all moments of f̄NMs. We can expect the velocity space integrals in

these terms to smooth out any oscillations that might grow up and thus keep these terms

from driving numerical instabilities. Furthermore, these integrals would result in relatively

denser blocks in the matrix that we would need to invert if the moment terms were treated

implicitly, which could cause an unreasonable slowdown of our code. Thus, we will choose

to treat these moment terms explicitly.

Applying this scheme to Eq. 3, and noting that b · ∇ = − ψ′

JB
∂
∂θ

where the Jacobian is

J =
[

∇Φ̃×∇θ · ∇ζ
]−1

, we can write the time-discretized DKE for a time step ∆t as

f̄n+1
NMs

∆t
+H

[

f̄n+1
NMs

]

=
f̄nNMs

∆t
+M

[

f̄nNMs

]

+ I, (16)

where the homogeneous differential terms treated at the implicit time step n + 1 are

H
[

f̄n+1
NMs

]

= −wyψ
′

JB
∂f̄n+1

NMs

∂θ
+
w (1− y2)ψ′

2JB2

∂B

∂θ

∂f̄n+1
NMs

∂y
− Ĉs

[

f̄n+1
NMs

]

, (17)

the homogeneous moment terms treated at the explicit time step n are

M
[

f̄nNMs

]

=− 1

3nTs

(

w2

v2ths
− 3

)

fMs
ψ′

J
∂

∂θ

(

qns‖
B

)

− wy

nTs
fMs

{

2

3

ψ′

JB
∂

∂θ

(

ps‖ − ps⊥
)n − ψ′

JB2

∂B

∂θ

(

ps‖ − ps⊥
)n

+ F̂ n
s

}

, (18)

and the inhomogeneous source terms are

I =

{

P2(y)
w2

3v2ths
(∇ · us − 3b · [b · ∇us])− νs

vths
v2ths′

J‖
esn

ξs′y +
2

3
√
2π
νs

w

v2ths

J‖
esn

y

}

fMs

+
ς(es)

3msΩs
fMs

[

1

2
P2(y)

w2

v2ths

(

w2

v2ths
− 5

)

+
w4

v4ths
− 10

w2

v2ths
+ 15

]

I

JB2

∂B

∂θ

dTs

dΦ̃
. (19)

Here, we’ve defined the homogeneous, gyroaveraged collision operator

Ĉs
[

f̄NMs

]

= 〈Css + Css′〉+ νsfMs
vths
v2ths′

J‖
esn

ξs′y, (20)

with parallel current density J‖ = b · J, and the homogeneous moment component of the

parallel collisional friction force, F coll
s‖ = b · Fcolls ,

F̂s = F coll
s‖ +

2msνs

3
√
2πes

J‖ = −2πmsνsv
3
ths

∫ ∞

0

dw

∫ 1

−1

dy yf̄NMs. (21)

Note that the inhomogeneous parts proportional to J‖ that have been taken out of Eqs. 17

and 18 are put back into Eq. 19 without modification, such that this time-discretized DKE

contains all the same terms as Eq. 3.
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Finally, we note that the Poisson equations that define the Rosenbluth potentials, Eqs. 10

and 11, are time-independent and do not need to be time discretized. Rather, these elliptic

equations are solved simultaneously with the DKE at each time step, giving self-consistent

solutions for all times.

B. Spatial expansions

DK4D uses a finite element expansion in the speed variable, w, a Legendre polynomial

expansion in the cosine of the pitch angle, y = cosχ, and a Fourier series in the poloidal

spatial angle, θ. At time step n, we define










f̄nNMs

(

Φ̃, θ, w, y
)

Φns

(

Φ̃, θ, w, y
)

Ψn
s

(

Φ̃, θ, w, y
)











=

Imax
∑

i=Imin

L
∑

l=0

2M
∑

m=0











f̄ i,l,m,nNMs

(

Φ̃
)

Φi,l,m,ns

(

Φ̃
)

Ψi,l,m,n
s

(

Φ̃
)











φi(w)Pl(y)Fm(θ). (22)

There is no need for an expansion in Φ̃ because the dynamical equations lack any derivatives

of f̄NMs, Φs, and Ψs with respect to the flux coordinate and, thus, can be solved indepen-

dently on each flux surface. For simplicity, we will drop the Φ̃ dependence of the coefficients

f̄ i,l,m,nNMs , Φi,l,m,ns , and Ψi,l,m,n
s from this point forward.

In general, DK4D assumes an arbitrary finite element expansion, φi(w). The full range

of w is divided into N + 1 arbitrarily spaced grid points with w0 = 0 and wN = wmax. This

maximum value of w is typically around 10vths and can be varied to ensure convergence. The

finite elements range from i = Imin ≤ 0 to Imax ≥ N , where the minimum and maximum

value of i varies with the type of element considered. We currently have two elements

implemented into DK4D, cubic B-splines and Hermite cubics, though more could easily be

added if desired. A discussion of these elements can be found in Ref. 29. In particular, we

note that the use of Hermite cubic finite elements has produced favorable results in other

applications and appears to offer an efficient and general method for representing a wide

class of functions14,29–32.

We consider the full range of l in the Legendre polynomials and both sines and cosines in

the Fourier series, where we’ve defined

Fm(θ) =







cos
(

m
2
θ
)

: m even

sin
(

m+1
2
θ
)

: m odd.
(23)
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Both the Legendre and Fourier expansions are truncated to a maximum mode number (L

and M respectively), which can be varied to ensure convergence of the solution.

C. Galerkin method

We use the Galerkin method in DK4D for both the finite element expansion in w and

the spectral expansions in y and θ. To do this, we insert the expansion from Eq. 22 into

the drift-kinetic equation (Eq. 16) and the Poisson equations for the Rosenbluth potentials

(Eqs. 10 and 11). Then, we multiply these equations by φj(w)Pq(y)Fr(θ) for all possible

combinations of j = [Imin, Imax], q = [0, L], and r = [0, 2M ]. To avoid singularities in the

collision operator at w = 0, we multiply the DKE by w2 as well. We then integrate these

equations over w = [0, wmax], y = [−1, 1], and θ = [0, 2π] to obtain the weak form of the

equations.

Given this procedure, the homogeneous differential part of the DKE, Eq. 17, along with

the f̄n=1
NMs/∆t term in Eq. 16, and the two Poisson equations can be written as a matrix

A acting on a vector X that contains all the f̄ i,l,m,n+1
NMs , Φi,l,m,n+1

s , and Ψi,l,m,n+1
s coefficients.

The chosen expansions result in an A that is tridiagonal in the l (Legendre) index and

sparse banded in the i (w finite element) index. In particular, both the cubic B-spline and

the Hermite cubic elements currently implemented in DK4D result in a block septadiagonal

matrix in i. While, in general, the Fourier inner products create dense blocks in the m index,

the matrix is still quite sparse due to the Legendre and finite element representations.

Applying the Galerkin method to the explicit moment terms and to the inhomogeneous

source terms, on the other hand, results in a source vector S. If treated implicitly, the

moment terms would have added blocks to A that were dense in both m and i, since they

would involve the exterior product of two separate integrals over θ and w. Thus, as noted

previously, these terms would result in a denser matrix than the differential terms, which

motivated our decision to treat these integral terms explicitly. Nevertheless, these terms

would still be sparse in the Legendre expansion, leaving open the possibility that a fully

implicit DKE solver could be tried in the future and remain computationally tractable.

Furthermore, note that Eq. 19 is independent of time (for a fixed magnetic configuration) and

would only need to be updated after a time-advancement of the MHD equations resulting in
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a change to the magnetic configuration. Thus, this source can be calculated at the beginning

of DK4D. The homogeneous source terms proportional to f̄nNMs can then be added to it each

DK4D time step to form the complete source vector for a given time step. Ultimately, the

Galerkin method transforms the coupled DKE and Poisson equation system into a linear

matrix equation AX = S to be solved numerically at each DKE time step.

D. Boundary conditions

We must impose appropriate boundary conditions on our DKE and Poisson equations

for the Rosenbluth potentials given the spatial expansions we have chosen. The Fourier

expansion already enforces the condition that the solutions be periodic in θ. In addition, the

use of spectral elements in y means that we need no boundary condition in that dimension

either. Thus, we only need boundary conditions for w = 0 and w = wmax.

As f̄NMs is driven by terms proportional to a Maxwellian, we can expect the non-

Maxwellian part of the distribution function to decay like a Maxwellian, or a polynomial

in w times a Maxwellian, for w > vths. Given this, we impose a mixed boundary condition

enforcing this decay at w = wmax:

∂f̄NMs

∂w
(w = wmax) = − w

v2ths
f̄NMs(w = wmax). (24)

This is exact for a Maxwellian decay and the dominant decay for a polynomial times a

Maxwellian. For the Rosenbluth potentials, we can assume that f̄NMs (w = wmax) = 0 for

sufficiently high wmax > vths. Eq. 10 is then homogeneous near w = wmax and has a regular

solution that goes like w−l−1. This then drives Eq. 11, which has a regular solution that

goes like w−l+1. Thus, the boundary conditions are

dΦl,ms
dw

(w = wmax) = − l + 1

wmax
Φl,ms (w = wmax) (25)

and
dΨl,m

s

dw
(w = wmax) = − l − 1

wmax
Ψl,m
s (w = wmax). (26)

Including the non-zero, Maxwellian decay of f̄NMs as a drive for Φs would only produce

particular solutions for the Rosenbluth potentials that also decay like a Maxwellian and

would thus be subdominant to these power law decays.
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As w = 0 is not truly a boundary in phase space but just a degenerate point in our

cylindrical velocity space, we only need to ensure regularity at that point. The simplest

way to find this condition is to let f̄NMs = wαPl(y)Fm(θ), Φs = wβPl(y)Fm(θ), and Ψs =

wγPl(y)Fm(θ). Plugging these into the DKE (Eq. 3) and the Poisson equations (Eqs. 10 and

11), one can find a consistent, dominant, regular solution at near w = 0 with α = β = γ = l

for all values of l and m. Thus, the boundary condition at w = 0 is

d

dw











f̄ l,mNMs(w = 0)

Φl,ms (w = 0)

Ψl,m
s (w = 0)











= 0 if l = 0 (27)











f̄ l,mNMs(w = 0)

Φl,ms (w = 0)

Ψl,m
s (w = 0)











= 0 if l 6= 0. (28)

E. Solution method

The linear matrix equation AX = S must be solved on each individual flux surface for

each time step. As X is a vector containing the implicit expansion coefficients for all values

of i, l, and m, it is of length

Ntot = 3NFE(L+ 1)(2M + 1), (29)

where NFE = (Imax − Imin + 1) is the total number of finite elements. The vector S is, of

course, also of length Ntot. A is a Ntot × Ntot matrix containing all the coupling between

the coefficients at the implicit time step. Given the sparse structure of this matrix, it is

reasonable to use a direct method to solve the AX = S system with LU decomposition and

back substitution.

As the DKEs are solved independently on each flux surface, we have parallelized DK4D

perfectly over the number of flux surfaces that we wish to consider. In addition, DK4D

uses the PETSc (Portable, Extensible Toolkit for Scientific Computation)33–35 library in

order to solve each flux surface’s matrix equation. This flexible framework allows for the

use of a variety of different parallel direct and iterative solvers. Typically, we run PETSc

with MUMPS (MUltifrontal Massively Parallel Solver)36,37 or SuperLU DIST (Supernodal
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LU Distributed)38–40 which are parallel direct solvers for sparse systems. Both of these

solvers are able to make full use of the sparsity of the matrix A to solve the linear system

efficiently, both in terms of computational time and memory use. Furthermore, PETSc

automatically takes care of the parallelization for a single matrix equation solve, both in

terms of distributing the matrix and vectors across the processors within a communicator

and the parallel LU decomposition and linear solve of the AX = S system.

IV. PARALLEL HEAT FLUX MODIFICATION

Experience has shown us that one of the most difficult terms in Eq. 3 to deal with

computationally is the term proportional to the divergence of the parallel heat flux. In the

first-order formulation reduced from Refs. 17 and 18, the MHD temperature equation for

species s can be written as

3n

2

∂Ts
∂t

+
3n

2
us · ∇Ts + nTs∇ · us +∇ ·

(

qs‖b+
5nTsς (es)

2msΩs
b×∇Ts

)

= 0, (30)

where, again, we’ve assumed that Te = Ti. From this, we can see that if

∇ ·
(

qs‖b
)

6= −∇ ·
(

5nTsς (es)

2msΩs
b×∇Ts

)

, (31)

that is, if the parallel heat flux does contain the appropriate Pfirsch-Schluter-like41,42 re-

turn component necessary to cancel the divergence of the diamagnetic heat flux, then the

background temperature will evolve in time. The fact that the temperature will develop

a poloidal variation, if the inequality of Eq. 31 varies poloidally, is of particular difficulty,

since this is something which we have excluded from the present model. In general, as Eq.

3 is advanced in time, there is no way to ensure that the divergence of the heat flux remains

zero. Thus, a proper numerical treatment of the DKE would require iterating with an ap-

propriate temperature equation, such as Eq. 30, in order to self-consistently establish the

Pfirsh-Schluter-like return heat flux. Physical intuition tells us that any poloidal variation

in Ts should drive an opposing parallel heat flux that would drive the temperature back

to a flux surface quantity. Thus, while in steady-state we expect the temperature to be a

flux function, it may require some poloidally-varying dynamics to arrive at that state. Such

complex dynamics and such a tight coupling between the MHD temperature equations and
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the drift-kinetic equations are beyond the scope of the present work, though they remain an

area of future interest.

In order to avoid this complication, we can modify our DKEs to enforce that the divergence

of the total heat flux remains zero by replacing the moment version of qs‖, Eq. 13, with its

expected Pfirsch-Schluter-like return value at all times. As we only need its divergence for

the DKE, this amounts to using

∇ ·
(

qs‖b
)

= −∇ ·
(

5nTsς (es)

2msΩs
b×∇Ts

)

, (32)

or
ψ′

J
∂

∂θ

(

qns‖
B

)

= −5nTsς (es)

ms

I

JB2

∂B

∂θ

dTs

dΦ̃
. (33)

Inserting Eq. 33 into the explicit moment term of Eq. 18, and transferring this new inho-

mogeneous term to Eq. 19, we find that the moment terms in the DKE are

M
[

f̄nNMs

]

= − wy

nTs
fMs

{

2

3

ψ′

JB
∂

∂θ

(

ps‖ − ps⊥
)n − ψ′

JB2

∂B

∂θ

(

ps‖ − ps⊥
)n

+ F̂ n
s

}

, (34)

and the inhomogeneous drive for the DKE becomes

I =

{

P2(y)
w2

3v2ths
(∇ · us − 3b · [b · ∇us])− νs

vths
v2ths′

J‖
esn

ξs′y +
2

3
√
2π
νs

w

v2ths

J‖
esn

y

}

fMs

+
ς(es)

6msΩs
fMs [2 + P2(y)]

w2

v2ths

(

w2

v2ths
− 5

)

I

JB2

∂B

∂θ

dTs

dΦ̃
. (35)

In DK4D, we have implemented both Eqs. 18 & 19 and Eqs. 34 & 35 as the explicit,

homogeneous moment and inhomogeneous drive terms. The former set will be used in

future applications that are tightly coupled to the MHD temperature evolution equation.

The latter set will be used in applications where the temperature profile remains stationary.

This still allows us to calculate the distribution function in evolving magnetic configurations

self-consistently with time-dependent electric fields, plasma currents, and density gradients.

DK4D, using Eqs. 34 and 35, is also able to calculate the steady-state distribution function

for magnetic equilibria, as will be considered in Section V.

V. RESULTS

While DK4D is designed to be coupled self-consistently with an MHD time-evolution

code, it is prudent to first test it as a stand-alone application. Thus, as an initial test,
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Figure 1. Left: The magnetic field strength in tesla in (a) a large aspect ratio JSOLVER equilibrium

and (b) an NSTX JSOLVER equilibrium along with some corresponding flux surfaces. Right: The

normalized density, temperature (T = Te = Ti), and pressure, as well as the trapped particle

fraction, ft, for these equilibria. In (a), the pressure is normalized to p0 ∼ 8.0 × 102 Pa, while in

(b), it is normalized to p0 ∼ 2.3× 104 Pa. The normalizing density and temperature can be varied

to explore various collisionality regimes. In (b), the dashed flux surface on the left and the dashed

line on the right at Φ̃ ≈ 0.148 show the location used for the study in Section VA.
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we have used DK4D to solve for the steady-state distribution functions in two JSOLVER43

Grad-Shafranov equilibria, namely a large aspect ratio equilibrium (Figure 1a) and a realistic

NSTX equilibrium (Figure 1b). Note that these two equilibria were previously studied using

DK4D’s predecessor, NIES26. In order to explore various collisionalities, we have varied

the normalizing values of the densities and temperatures, while keeping a fixed normalizing

pressure and fixed normalized density and temperature profiles, such that the equilibrium

itself remains unchanged.

When considering a stationary magnetic equilibrium, we can simplify the flow and current

drive terms in Eq. 19. In particular, we can say that the mean flow for species s is

us = Us(Φ̃)B+
R2

ψ′

[

dV

dΦ̃
+

1

esn

d(nTs)

dΦ̃

]

∇ζ, (36)

where Us is the parallel flow stream function and V is the single-valued electric potential,

such that

1

ψ′

dI

dΦ̃
= µ0en(Ui − Ue). (37)

Then, the parallel current density is given by

J‖ = en(Ui − Ue)B +
I

ψ′B

dp

dΦ̃
, (38)

while

∇ · us = 0 and b · [b · ∇us] = Usb · ∇B. (39)

Given these definitions, it is clear from Eq. 35 that f̄NMe is driven by terms proportional

to Ue, Ui, dp/dΦ̃, and dTe/dΦ̃, while f̄NMi is only driven by terms proportional to Ui and

dTi/dΦ̃, as the J‖ terms in Eq. 35 come from cross-species interaction terms that are dropped

for the ions.

In Section VA, we qualitatively compare the distribution functions at low collisionality

to the formalism of the NIES code and show, quantitatively, how the exact drift-kinetic

solution behaves as we vary collisionality. In Section VB, we explain how Sauter-like ohmic

and bootstrap current coefficients are computed in DK4D and benchmark these results to

the Sauter formulae.
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A. Qualitative behavior at low collisionality

As a first step in determining if DK4D is solving for the correct non-Maxwellian part of

the electron and ion distribution functions, we can qualitatively compare our distribution

functions at low collisionality to those found in NIES. This earlier code solved for the non-

adiabatic part of the distribution functions, hs as defined in Eqs. 6-9 of Ref. 26, in the

δs ≪ ν̂ ≪ 1 limit. In doing so, it took advantage of certain convenient properties in this

limit, namely that:

• hs is independent of θ when written in terms of the normalized magnetic moment

variable λ = (1− y2)Bmax/B instead of y = cosχ, where Bmax(ψ) is the maximum

value of B on the Φ̃ flux surface (assuming only one local maximum per surface),

• hs = 0 in the λ > 1 trapped particle regime,

• and hs is odd in y.

These properties were represented by writing

hs = ς(y)H(1− λ)Ks(Φ̃, w, λ), (40)

where ς(y) is the sign of y and H is the Heaviside step function. NIES then solved for the

quantity Ks. At finite collisionality, however, we expect that all three of these properties

will be broken. The non-adiabatic parts of the distribution function should develop finite

values in the trapped regime, some dependence on θ even when written in terms of λ, and

some even structure in y.

In Figures 2, 3, and 4, we’ve plotted the non-adiabatic part of the electron distribution

function at three collisionalities, ν̂ ∼ 100, ν̂ ∼ 10−2, and ν̂ ∼ 10−4, respectively. These

were found using DK4D to calculate the converged solutions for fNMe for the dashed flux

surface of the NSTX equilibrium in Figure 1b and subtracting off the analytic, adiabatic ge,1

defined in Ref. 17. As can clearly be seen in (y, θ) plots of these figures, denoted by (a),

at higher collisionalities hs does indeed have finite values within the trapped regime and an

asymmetric structure in y, indicating contributions from both odd and even components. At

the lower collisionalities, however, a steep boundary layer forms at the λ = 1 trapped-passing

boundary, with hs negligibly small in the trapped regime. Furthermore, the distribution
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Figure 2. For ν̂ ∼ 100: the non-adiabatic electron distribution function, he, for the NSTX equilib-

rium of Figure 1 at w ≈ 1.2vthe0, where vthe0 is the on-axis electron thermal velocity, and Φ̃ ≈ 0.148

versus (a) y and θ, (b) λ and θ (for y ≥ 0). In (a), the white line shows the λ = 1 trapped-passing

boundary. In (b), the white lines show contours of constant he.
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Figure 3. For ν̂ ∼ 10−2: the non-adiabatic electron distribution function, he, for the NSTX

equilibrium of Figure 1 at w ≈ 1.2vthe0 and Φ̃ ≈ 0.148 versus (a) y and θ, (b) λ and θ (for y ≥ 0).

In (a), the white line shows the λ = 1 trapped-passing boundary. In (b), the white lines show

contours of constant he.

20



Figure 4. For ν̂ ∼ 10−4: the non-adiabatic electron distribution function, he, for the NSTX

equilibrium of Figure 1 at w ≈ 1.2vthe0 and Φ̃ ≈ 0.148 versus (a) y and θ, (b) λ and θ (for y ≥ 0).

In (a), the white line shows the λ = 1 trapped-passing boundary. In (b), the white lines show

contours of constant he.
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function becomes increasingly odd in y at lower collisionalities. In the (λ, θ) plots of these

figures, denoted by (b), one can also see that there is substantial variation with θ at high

collisionality, while hs is essentially independent of θ for ν̂ ∼ 10−4.

Based on these observations, we can see that the DK4D solutions are behaving, qualita-

tively, just as we should expect based on the analytic analysis used to formulate the NIES

code. Furthermore, these results show, quantitatively, the behavior of the exact drift-kinetic

solution, as a function of both λ and θ, when the collisionality is varied. It bears repeat-

ing here that these simulations were done using the full, linearized Fokker-Planck-Landau

collision operator and for a numerically-computed, finite aspect ratio Grad-Shafranov equi-

librium.

B. Finite collisionality benchmark

Now that we’ve demonstrated that the DK4D distribution functions have the properties

we would expect at low collisionality, we should benchmark the neoclassical conductivity

and bootstrap current found in steady-state for finite collisionality. Note that a successful,

cross-code, bootstrap current benchmark was performed for the NSTX equilbrium of Fig-

ure 1b using DK4D, NCLASS20, NEO19,23, and another new DKE solver written within the

NIMROD MHD code framework44, the results of which can be found in Ref. 44. Further-

more, we can compare our results to the well-known Sauter formulae, which defines the flux

surface average of J ·B as

〈

J‖B
〉

= σneo
〈

E‖B
〉

+
I

ψ′

[

L31
dp

dΦ̃
+ L32ne

dTe

dΦ̃
+ αL34ni

dTi

dΦ̃

]

. (41)

Here E‖ is the parallel electric field, while the coefficients σneo, L31, L32, and L34 are functions

of the trapped particle fraction,

ft = 1− 3

4

〈

B2

B2
max

〉
∫ 1

0

λdλ

〈1− λB/Bmax〉
, (42)

and the electron effective collisionality, νe∗. The ion flow coefficient, α, comes from

Ui = α
I

eψ′ 〈B2〉
dTi

dΦ̃
, (43)

and is a function of ft and the ion effective collisionality, νi∗. All of these coefficients and

the effective collisionalities are defined in Ref. 27.
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In order to compare the DK4D results to the Sauter coefficients, we need to be able to

write our results in a form like Eq. 41. We know from Eq. 38 that

〈

J‖B
〉

= en (Ui − Ue)
〈

B2
〉

+
I

ψ′

dp

dΦ̃
. (44)

Furthermore, in our formulation, the flux surface average of the parallel Ohm’s law, i.e., the

stationary, parallel part of the electron momentum equation, can be written as

〈

E‖B
〉

= enηc
〈

J‖B
〉

+
〈

F̂eB
〉

+
〈(

pe‖ − pe⊥
)

b · ∇B
〉

, (45)

where the classical resistivity is

ηc =
2meνe

3
√
2πe2n

. (46)

Now, since f̄NMe is driven by Ue, Ui, dp/dΦ̃, and dTe/dΦ̃ in equilibrium, we can expand the

two moments in Eq. 45 as

F̂e = ΓUe
Ue + ΓUi

Ui +
Γp
ψ′

dp

dΦ̃
+

ΓTe
ψ′

dTe

dΦ̃
(47)

and
(

pe‖ − pe⊥
)

= ∆Ue
Ue +∆Ui

Ui +
∆p

ψ′

dp

dΦ̃
+

∆Te

ψ′

dTe

dΦ̃
. (48)

Thus, the parallel Ohm’s law gives

enηc
〈

J‖B
〉

= en
〈

E‖B
〉

− 〈ΓUe
B +∆Ue

b · ∇B〉Ue − 〈ΓUi
B +∆Ui

b · ∇B〉Ui

− 〈ΓpB +∆pb · ∇B〉 1

ψ′

dp

dΦ̃
− 〈ΓTeB +∆Teb · ∇B〉 1

ψ′

dTe

dΦ̃
. (49)

Using Eqs. 44 and 43 to eliminate Ue and Ui, we can rewrite Eq. 49 as

[

e2n2
〈

B2
〉

ηc −〈ΓUe
B +∆Ue

b · ∇B〉]
〈

J‖B
〉

= e2n2
〈

B2
〉 〈

E‖B
〉

− I

ψ′

{

[

en 〈B2〉
I

〈ΓpB +∆pb · ∇B〉+ 〈ΓUe
B +∆Ue

b · ∇B〉
]

dp

dΦ̃

+
en 〈B2〉

I
〈ΓTeB +∆Teb · ∇B〉 dTe

dΦ̃

+ αn [〈ΓUe
B +∆Ue

b · ∇B〉+ 〈ΓUi
B +∆Ui

b · ∇B〉] dTi
dΦ̃

}

. (50)

Thus, comparing to Eq. 41, we find that

σneo =
e2n2 〈B2〉

e2n2 〈B2〉 ηc − 〈ΓUe
B +∆Ue

b · ∇B〉 , (51)
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L31 = −en 〈B
2〉 〈ΓpB +∆pb · ∇B〉 + I 〈ΓUe

B +∆Ue
b · ∇B〉

I [e2n2 〈B2〉 ηc − 〈ΓUe
B +∆Ue

b · ∇B〉] , (52)

L32 = − en 〈B2〉 〈ΓTeB +∆Teb · ∇B〉
I [e2n2 〈B2〉 ηc − 〈ΓUe

B +∆Ue
b · ∇B〉] , (53)

and

L34 = −〈ΓUe
B +∆Ue

b · ∇B〉+ 〈ΓUi
B +∆Ui

b · ∇B〉
e2n2 〈B2〉 ηc − 〈ΓUe

B +∆Ue
b · ∇B〉 . (54)

Now we need to find the ion flow coefficient α from DK4D. In our formulation, the

flux surface average of the parallel component of the stationary, first-order ion momentum

equation reduces to
〈(

pi‖ − pi⊥
)

b · ∇B
〉

= 0. (55)

Recall that f̄NMi is driven by terms proportional to Ui and dTi/dΦ̃. Thus, we can say that

(

pi‖ − pi⊥
)

= ΘUi
Ui +

ΘTi

ψ′

dTi

dΦ̃
, (56)

and, by Eq. 55,

〈ΘUi
b · ∇B〉Ui + 〈ΘTib · ∇B〉 dTi

dΦ̃
= 0. (57)

Finally, comparing to Eq. 43, we find that

α = −e 〈B
2〉 〈ΘTib · ∇B〉

I 〈ΘUi
b · ∇B〉 . (58)

In Figures 5 and 6, we have plotted the conductivity and bootstrap current drive coefficient

profiles for both the Sauter formulae and DK4D for the large aspect ratio equilibrium in

Figure 1a as a function of trapped particle fraction for various collisionalities. Figures 7 and

8 provide the same comparison for the NSTX equilibrium of Figure 1b. As can be seen, there

is generally very good agreement between the code and the analytic fits, particularly at low

collisionality, across a wide range of trapped particle fractions (from ft ≈ 0.1 to ft ≈ 0.9)

and collisionalities (from ν̂ ∼ 10−4 to ν̂ ∼ 1). The largest deviations appear at the higher

collisionalities, particularly for L32. This coefficient, however, involves a lot of cancellation

between contributions from the electron-electron and electron-ion collision operators, which

could explain the increased fractional difference observed between Sauter and DK4D. There is

also some disagreement at low collisionality, though this appears mostly due to the difficulty

of resolving the steep trapped-passing boundary layer with the Legendre polynomial and

Fourier mode expansions in y and θ, respectively. This is a common problem in drift-kinetic
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Figure 5. A comparison between the neoclassical conductivity ratio (a) and pressure gradient

bootstrap drive coefficient (b) calculated by the DK4D code (dashed lines) with the Sauter analytic

fits (solid lines) as a function of trapped particle fraction for several collisionalities in the large aspect

ratio equilibrium in Figure 1. Collisionalities in the legend are for the innermost flux surface.
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Figure 6. A comparison between the electron temperature gradient bootstrap drive coefficient (a)

and ion flow bootstrap drive coefficient (b) calculated by the DK4D code (dashed lines) with the

Sauter analytic fits (solid lines) as a function of trapped particle fraction for several collisionalities

in the large aspect ratio equilibrium in Figure 1. Collisionalities in the legend are for the innermost

flux surface.
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Figure 7. A comparison between the neoclassical conductivity ratio (a) and pressure gradient

bootstrap drive coefficient (b) calculated by the DK4D code (dashed lines) with the Sauter analytic

fits (solid lines) as a function of trapped particle fraction for several collisionalities in the NSTX

equilibrium in Figure 1. Collisionalities in the legend are for the innermost flux surface.
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Figure 8. A comparison between the electron temperature gradient bootstrap drive coefficient (a)

and ion flow bootstrap drive coefficient (b) calculated by the DK4D code (dashed lines) with the

Sauter analytic fits (solid lines) as a function of trapped particle fraction for several collisionalities

in the NSTX equilibrium in Figure 1. Collisionalities in the legend are for the innermost flux

surface.
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Figure 9. A comparison between the ion flow coefficient calculated by the DK4D code (dashed

lines) with the Sauter analytic fits (solid lines) as a function of trapped particle fraction for several

collisionalities in the large aspect ratio equilibrium in Figure 1. Collisionalities in the legend are

for the innermost flux surface.

solvers (e.g., DKES16) that use these expansions. Overall, however, these results give us

confidence that the electron solver within DK4D is working well.

Furthermore, the ion flow coefficients for the large aspect ratio and NSTX equilibria

are plotted versus trapped particle fraction for various collisionalities in Figures 9 and 10,

respectively. While the agreement between DK4D and Sauter is not quite as good for this

coefficient as it was for the conductivity and bootstrap coefficients, we do still observe good

agreement overall. Thus, this benchmark also gives us confidence that our ion solver is

working well in DK4D.

VI. CONCLUSION

The DK4D code was developed to solve the time-dependent, axisymmetric form of the

drift-kinetic equations derived in Refs. 17 and 18. We treated all the differential terms
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Figure 10. A comparison between the ion flow coefficient calculated by the DK4D code (dashed

lines) with the Sauter analytic fits (solid lines) as a function of trapped particle fraction for several

collisionalities in the NSTX in Figure 1. Collisionalities in the legend are for the innermost flux

surface.

of the DKEs implicitly, while all the moment terms were treated explicitly. We expanded

the non-Maxwellian part of the distribution function and the Rosenbluth potentials in finite

elements in w, Legendre polynomials in y, and Fourier modes in θ, and then applied the

Galerkin method to transform the DKE into a matrix equation. This was then implemented

using the PETSc framework, allowing us access to a wide variety of direct and iterative

solvers to advance the DKE in time. We then demonstrated that, when run to steady-

state on a numerical Grad-Shafranov equilibrium, DK4D reproduced qualitatively some of

the features of the distribution functions at low collisionality that were observed in NIES26.

This study also demonstrated how the exact drift-kinetic solution behaves, as a function of

λ and θ, as the collisionality is varied. Finally, we benchmarked these steady-state results

to the Sauter analytic fits. Together with the cross-code benchmark performed between

NEO, NCLASS, and a new solver written in the NIMROD MHD code framework that has
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been published in Ref. 44, these Sauter benchmarks have given us confidence that DK4D

is capable of calculating the correct steady-state distribution function at finite collisionality

for an axisymmetric equilibrium. We should note that DK4D is a more comprehensive code

than NIES, which was only meant to serve as a proof-of-principle. Still, DK4D can have

trouble converging at very low collisionalities, a property common to all DKE solvers that

use Legendre expansions in the pitch angle variable. Therefore, there may be applications

for which NIES would be better suited than DK4D.

It is important to note where this work stands in relation to the present state of the field.

When considering all the properties of DK4D, we can say with confidence that, in one way

or another, it has some capabilities beyond those of any other continuum DKE solver in

the literature, excepting, perhaps, CQLP and the new solver written in NIMROD. DK4D

solves for the full distribution function using the linearized Fokker-Planck-Landau collision

operator. Neither DKES nor NCLASS is capable of this. Furthermore, while NEO is a more

comprehensive drift-kinetic equation solver in many ways, it solves only the steady-state

DKE, while DK4D solves for the full time-dependence. In any case, our approach has the

unique feature of solving for the distribution functions directly in the moving reference frame

of each species’ macroscopic flow, which simplifies the task of evaluating accurately the higher

gyrotropic moments needed for the fluid closure, namely the pressure anisotropy, the parallel

heat flux, and the parallel collisional friction force. Furthermore, the formulation considered

ensures that the net density, momentum, and temperature of our computed non-Maxwellian

parts of the distribution function are all zero (excepting some small numerical error). Thus,

DK4D is ideally suited for self-consistent coupling to MHD time-evolution codes.

The ultimate goal of this ongoing work is to create a drift-kinetic solver capable of coupling

to a nonaxisymmetric MHD time-evolution code to perform realistic hybrid simulations of

macroscopic plasma instabilities, like sawtooth oscillations, NTMs, and ELMs. We believe

that DK4D forms the basis for such a solver, though significant work remains to reach this

goal. Initial simulations that couple DK4D to a reduced, axisymmetric, transport-timescale

MHD solver have already been presented in the lead author’s dissertation28. These results,

in addition to some new ones involving an ELM-like pressure collapse, are expected to be

the subject of a forthcoming, peer-reviewed publication.
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