
Prepared for the U.S. Department of Energy under Contract DE-AC02-09CH11466.

Princeton Plasma Physics Laboratory

PPPL-5137 

gczechow
Typewritten Text

phampton

phampton
Typewritten Text
5080

phampton
Text Box
 Wall-touching kink mode calculations with the M3D code

phampton
Text Box
 J.A. Breslau 

phampton
Text Box
July 2015



Princeton Plasma Physics Laboratory 
Report Disclaimers 

Full Legal Disclaimer 

This report was prepared as an account of work sponsored by an agency of the United 
States Government. Neither the United States Government nor any agency thereof, nor any of 
their employees, nor any of their contractors, subcontractors or their employees, makes any 
warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, 
completeness, or any third party’s use or the results of such use of any information, apparatus, 
product, or process disclosed, or represents that its use would not infringe privately owned 
rights. Reference herein to any specific commercial product, process, or service by trade name, 
trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, 
recommendation, or favoring by the United States Government or any agency thereof or its 
contractors or subcontractors. The views and opinions of authors expressed herein do not 
necessarily state or reflect those of the United States Government or any agency thereof. 

Trademark Disclaimer 
Reference herein to any specific commercial product, process, or service by trade name, 

trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, 
recommendation, or favoring by the United States Government or any agency thereof or its 
contractors or subcontractors. 

PPPL Report Availability 

Princeton Plasma Physics Laboratory: 

http://www.pppl.gov/techreports.cfm 

Office of Scientific and Technical Information (OSTI): 
http://www.osti.gov/scitech/ 

Related Links: 

sdever
Text Box
U.S. Department of Energy

sdever
Text Box

sdever
Text Box
U.S. Department of Energy Office of Science

sdever
Text Box
U.S. Department of Energy Office of Fusion Energy Sciences

http://www.energy.gov
http://science.energy.gov
http://science.energy.gov/fes/


1 
 

Wall-touching kink mode calculations with the M3D code 

J.A. Breslau  

Princeton Plasma Physics Laboratory, Princeton, NJ, 08542 

 

Abstract 

This paper seeks to address a controversy regarding the applicability of the 3D nonlinear extended 

MHD code M3D [1] and similar codes to calculations of the electromagnetic interaction of a disrupting 

tokamak plasma with the surrounding vessel structures. M3D is applied to a simple test problem 

involving an external kink mode in an ideal cylindrical plasma, set out by its critics as a model case for 

illustrating the nature of transient vessel currents during a major disruption. While comparison of the 

results with those of the disruption simulation code is complicated by effects arising from the higher 

dimensionality and complexity of M3D, we verify that M3D is capable of reproducing both the correct 

saturation behavior of the free boundary kink and the “Hiro” currents arising when the kink interacts with 

a conducting tile surface interior to the ideal wall. 

I. Introduction 

The nonlinear extended MHD code M3D [1] has been employed in the simulation of disruptions 

arising from vertical displacement events in tokamaks including JET, NSTX, and ITER [2-4], with the 

goal of providing guidance as to the distribution and timing of the accompanying transient currents to be 

expected in the conducting structures surrounding the plasma, and to the resulting forces. The nature of 

the simulations is such that these currents and forces occur at the boundary of the computational domain, 

making the proper choice of boundary conditions especially critical to the reliability of the results. As has 

historically been typical with magnetofluid codes, the M3D boundary condition includes the prescription 

that the normal component of the fluid velocity vanish at the wall. It has been argued [5] that this 

prescription invalidates M3D's (and similar codes') prediction of vessel currents because it would seem to 

rule out the possibility of the advection of plasma surface currents into the wall as the plasma flows into it. 

This claim has been tested by applying M3D to an idealized case based on a simplified model of a kink-

unstable plasma column used by an early version of the Disruption Simulation Code [6], in order to 

abstract the essential physics from some of the complications involved in the attempt to model real 

devices using realistic parameters. In the next section, we describe the kink mode model and published 

results in detail. In section III, we describe the methodology and results of M3D calculations of the case. 

Finally, in section IV we draw some conclusions. 

 

II. The Zakharov test problem 

The first published test of the 2D (single-helicity) predecessor to the Disruption Simulation Code 

(DSC), which we will refer to as the Wall Touching Kink code or WTK, considers the problem of a 

straight cylindrical column of ideal plasma with radius 0.6a  m, separated by a perfect vacuum from an 

ideal cylindrical wall of radius 1b   m, concentric with the plasma. The plasma is initially in a state of 

ideal MHD equilibrium with a low uniform pressure, a constant safety factor 0 1q   in the interior 
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 r a , and a lower safety factor 0.75aq   at the plasma-vacuum boundary, resulting in a singular 

current along this interface. There may or may not also be a cylindrical tile surface present at radius 

0.7c  m; when in vacuum, this surface is considered to behave as a perfect insulator (transparent to 

magnetic diffusion), while any portion that is wetted by (in contact with) plasma behaves as a perfect 

conductor. This is meant to model the effect of the plasma conducting current across breaks between the 

otherwise mutually insulated tiles. 

The specified plasma equilibrium is unstable to a 1,1 external kink mode, which here serves as a 

proxy for the type of macroscopic instability that may lead to the thermal quench in a disrupting tokamak. 

The WTK code tracks the 2D nonlinear evolution of this mode using a Lagrangian formulation in which 

the numerical mesh adapts to the shape of the plasma and moves with it through the vacuum. The 

equations solved are a variant of the MHD equations referred to by the code’s authors as “tokamak 

MHD”, in which the inertial term in the momentum equation is replaced by a term involving the 

displacement ξ : 

 
d

dt
   

v
v ξ  (1.1) 

for some time-dependent normalization  , in order to eliminate Alfvén wave physics (considered 

irrelevant to the mode) from the calculation and enhance its speed. This amounts to an evolving 

equilibrium description with a drag term that should evolve towards a true equilibrium state in the limit 

that the velocity vanishes, but rules out the computation of other ideal or linear resistive modes that could 

become unstable. The calculation thus proceeds until the mode saturates. 

In the absence of the tile surface, the mode is a simple free boundary kink. The plasma approaches the 

ideal wall as it distorts helically until the mirror currents induced there are sufficient to resist any further 

motion, resulting in a helical saturated state close to the wall (Figure 3 of Ref. [6]). 

When the tile surface is present, it is invisible to the disrupting plasma until the plasma makes contact 

with it, initially at a single poloidal location. At that point there is no hydrodynamic impediment to the 

continued flow of the simulated plasma into and beyond the tiles, as there would be for a conducting 

liquid; rather the plasma surface current (which is opposite to the direction of the bulk plasma current in 

the region in contact with the tiles) is shared with the tiles, and this “Hiro” current exerts an 

electromagnetic force that slows the plasma motion, assuming the same role played by the wall currents 

in the free boundary case (Figure 7 of Ref. [6]). The resulting quasi-saturated state within the r c  

surface is called the wall-touching kink. It decays on a longer timescale as the plasma is neutralized by 

contact with the solid tiles. 

 

III. M3D Calculations 

3.1 Equilibrium 

The many numerical differences between the DSC and WTK codes and M3D necessitate a number of 

approximations in the reproduction of the test problem in the latter. Because M3D is obligated to work in 

toroidal geometry, we approximate the straight cylinder as a large-aspect-ratio torus. Because it is an 

Eulerian, resistive MHD code, we approximate the ideal plasma as one with finite but relatively low 

resistivity and the vacuum region as a much colder plasma with correspondingly higher resistivity; the 

boundary between the two is not sharp, but is defined by an evolving threshold value of the pressure. 

Because M3D represents all fields using finite elements constructed with linear basis functions, the 
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singular current sheet at the plasma boundary is approximated by a region of small but finite thickness 

a  spanning several mesh zones over which the magnetic field and pressure change rapidly. For 

simplicity’s sake, the plasma density   is kept uniform over the entire computational domain and does 

not evolve in time. 

Given a major radius 0R  and on-axis toroidal field 0B , the solution to the Grad-Shafranov equation 

for the inner region 0 r a     with constant safety factor 0q  and pressure 0p  is 

  
2 2

0 0 0

2 2 2

0 0

q R B
RB r

q R r
 


, (1.2) 

  
 

3 3

0 0 0

2
2 2 2

0 0

2q R B
J r

q R r
 


. (1.3) 

Over the boundary region a r a    we prescribe that the pressure drops linearly in r  with gradient 

  to a small but finite value  : 

      0p r p r a a r             (1.4) 

Requiring that q  drop to aq  at r a  and that the toroidal field be continuous at r a   , we find that 

  
 

2 2

0 0 0

22 2

0 0

q R B
RB r

q R a





 
 (1.5) 

and 
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 3 3 4 2
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b z
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









 (1.6) 

in this region, where ,b zB  is the equivalent constant cylindrical longitudinal field outside the plasma, i.e., 

the right-hand-side of equation (1.5). Solving for force balance then determines the pressure gradient to 

be 

 

 

 

 

4 4 22 2 2

,0 0 0

2 2 23 3 22 2
0

0 0

3

2

b z

a
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q Ra a q R a




 

 
 

  
           

. (1.7) 

In terms of free parameter 0 /p  , then, 
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1








 (1.8) 

and 0p    . In the vacuum region a r b  , the pressure is once again uniform, the current density 

vanishes, and for continuity, RB  assumes the same constant value 
,b zB  it has in the boundary layer. For 

aspect ratio 0 72R  , relative boundary layer thickness / 0.1a  , and pressure ratio 0 / 100p   , 

these prescriptions result in the equilibrium shown in Figure 1. The case shown used 190 mesh zones in 

the minor radial direction, which proved ample to resolve the boundary layer, at about 8 zones across. By 

means of a brief two-dimensional (axisymmetric) nonlinear calculation with this state as the initial 

condition, it was verified that it represents a genuine numerical steady state within M3D. 

a. b.  

c.  

Figure 1: Profiles of the large aspect ratio toroidal M3D equilibrium approximating the ideal cylindrical 

Zakharov test case. a. Pressure. b. Toroidal current density. c. Safety factor.  
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3.2 Linear stability 

The chosen equilibrium is expected to be unstable to an ideal external kink mode. As a single-helicity 

code, WTK models this as a rigid helical 1,1 displacement of the plasma column from its equilibrium 

position at the center of the vessel off axis into the vacuum region, towards the wall. While the lack of a 

true vacuum – and uniform density – in the M3D model means that this will not be a precise description 

of its unstable n=1 mode (the M3D eigenmode will have displacement in the vacuum region), the WTK 

mode is nevertheless useful as an initial guess for the linear eigenmode calculation within M3D. 

Accordingly, we begin that calculation by perturbing the equilibrium stream function U for poloidal 

velocity with a single helicity displacement: 

  
 1,1

1

sin , 0
, ,

0,

r r a
U r

a r

  
 

   
 


 (1.9) 

M3D is then run in its linear mode until convergence on an n=1 mode is reached. We choose a 

normalized plasma resistivity of 
610  ; because M3D has a Spitzer-like dynamic resistivity profile 

with 
3/2T   and because / / 100plas vac plas vacT T p p   for this case, this gives an approximate 

normalized vacuum resistivity of 10
-3

. Normalized kinematic viscosity is uniform at 
510  . The mode 

is found to be unstable with growth rate 
35.8 10A   . Its structure is found to resemble the initial 

perturbation, but with additional flow of the displaced “vacuum” around the plasma column to conserve 

density (Figure 2). 

The Zakharov paper does not address the stability of ideal modes with toroidal mode number 1n  . 

Using the same transport parameters as the above calculation, M3D finds some of these to be unstable as 

well; there is a 2,2 mode with a growth rate of 
38.3 10A    and a 3,3 mode with 

38.8 10A    

(Figure 3). In the limit of large aspect ratio, approaching the straight cylinder case, however, these higher-

n modes are expected to decouple from the n=1; as a result, and for a fair comparison with WTK, we 

ignore them and initialize our nonlinear calculation with the pure n=1 eigenmode. 
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a.  b.  

c.  

Figure 2: a. Initial n=1 perturbation to velocity stream function U in M3D linear eigenmode calculation 

(plane 0  ). b. Profile of U in converged n=1 eigenmode. c. Profile of perturbed toroidal current 

density J  (color contours) and poloidal flow pattern (arrows) in n=1 eigenmode. 
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a.  b.  

Figure 3: Perturbed poloidal velocity stream function U in the 0   plane for unstable n>1 eigenmodes 

of the aspect-ratio-18 equilibrium. a. n=2. b. n=3. 

 

3.3 Nonlinear free boundary kink 

For comparison with the Zakharov free boundary kink result, we first initialize a 3D nonlinear 

calculation with 64 toroidal planes using the aspect-ratio-72 equilibrium as the initial state, with the 

previously computed n=1 eigenmode superimposed as a perturbation at sufficient amplitude to bring the 

initial total kinetic energy to 10
-9

 in normalized units, which is low enough to fall within the linear regime. 

An ideal wall with the boundary condition vnormal=0 is present at r=1, but no tile surface is implemented. 

Resistivity and viscosity within the domain are the same as in the linear calculation; parallel and 

perpendicular heat conduction coefficients are set to 500   and 
610 

   respectively. An Ohmic 

heating term is present in the energy equation; aside from this, there are no other sources or sinks. 

Results are summarized in Figure 4. During the initial, linear phase of the instability, the behavior of 

the mode closely resembles that reported by Zakharov, et al.: there is a rigid helical displacement of the 

plasma column toward the ideal wall. As the column approaches the wall more closely, it begins to 

deform into a D shape very similar to that visible in Fig. 1c. At about the time of saturation (peak n=1 

kinetic energy at 3150t  ), however, another phenomenon is observed: a bubble of vacuum begins to 

make its way into the plasma, distorting it first into a crescent and finally an annulus. The intrusion of the 

vacuum bubble appears to be generic, occurring for a wide variety of aspect ratios and run parameters, 

and we believe it to be a genuine physical effect arising from the flat rational q profile, as explained in 

Ref. [7]. 

A point to note is that, contrary to the Zakharov picture, in which the linear n=1 surface current is 

oppositely directed to that of the bulk plasma in its direction of motion, here the initial perturbed toroidal 

current density profile contains components of both signs, nearly equal and opposite to each other. This 

agrees with recent analytic work by C.-S. Ng [8]. In the late nonlinear phase, however, the surface current 

nearest the wall is clearly negative with respect to that of the bulk plasma, as in the WTK result. 
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b.  

Figure 4: Nonlinear M3D results for the free boundary kink. a. Snapshots of resistivity, toroidal current 

density, and perturbed toroidal current density profiles in the 0   plane at several times during the 

instability. b. Kinetic energy vs. time broken down by toroidal mode number. 

 

3.4 Wall-touching kink 

The key addition to the model in the wall-touching kink case is the tile surface interior to the 

computational domain. Because M3D cannot resolve a singular current sheet except on the domain 

boundary, we model the tiles as an annular region extending from 0.7r c   to tiler c   , where we 

have here chosen tile thickness 0.05tile  . This region behaves as ordinary vacuum, with Spitzer 

resistivity when not wetted by plasma. It is considered to be wetted only where the pressure 

 max min3

4

p p
p


 , (1.10) 

where pmax and pmin are respectively the instantaneous maximum and minimum pressures over the entire 

domain. Wetted tiles differ from non-wetted tiles in having resistivity tile plasma  , typically in the range 

8 610 10tile   , as M3D cannot represent infinite conductivity in interior structures. In addition to the 

resistivity prescription, there is a “boundary” condition on temperature for the annulus: T   for 

tiler c   .  This is the equivalent of the 0T   boundary condition imposed in the free boundary case 

(and M3D in general), and, because the only distinction between plasma and vacuum in M3D is 

temperature, ensures that plasma is properly neutralized by contact with the wall. There are no special 

conditions placed on normal or tangential velocity at the tile surface and the region is not constrained to 

be in force balance. 
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b.  

Figure 5: Nonlinear M3D results for the wall-touching kink. a. Snapshots of resistivity, toroidal current 

density, and perturbed toroidal current density profiles in the 0   plane; and wetted region and tile 

current around the torus at three times during the instability. b. Kinetic energy vs. time broken down by 

toroidal mode number. 

The nonlinear wall touching kink calculation is initialized identically to the free boundary kink 

calculation. Results are shown in Figure 5 for an aspect-ratio-18 case with 
710tile  . The lower aspect 

ratio evidently leads to stronger coupling between neighboring toroidal mode numbers, and more activity 

seen at higher n, but the n=1 component remains dominant. Behavior is identical to the equivalent free 

boundary case until the tile surface is first wetted. The resistivity drop in the surface at that point allows a 

thin sheet of halo current to flow on an elliptical patch of the helical contact area between the plasma and 

tiles, slowing the plasma motion and causing mode saturation to begin within the tile surface, at some 

remove from the ideal wall. The beginning of a vacuum bubble is observed as in the free boundary case, 

but the plasma disperses on the tiles before it can fully penetrate. At late times some filamentation of the 

plasma-vacuum boundary occurs, superficially resembling a ballooning mode. As in the free boundary 

case, the surface currents in the linear eigenmode have two signs at a given poloidal angle, and nearly 

cancel. Also as in that case, however, the outermost current spike in the late nonlinear phase is negative, 

and we identify it with the “Hiro” current described in the WTK result. 

The nonlinear calculation was repeated with both lower  810tile   and higher  610tile   

values of the tile resistivity. There was no discernible difference in the result, suggesting that the low 

temperature plays a more important role than the high conductivity of the tile surface in arresting the 

plasma motion in this simulation. 
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IV. Conclusions 

Using a number of justifiable approximations, the M3D code has proved capable of representing a 

reasonable facsimile of the ideal straight-cylinder equilibrium with surface current, which was set out as a 

test case for disruption simulation. Because it solves the full set of time-dependent resistive MHD 

equations in three dimensions, M3D sees more complex behavior than the idealized saturated kink 

solution reported by the DSC developers, namely the existence of linearly unstable modes with n>1; the 

present of current sheets of both signs in the n=1 eigenmode; and the formation of a vacuum bubble in the 

nonlinear phase of the instability. This last phenomenon, which is physically correct for an equilibrium 

with no shear, complicates the comparison between the codes. Nevertheless, both the interaction of the 

plasma surface currents with the ideal wall in the free boundary kink case and the interaction of the what 

the authors of [6] call “Hiro currents” with the plasma in the wall-touching kink lead to transient saturated 

states sufficiently similar to those reported earlier to claim agreement. In M3D as in WTK, the plasma 

retains finite velocity normal to the tile surface and can penetrate it on a time scale longer than that of the 

ideal kink. We conclude that, contrary to earlier assertions, the physics model in the M3D code is 

adequate to accurately predict wall currents arising during disruptions. 

It might be argued that the effect of the M3D velocity boundary condition on disruption calculations 

in which the plasma comes into contact with a resistive first wall at the computational boundary remains 

unresolved by this study. This is in part the consequence of a lack of adequate test cases for comparison: a 

DSC result has yet to be published for such a scenario. At any rate, it will be instructive to repeat the 

wall-touching kink calculation described here, moving the tile wall to the computational boundary and 

applying M3D’s resistive wall boundary condition there. Results to date suggest that the effect of the 

velocity boundary condition on the sharing of plasma current with the wall will be minor, as the current 

diffuses in on the wall’s resistive time scale regardless of plasma flow. 
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