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The Tokamak Density Limit: a Thermo-resistive

Disruption Mechanism*

D. A. Gates, D. P. Brennan, L. Delgado-Aparicio, R. B. White

Plasma Physics Laboratory, Princeton University, P.O.Box 451,

Princeton, New Jersey 08543

Abstract

The behavior of magnetic islands with 3D electron temperature

and the corresponding 3D resistivity effects on growth are examined

for islands with near-zero net heating in the island interior. We refer

to this class of non-linearities as thermo-resistive effects. In particular

the effects of varying impurity mix on the previously proposed local

island onset threshold [Gates and Delgado-Aparicio, PRL 2012] are

examined and shown to be consistent with the well established ex-

perimental scalings for tokamaks at the density limit. A surprisingly

simple semi-analytic theory is developed which imposes the effects of

heating/cooling in the island interior as well as the effects of island

geometry. For the class of current profiles considered it is found that

a new term that accounts for the thermal effects of island asymme-

try is required in the Modified Rutherford Equation. The resultant

model is shown to exhibit a robust onset of a rapidly growing tearing
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mode - consistent with the disruption mechanism observed at the den-

sity limit in tokamaks. A fully non-linear 3D cylindrical calculation

is performed that simulates the effect of net island heating/cooling by

raising/suppressing the temperature in the core of the island. In both

the analytic theory and the numerical simulation the sudden threshold

for rapid growth is found to be due to an interaction between three dis-

tinct thermal non-linearities which affect the island resistivity, thereby

modifying the growth dynamics.

It has been shown that an approximate criterion for the internal power

balance in a magnetic island, when combined with a simple model for the

current profile [1], is qualitatively and semi-quantitatively consistent with

the empirical density limit scaling for tokamaks known as the Greenwald

limit [2, 3]. It has also been shown in Reference [4] that the current profiles

corresponding to the density limit which were found in reference [1] generate

small saturated islands at the q = 2 surface if only the classical ∆′ is used

as a drive term in the modified Rutherford equation [5, 6]. In this paper

we discuss several important aspects of the behavior of tearing modes near

the density limit in tokamaks, including relevant new physics effects in this

important regime.
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We now examine the effect of impurity mixture on the density limit.

Various collisional processes contribute to the plasma cooling or the total

power loss by radiation, which has to be balanced by the Ohmic heating

power in the island interior. These processes can be due to, a) a continu-

ous radiation spectrum resulting from Bremsstrahlung due to electron-ion

collisions (free-free) and recombination (free-bound), b) line-radiation from

hydrogen or deuterium as well as intrinsic and extrinsic impurities, and c)

cyclotron radiation, which could lead to substantial power loss but is immedi-

ately re-absorbed since the plasma is often optically thick at the fundamental

frequency. The most important source for radiative power losses are thus im-

purity ions, which produce both Bremsstrahlung and line radiation emission.

A relatively simple model for the local radiated power density (P V
rad) is

found by using hydrogenic Bremsstrahlung for the deuterium contribution

and a temperature-dependent steady-state radiative cooling rate summed

over all impurity species, such that, P V
rad = nenDLD(Te) +

∑

nenZLZ(Te).

The onset criteria for radiation driven tearing modes can be quantified using

electron power balance between the local Ohmic heating and the radiated

power density as,

me

e2
Zeff

(τe,DnD)
J2 > n2

eLDP̂
V
rad (1)
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where, τe,DnD is the electron-deuterium collision time and the deuterium

density, J is the Ohmic current density, and P̂ V
rad ≡ P V

rad/n
2

eLD is a dimen-

sionless figure of merit defined as a radiative power density normalized to

that of the Bremsstrahlung losses in a pure plasma. The quantity LD is the

effective cooling rate as defined in reference [7]. Equation 1 can be reduced

to a functional form shown in Equation 3. This equation relates the local

maximum achievable density at the rational surface and resembles that of

the maximum average plasma density given by the well known Greenwald

density limit also shown below.

ne[×1020m−3] < FD,Z · J
[

MA

m2

]

(2)

n̄e[×1020m−3] < nG ≡ Ip[MA]

πa2[m2]
(3)

The function FD,Z includes all the local information pertinent to both plasma

and atomic physics, namely the values of the effective charge, Coulomb-

logarithm, plasma temperature and the normalized radiated power density,

FD,Z ≈
√

0.61 · Zeff · ln Λe,D

T 2
e [keV] · P̂ V

rad

. (4)

Hereafter we will consider a plasma with two impurities, Carbon and

Iron. The carbon and iron mix represents a simple, yet reasonably realistic
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Figure 1: Contours of Zeff and FD,Z as a function of carbon and iron con-

centrations for an electron temperature of 500eV.

scenario of low-Z plasma facing components and high-Z impurities sputtering

off the containment wall. Contours of Zeff and FD,C−Fe are plotted in Figure

1 for a plasma temperature of 500eV and a wide range of carbon and iron

concentrations from 10−3 to 10−1 and 10−5 to 10−3, respectively. Nearly

unmeasurable changes in Zeff introduced by a high-Z metallic contribution

can be responsible for substantially altering the power balance. For instance,

along a constant contour of Zeff = 1.5 - generally measured in tokamak

and reverse field pinch devices, the local radiated power density can increase

by nearly two orders of magnitude thus limiting the maximum achievable

density.

The density limit function FD,C−Fe depicted in 1 shows a strong depen-
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dence on the concentration of high-Z impurities and is nearly unaffected by

the carbon concentration. A scan of two-orders of magnitude of cC = nC/ne

at a fixed cFe = nFe/ne = 8−10×10−5 yields the same FD,C−Fe ≈ 2.0. How-

ever, at a fixed carbon concentration of 1% the density limit could be easily

reduced by a factor of two when the iron concentration reaches 10−4 without

any noticeable change in Zeff . Figure 2 should be compared to Figure 9 in

Reference [2].

1                2                3                4       

                     Zeff

0

FD,C-Fe

4

2F
D

cC=[10-3,10-1]

cFe=[10-5,10-3]

Figure 2: (Color online) Values of FD,C−Fe limiting the maximum achievable

density for various ranges of carbon and iron concentrations.

We now consider a semi-analytic model which includes the effects of island

heating/cooling on the island growth, corresponding to being above/below

the radiative power balance criteria described above. We use large aspect

ratio cylindrical geometry r, θ with a conducting wall at minor radius r = 1
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and model profiles[8]. Introduce a magnetic island with helical flux given by

[6, 9] ψ(r, θ) = ψ0(r) +ψ1(r)cos(mθ). The current density profile is given by

j = ∇2

⊥ψ+2n/m+ δj, where δj is any additional modification of the current

in the island. The helical flux satisfies

∇2

⊥ψ1 =
dj

dψ0

ψ1 + δj1, (5)

and∇2

⊥ψk = ψ′′
k+ψ

′
k/r−m2ψk/r

2. Saturation occurs when ∆′(w) = (ψ′
1
(rr)−

ψ′
1
(rl))/ψ1(rs) = 0, with the island edges rl and rr, and w the island width.

The perturbed current causes a change of ∆′ given by the addition of

∆′
δj(w) = −wδj1/ψ1. We solve for the island eigenfunction using the current

profiles described in Reference [1] as being consistent with a tokamak at the

density limit (the current profiles are from the familiar Furth-Rutherford-

Selberg model [8]) with r0 = 0.548, ν = 1.53, q(0) = 0.9, rs = 0.729. In Fig.

3 the calculated asymmetric island eigenfunction is shown.

Because of the island asymmetry, there is another destabilizing effect,

not considered previously in disruption models. The term associated with

asymmetry has been previously published in reference [11] in the context of

island stabilization. In the island the current profile is flattened, producing

a perturbed negative current (destabilizing) in the small minor radius side of

the island and a positive current perturbation (stabilizing) in the large minor
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Figure 3: The saturated island flux surfaces.

radius side of the island. However, the island is flattened over only part of

its width as was first shown in Reference [12]. The effect on ∆′ is given by

the addition of

∆′
A(w) =

∫

[j(rx)− j(r)]cos(mθ)dθdr

ψ1(rs)
fF , (6)

with the subscript standing for asymmetry and fF the fraction flattened and

j(rx) is the current at the island X-point, with the integration being over the

island. This is the first of the three important thermo-resistive effects.

For very small island width, perpendicular heat diffusion overwhelms

the flattening and the normal equilibrium current profile is restored[12] re-
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sulting in modifying ∆′
δj by the factor w2/(w2 + w2

F ), with wF given by

√
8(κ⊥/κ‖)

1/4(Rrs/ns)
1/2, where s = rsq

′/q is the local shear and κ⊥ and

κ‖ are the cross field and parallel heat conduction constants. Since the cur-

rent perturbation is caused by the perturbed temperature profile, the same

consideration applies to ∆′
A. This effect, called the Fitzpatrick effect, is the

second of the three important thermo-resistive effects.

A small change in the net power in the island leads to rapid growth of

the island. Radiation loss can produce a negative temperature differential

in the island interior, thereby increasing the resistivity, the current will then

decrease and the island will grow. In the new larger island, the fixed tem-

perature gradient will produce a new lower value of the temperature at the

island O-point and an increase in ∆′. This will lead to a further increase

in island size, and this process repeats. This concept was first discussed in

Reference [13]. This effect, called the Rebut effect, is the third of three im-

portant thermo-resistive effects. The Rebut effect is modeled by imposing a

fixed temperature gradient inside the island.

Combining the thermal non-linearities described above we get a new is-

land evolution equation which describes island dynamics in accordance with

the three-dimensional resistivity which results from the temperature pertur-
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Figure 4: Growth of islands in an equilibrium with a fixed temperature

gradient in the island. Shown is the island width vs. time (in units of

local resistive time) for varying values of the fixed temperature gradient. At

time t = 0.2 the imbalance produced an O-point temperature differential

(TO − Tx)/Tx of a) 0, b) - 0.002, c) -0.003. In the case with heating, d) the

temperature differential was 0.001.
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bations due to the island.

dw

dt
= r2s [∆

′(w) + ∆′
δj(w) + ∆′

A(w)] (7)

In Fig. 4 simulations of the island evolution made using Equation 7 are

shown. The fixed temperature gradient in the island produced a lowered

temperature at the island O-point of less than one percent at w = 0.05.

Note that the temperature differentials necessary to produce rapid growth

are small, not easily noticeable experimentally. This semi-analytic model is

described in more detail in Reference [14].

We now turn to numerical simulations to corroborate the semi-analytic

analysis. The simulations are developed by extension of the DEBS code[15] to

identify the plasma regions inside magnetic islands and specify the balance

of radiation and Ohmic heating in the island. DEBS is a nonlinear MHD

initial value simulation code with cylindrical geometry, including radial finite

difference representation, while the poloidal and axial directions are spectral.
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The nonlinear MHD equations being advanced in the DEBS code are

∂ ~A

∂t
= ~V × ~B − η

S0

~J (8)

∂~V

∂t
= −~V · ∇~V +

1

ρ
~J × ~B − β0

2ρ
∇p+ ν

ρ
∇2~V (9)

∂p

∂t
= −∇ · (p~V )− (γ − 1)p∇ · ~V +

1

S0

∇ · (κ⊥∇⊥T + κ||∇||T ) (10)

where ∇ × ~A = ~B and ∇ × ~B = ~J . The key features that facilitate

this study with DEBS are the implementation of anisotropic heat flux q =

κ||∇||T + κ⊥∇⊥T in combination with temperature dependent Spitzer resis-

tivity η(r, θ, z) ∼ T−3/2, which then responds to the structure of the temper-

ature perturbation.

In the numerical simulations presented, the cylinder has an aspect ratio of

R/a = 2, while the magnetic Reynolds number (the ratio of global resistive

time to Alfven time) is held fixed at S ≡ τR/τA = 106 and the Prandtl

number (the ratio of viscous diffusion to resistive diffusion) is held fixed at

P = ν/η0 = 0.1. Radial resolution of 301 points, with 16 poloidal and

toroidal modes is found sufficient for resolving the nonlinear mode.

A small equilibrium pressure with β = P0/B
2 = 0.005 is included to

drive the Ohmic physics through Spitzer resistivity. The pressure profile has

a cubic polynomial structure allowing the edge and axis regions to have zero
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gradients, while the edge pressure value Pedge is set small but finite to avoid

negative pressure. The addition of pressure hardly alters the equilibrium

fields and slightly decreases the linear growth rate of the mode, given the

low β.

In extension of the DEBS code, within the simulation algorithm we calcu-

late the helical flux to map island topology at each time step. With the heli-

cal flux, we determine which points in the computation are inside the island

separatrix on the spatial grid, or the (r, θ, z) locations of the inverse Fourier

transform of the simulation data in the spectral (kθ = 2πm/r, kz = −2πn/R)

representation. The helical flux is defined as:

χ = mAz(m,n) + kzrAθ(m,n), (11)

where (only) the m/n = 2/1 component of the perturbed fields is used to

calculate the island structure. Once the island helical flux values are known,

the separatrix value is used to determine the points on the grid that are

inside the separatrix. We then map Te to the island, imposing an internal

island temperature as a function of island helical flux. This offers a simple

method to capture the physics effects due to varying the net power inside

the island.

Consistent with the semi-analytic analysis, we impose a linear dependence
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Figure 5: Contours of the helical flux inside the island.

on helical flux for the temperature inside the island. In all simulations the

temperature dependence on helical flux inside the island is the only change

in the simulation. Because β is low, force balance has little effect, and the

physics dominating the response is through the 3D resistivity. The tempera-

ture at points outside the island is evolved via the usual anisotropic thermal

conduction in the heat equation. Thus, imposing a constant temperature

inside the island (∇T = 0) is comparable to having no imposed perturbation

with strongly anisotropic heat conduction.

Contours of helical flux in the poloidal plane, indicating the asymmetric

island m/n = 2/1 structure, with ∇T = −4 are shown in Fig. 5. The inward

bulging of the island is clear. The resonant surface q = m/n shows a helical
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deformation as evidenced by the displacement of the O-point radius inward

relative to the X-points, consistent with the analytic model and experimental

measurements of island structure[16]. This asymmetric structure is critical

to the physics of the evolution.

With negative ∇T the island width grows rapidly to large size. The rate

of growth increases rapidly with the gradient in temperature inside the island.

In Fig. 6 is shown the full island width as a function of global resistive time

for a series of cases with the balance of radiative cooling to Ohmic heating

varied from net heating to net cooling, with the balanced case as reference.

In the balanced case ∇T = 0, the island grows to a saturated size that

is comparable to the simulation without imposed inner island temperature

dependence, where the anisotropic heat conduction effectively flattens the

temperature.

Positive temperature gradient, or heated islands, cause saturation at a

small island size. Fig. 6 shows that for ∇T = 1 and 2, islands saturate

well below the flattened ∇T = 0 case. Even for very small values of negative

temperature gradient (cooled islands) the islands grow rapidly. Note that the

temperature perturbations are very small, in keeping with the semi-analytic

model.
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Figure 6: The island width as a function of time, in units of global resistive

time, for a series of simulations with varying ∇T inside the island. The

cooled islands exhibit rapid growth increasing with cooling, while the heated

islands saturate at small size.
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It has been show that 1) the island threshold criterion is nearly inde-

pendent of Zeff for a case with a dominant low Z impurity concentration,

but with the radiated power dominated by a low concentration of high Z

impurities, 2) that a simple model which includes all the important thermal

non-linearities is robustly unstable with a sudden threshold for onset, and

3) that a fully nonlinear 3D MHD code can reproduce qualitatively the be-

haviors predicted by the analytic model. An important new term has been

described for the Modified Rutherford Equation, referred to as the ’asym-

metry term’, which depends on the degree of island asymmetry. This term

is necessary to reproduce the behavior of the full MHD model. With this

term, the changes required in central island temperature to go from a small

saturated island to instability is so small as to be nearly undetectable. In

previous discussions of the thermal stability of islands [e.g., reference [17]],

the idea of an island cooling term was dismissed because of the absence of a

measurable depression in the measured temperature inside the island. A key

point of this more complete model is that the drive for the islands does not

require a large temperature depression because the asymmetry effect drives

island growth at intermediate island widths. Given the simplicity and ro-

bustness of the concepts involved in this formulation, it seems likely that

17



there is general applicability of non-linearities driven by thermal structure in

resistive magnetized plasma configurations (i.e, thermo-resistive effects) over

a large range of parameters.

*This work was supported by the U.S. Department of Energy Grant under contract

number DE-AC02-76CH03073 and Contract No. DE-SC0004125.

18



References

[1] D. A. Gates and L. Delgado-Aparicio, Phys. Rev. Lett. 108 (2012) 165004

[2] M. Greenwald, J.L. Terry, S.M. Wolfe S. Ejima, M.G. Bell, S.M. Kaye, G.H. Neilson,

Nucl. Fusion 28 (1988) 2199.

[3] M. Greenwald, Plasma Phys. Control. Fusion 44 (2002) R27.

[4] D. A. Gates, L. Delgado-Aparicio, R. B. White, Nucl. Fusion 53 (2013) 063008.

[5] P. H. Rutherford, Phys. Fluids 16, (1973) 1903.

[6] R. B. White, D. A. Monticello, M. N. Rosenbluth, and B. V. Waddell, Phys. Fluids

20, 800 (1977).

[7] D. E. Post, R. V. Jensen, C. B. Tarter, W. H. Grassberger, W. A. Lokke, At. Data

Nucl. Data Tables 20 (1977) 397.

[8] H. P. Furth, P. H. Rutherford and H. Selberg, Phys Fluids 16, (1973) 1054.

[9] R. B. White, The Theory of Toroidally Confined Plasmas, third edition, Imperial

College Press, pp. 191, (2014) 352.

[10] E. Fredrickson, M. Bell, R. V. Budny, and E. Synakowski, Phys of Plasmas 7, (2000)

4112.

[11] E.Westerhof, A. Lazaros, E. Farshi, M.R. de Baar, M.F.M. de Bock, et al., Nucl.

Fusion 47 (2007) 85-90

[12] R. Fitzpatrick, Phys Plasmas 2, (1995) 825.

19



[13] P. H. Rebut and M. Hugon, Plasma Physics and Controlled Nuclear Fusion Research

1984 (Proc. 10th Int. Conf. London, 1984), Vol. 2, IAEA, Vienna, 197, (1985).

[14] R. B. White, D. A. Gates, D. P. Brennan, Phys. Plasmas 22 (2015) 022514

[15] D. D. Schnack, D.C. Barnes, Z. Mikic, J. Comp. Phys. 70, (1987) 330.

[16] W. Suttrop, K. Buchl, J.C. Fuchs, M. Kaufmann, K. Lackner, et al., Nucl. Fusion,

37 (1997) 119.

[17] J. A. Wesson, R. D. Gill, M. Hugon, F. C. Schuller, J. A. Snipes, et al., Nucl. Fusion

29 (1989) 641.

20



Princeton Plasma Physics Laboratory 
Office of Reports and Publications 

Managed by 
Princeton University 

under contract with the 
U.S. Department of Energy 

(DE-AC02-09CH11466)

P.O. Box 451,  Princeton, NJ 08543 
Phone: 609-243-2245 
Fax: 609-243-2751  

E-mail: publications@pppl.gov 

Website:  http://www.pppl.gov

http://www.pppl.gov

	5110 Hammett_shi.pdf
	A Gyrokinetic 1D Scrape-Off Layer Model of an ELM Heat Pulse
	Abstract
	Introduction
	Electrostatic 1D gyrokinetic model with kinetic electrons
	Electrostatic model with a modified ion polarization term

	Numerical implementation details
	Boundary Conditions

	Simulation Results
	Initial Conditions
	Divertor heat flux with drift-kinetic electrons
	Divertor heat flux with Boltzmann electron model

	Conclusions
	Acknowledgments





