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Abstract

It has been realized in recent years that coupled focusing lattices in accelerators and storage

rings have significant advantages over conventional uncoupled focusing lattices, especially for high-

intensity charged particle beams. A theoretical framework and associated tools for analyzing the

spectral and structural stability properties of coupled lattices are formulated in this paper, based

on the recently developed generalized Courant-Snyder theory for coupled lattices. It is shown

that for periodic coupled lattices that are spectrally and structurally stable, the matrix envelope

equation must admit matched solutions. Using the technique of normal form and pre-Iwasawa

decomposition, a new method is developed to replace the (inefficient) shooting method for finding

matched solutions for the matrix envelope equation. Stability properties of a continuously rotating

quadrupole lattice are investigated. The Krein collision process for destabilization of the lattice is

demonstrated.

PACS numbers: 29.27.-a,52.20.Dq
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I. INTRODUCTION

The transverse focusing lattice is one of the few crucial subsystems in modern accelerators

and storage rings. Most contemporary accelerators and storage rings are designed based on

an uncoupled linear transverse lattice [1], where the two degrees of freedom in the transverse

directions are decoupled. Well-known analyses of the effects of weak coupling on stability

properties have left the incorrect impression that the coupling between the x-dynamics and

y-dynamics always results in instabilities or other deleterious effects. It has been realized

recently that coupled lattices are not necessarily more unstable than uncoupled lattices. On

the contrary, it is believed that coupled lattice can be more advantageous in comparison

with conventional uncoupled lattices, especially for high-intensity charged particle beams

[2–11]. This is because the parameter space for coupled lattices is much larger than that for

uncoupled lattices, and one can explore the larger parameter space for a coupled lattice to

optimize the lattice design.

Of course, the most important consideration in lattice design is its stability properties. A

thorough study of lattice stability requires one to distinguish two types of stability properties,

spectral stability and structural stability [12–17]. The spectral stability of a linear periodic

lattice is determined by the eigenvalues of the one-period map M of the lattice. If there exists

a vector v such that M lv → ∞ as l → ∞, then the map is spectrally unstable. Otherwise, it

is spectrally stable. This is the most familiar stability property that is often analyzed. The

structural stability of the lattice refers to the robustness of the spectral stability property of

the lattice with respect to a structural perturbation, such as imperfections in the magnets, or

misalignment of the beam-line. A lattice is structurally unstable if there exists a spectrally

unstable lattice infinitesimally close-by. Otherwise, it is structurally stable.

Unfortunately, our understanding of the stability properties of coupled lattices is far

from comprehensive due to the lack of an effective mathematical tool to describe the coupled

dynamics. For 1D uncoupled dynamics, the de facto standard for parameterizing the focusing

lattice is the Courant-Snyder (CS) theory [1], which is mathematically elegant and directly

linked to the physics of the beam dynamics. For coupled lattices, several parameterization

schemes have been developed [18–26]. But none of these schemes is as effective for coupled

lattices as the CS theory is for uncoupled lattices. Recently, we have developed a generalized

Courant-Snyder theory for coupled lattices [17, 27–34], which generalizes every important
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aspect of the original CS theory to higher dimensions. Especially, the key components of

the original CS theory, i.e., the envelope function (or the β function) and the associated

envelope equation are generalized into a matrix envelope function and the associated matrix

envelope equation.

In the present study, we apply the generalized CS theory to investigate the stability

properties of coupled lattices. We prove an important proposition that a necessary condition

for a periodic coupled lattice to be spectrally and structurally stable is that the generalized

matrix envelope equation admits a matched solution. We also show how to apply the

techniques of pre-Iwasawa decomposition [35, 36] and normal form to construct a matched

solution of the matrix envelope equation by simply solving the initial value problem once.

This new method is of great value even for uncoupled lattices. Previously, one used the

conventional shooting method to solve the initial value problem many times to search for

a matched solution. Using the example of a continuously rotating quadrupole lattice, we

illustrate in this paper how the lattice becomes spectrally unstable through an interesting

process called the Krein collision.

The paper is organized as follows. In Sec. II, we describe the spectral and structural

stability properties of a generic linear periodic Hamiltonian system and the associated Krein

collision. The generalized Courant-Snyder theory for coupled lattices is introduced in Sec. III,

and its application to the study of stability properties of coupled lattices is provided in

Sec. IV.

II. SPECTRAL AND STRUCTURAL STABILITY PROPERTIES OF LINEAR

HAMILTONIAN SYSTEMS

The dynamics of a charged particle in a coupled or uncoupled periodic focusing system

is completely specified by the one-period map. Because of the Hamiltonian nature of the

dynamics, the one-period map is symplectic. For the linear focusing lattices considered in

the present study, the one-period map is specified by a symplectic matrix M . In this section,

we discuss the stability properties of M as a general symplectic matrix. The calculation and

stability analysis of M for a specific choice of focusing lattice will be discussed in Secs. III

and IV using the generalized Courant-Snyder theory.

Let the dimension of M be 2n× 2n, and let λl (l = 1, ..., 2n) be the eigenvalues of M. It
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is straightforward to prove that if λ is an eigenvalue of a symplectic matrix, then its inverse

1/λ and its complex conjugate λ̄ are also eigenvalues. Then, the eigenvalue distribution can

be divided into four categories:

(1) All eigenvalues are distinct and on the unit circle of the complex plane, i.e., |λl| = 1 and

λl 6= λm for l 6= m.

(2) All eigenvalues are on the unit circle. There are repeated eigenvalues. But the geo-

metric multiplicity for all eigenvalues are the same as the algebraic multiplicity, i.e.,

Mulg(λl) = Mula(λl) for all l.

(3) All eigenvalues are on the unit circle. There are repeated eigenvalues with algebraic

multiplicity greater than geometric multiplicity, i.e., Mulg(λl) < Mula(λl) for some l.

(4) There exits at least one eigenvalue not on the unit circle, i.e., |λl| 6= 1 for some l.

It is clear that Cases (1) and (2) are spectrally stable, and Cases (3) and (4) are spectrally

unstable. For Cases (1) and (2), we would like to know whether their spectral stability

will be sustained under a small structural perturbation. Case (1) can also be shown to be

structurally stable by considering the symplectic nature of M. As the structure of the system

is perturbed, the eigenvalues will move accordingly. However, they cannot move off the unit

circle due to a small structural perturbation on M for Case (1). This is because for every

eigenvalue λ off the circle, there exits another eigenvaule 1/λ̄, which is on the opposite side

of the unit circle. If one of the eigenvalues of Case (1) were allowed to move off the unit

circle, then there would be more than 2n eigenvalues. This forbidden situation is illustrated

in Fig. 1 for n = 2. When there are repeated eigenvalues for Case (2), the constraints on the

locations of the eigenvalues do not prohibit the eigenvalues moving off the unit circle due

to structural perturbations, which is the so-called Krein collision [12–17], as illustrated in

Fig. 1 for n = 2. Krein collisions preserve the symmetry of the eigenvalue distribution with

respect to the real axis and the unit circle, and are the only possible pathways in parameter

space for a spectrally stable system to become spectrally unstable. When this happens, the

system is structurally unstable. What is more interesting is that not all possibilities in Case

(2) are structurally unstable. Case (2) needs to be further divided into two sub-categories:

(2.1) For all repeated eigenvalues, the corresponding eigenvectors have the same sig-

natures.
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Figure 1: Eigenvalues are forbidden to move off the unit circle for Case 1. Illustrated here is the

case of n = 2.

Krein Collsion

Figure 2: Eigenvalues are allowed to move off the unit circle for Case 2 when there are repeated

eigenvalues. This is the so-called Krein collision. Illustrated here is the case of n = 2. The eigenvalue

distribution on the left is before the collision, and the one on the right is after the collision

(2.2) There is at least one repeated eigenvalue whose eigenvectos have different signa-

tures.

Here, the signature of an eigenvector ψ of M is defined to be the sign of its self-product

〈ψ, ψ〉 = ψ∗iJψ. The product between two vectors ψ and φ in general is defined to be

〈ψ, φ〉 ≡ ψ∗iJφ, (1)

where ψ∗ is the complex conjugate of ψT . Krein [12], Gel’fand and Lidskii [13], and Moser

[14] proved that Case (2.1) is structurally stable, and that Case (2.2) is structurally unstable.

This is the celebrated Krein-Gel’fand-Lidskii-Moser theorem.

Let’s use the example of a 1D uncoupled lattice (n = 1) to demonstrate the process of a
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Krein collision. For a 1D uncoupled periodic lattice, the one-period transfer map M is [17]

M = S−1
0 PS0, (2)

P =







cosφ sinφ

− sin φ cos φ





 , (3)

S0 =







w−1
0 0

−ẇ0 w0





 , (4)

φ =

ˆ T

0

dt

β (t)
, (5)

β (t) = w2 (t) , (6)

where w(t) is a matched envelope function, w0 = w(0) and ẇ0 = ẇ(0) are the initial

conditions for w(t), and φ is the one-period phase advance. The envelope function w(t) is

determined by the envelope equation

ẅ + κq (t)w = w−3 . (7)

Since M is similar to P, and the eigenvalues and signatures are preserved by a similarity

transformation [see Eq. (31)], the spectral and structural stability properties of the lattice is

completely determined by the phase advance matrix P . The eigenvalues, eigenvectors, and

signatures are

λ+ = cosφ+ i sinφ , ψ+ = (1, i)T , σ+ = −1 , (8)

λ− = cosφ− i sin φ , ψ− = (1,−i)T , σ− = 1 . (9)

Evidently, the system is spectrally and structurally stable when φ 6= nπ, which corresponds

to Case (1). As the system parameters varies, the phase advance φ changes. A Krein

collision occurs at φ = nπ, where λ+ = λ− and σ+ = −σ−. This is Case (2.2), which is

structurally unstable. Starting from a stable lattice with a small phase advance, we can

increase the focusing strength and thus the phase advance gradually. The system is stable

until the phase advance approaches π.

III. GENERALIZED COURANT-SNYDER THEORY

To prepare for the investigation of the stability properties for general coupled lattice, we

briefly summarize here the generalized Courant-Snyder theory, a thorough description of
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which can be found in Ref. [17].

The linear dynamics of a charged particle relative to the fiducial orbit are governed by a

general time-dependent Hamiltonian [37] of the form

H =
1

2
zTAz , A =







κ (t) R (t)

R (t)T m−1 (t)





 . (10)

Here, z = (x, y, px, py)T are the transverse phase space coordinates, and κ(t), R (t) and

m−1 (t) are time-dependent 2 × 2 matrices. The matrices κ(t), m−1 (t), and A are also

symmetric. In this general Hamiltonian, the quadrupole component is in the diagonal terms

of the κ (t) matrix. The off-diagonal terms of κ (t) contain the skew-quadrupole and dipole

components. The solenoidal component and the torsion of the fiducial orbit [38] are included

in the R (t) matrix. The symplectic matrix specifying the map between z0 and z = M(t)z0

is

M(t) = S−1P TS0, (11)

S =







w−T 0

(wR− ẇ)m w





 , (12)

where subscript “0” denotes initial conditions at t = 0, and w is a 2 × 2 envelope matrix

function satisfying the matrix envelope equation

d

dt

(

dw

dt
m− wRm

)

+
dw

dt
mRT + w

(

κ− RmRT
)

−
(

wTwmwT
)

−1

= 0 . (13)

In Eq. (11), P ∈ Sp(4)
⋂

SO(4) = U(2) is a symplectic rotation, which is the generalized

phase advance, determined by

Ṗ = −P







0 −µ
µ 0





 , (14)

µ ≡
(

wmwT
)

−1

. (15)

Alternatively and preferably, the transfer matrix M(t) can be expressed in terms of a

symmetric envelope matrix u(t), which is defined to be the symmetric component of w(t) in

its polar decomposition,

u(t) ≡
√

β(t) , (16)

β(t) ≡ wT (t)w(t) . (17)
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In terms of u, the transfer matrix is

M(t) = S−1
u P−1

u Su0 (18)

Su ≡







u−1 0

(uR−Du− u̇)m u





 (19)

D ≡ L−1
umu

[

(umu̇− u̇mu) + u(Rm−mRT )u
]

, (20)

where Pu ∈ Sp(4)
⋂

SO(4) = U(2) is a symplectic rotation determined by the differential

equation

Ṗu = −Pu













0 µu

−µu 0





−







D 0

0 D











 , (21)

µu ≡
(

umuT
)

−1

. (22)

In Eq. (20), L−1
A is the inverse of Lyapunov operator defined as

LA(X) = AX +XA , (23)

for a symmetric, positive-definite matrix A. A detailed discussion of the Lyapunov operator

can be found in Ref. [17]. The envelope matrix u(t) ≡
√

β(t) is determined from the

differential equation for β,

β̈ = 2e− fg − gTfT − βh− hTβ + 2m−1β−1m−1 (24)

e ≡ u̇Du+ u̇2 − uD2u− uDu̇ (25)

f ≡ uDu+ uu̇ , (26)

g ≡ (ṁ− Rm+mRT )m−1 , (27)

h ≡ (κ− RmRT − Ṙm− Rṁ)m−1 , (28)

u̇ = L−1√
β
(β̇) . (29)

Equation (24) is a second-order ordinary differential equation for β, since every term on the

right-hand-side is a function of β and β̇.

For every t, M(t) is specified by two n × n symmetric matrices β and β̇, and a U(n)

matrix Pu. The dimension of M(t) is thus (n2 + n)/2 + (n2 + n)/2 + n2 = n(2n + 1), as

expected for symplectic matrices. Another important advantage of using the symmetric

envelope matrix u over the unsymmetric envelope matrix w is that Eq. (18) enables the

application of advanced techniques of pre-Iwasawa decomposition and normal form to find

a matched solution for the β matrix without using the (inefficient) shooting method.
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IV. STABILITY ANALYSIS OF COUPLED LATTICES

For practical applications of coupled lattices, it is desirable to design a coupled lattice be-

longs to Cases (1) and (2.1), which are both spectrally and structurally stable. As mentioned

previously, the parameter space satisfying this condition for a coupled lattice is larger than

that for an uncoupled lattice. The generalized Courant-Snyder theory described in Sec. III

provides an effective tool to study the stability properties of coupled lattices. One of the

important result is that if a matched solution for β exists, then the stability property of a

general coupled lattice is completely determined by the phase advance matrix P (or Pu).

Using a matched solution for β, the one-period map is

M(T ) = S−1
0 P (T )TS0 , (30)

which indicates that M(T ) is similar to the inverse of the phase advance P (T )T , and thus

has the same eigenvalues and multiplicity as P (T )T . Because P (T )T is a rotation, its

eigenvalues are on the unit circle. Now we show that the phase advance P (T ) also determines

the structural stability of M(T ). For an eigenvector ψ of M(T ), S0ψ is an eigenvector of

P (T )T , and the product between the two eignervectors defined in Eq. (1) is preserved by the

similarity transformation, i.e.,

〈S0ψ, S0φ〉 = ψ∗ST
0 iJS0φ = ψ∗iJφ = 〈ψ, φ〉 . (31)

Therefore, P (T )T and M(T ) have the same eigenvalues, signatures, and thus structural

stability properties.

As in the case of a 1D uncoupled lattice, matched solutions for β are much more preferable

than unmatched solutions, because the lattice functions can be completely determined by a

matched β solution in one lattice period, i.e., the lattice functions are periodic in terms of

the lattice period. On the other hand, if an unmatched β solution is used, the β function

and other lattice functions have to be solved in the entire time domain of 0 < t < ∞. Does

a matched β solution always exist? The answer is negative. What are the conditions for the

existence of a match β solution? We prove now that for Cases (1) and (2.1), Eq. (24) admits

matched solution for β. The proof utilizes the technique of normal form and pre-Iwasawa

decomposition [35, 36] for symplectic matrices.

First, let’s invoke the established result that for Case (1), M can always be transformed
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into the following normal form with a symplectic matrix A,

M = ANA−1, (32)

N =





















R1

R2

...

Rn





















, (33)

Rl =







cosφl sinφl

− sin φl cos φl





 . (34)

Obviously, N ∈ Sp(2n)
⋂

SO(2n) = U(n) is a symplectic rotation. This fact is proved [16]

from the existence of a complete set of 2n orthonormal eigenvectors (ψl, ψ−l), (l = 1, 2, ..., n),

satisfying

〈ψl, ψm〉 = δlm, (35)

〈ψ−l, ψ−m〉 = −δlm, (36)

〈ψl, ψ−m〉 = 0. (37)

Here, ψl and ψ−l = ψ̄l are a pair of eigenvectors corresponding to the eigenvalues λl and λ−l =

λ̄l, respectively. Equations (35) and (36) state that ψl and ψ−l have different signatures.

The normal form is actually explicitly constructed. The transfer matrix A is given as [16]

A =
√

2(ξ1, η1, ξ2, η2, ..., ξn, ηn), (38)

where ξl and ηl are real and imaginary components of the eigenvector ψl, i.e., ψl = ξl + iηl.

We now show that for Case (2.1), such a set of orthonormal bases exists as well. For

a repeated eigenvector λ with Mulg(λ) = Mula(λ), the corresponding eigenvectors span

a subspace Mλ of R2n. Because the signature never vanishes in Mλ, we can always select

a set of orthonormal bases for Mλ through a Gram-Schmidt process. The subspace M−λ,

a complex conjugate image of Mλ, has the same structure except that the signature has

the opposite sign. Therefore, for both Case (1) and Case (2.1), the normal form given by

Eq. (32) exists.

Second, we apply the pre-Iwasawa decomposition to the symplectic matrix A. According

to the theory of Iwasawa decomposition [35, 36], a symplectic matrix G can always be
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uniquely factored as

G = P







Y 0

QY Y −1





 , (39)

where P ∈ Sp(2n)
⋂

SO(2n) = U(n) is a symplectic rotation, and Y and Q are symmetric.

The statement is true as well if the decomposition is defined alternatively to be

G =







Y 0

QY Y −1





P . (40)

Let the unique pre-Iwasawa decomposition of A be

A = PASA , (41)

SA =







Y 0

QY Y −1





 . (42)

Then, the transfer matrix is M = S−1
A P−1

A NPASA. We choose the initial conditions for β

and β̇ such shat

Su0 = SA, (43)

and the solution of β will give the same transfer map

M = S−1
u P−1

u SA = S−1
A P−1

A NPASA. (44)

Thus

S−1
u P−1

u = S−1
A P−1

A NPA. (45)

The uniqueness of pre-Iwasawa decomposition requires that

S−1
u = S−1

A , (46)

P−1
u = P−1

A NPA. (47)

Equations (43) and (46) prove that S−1
u = S−1

u0 , i.e., the β solution is matched. Thus we have

proven the proposition that for Cases (1) and (2.1), Eq. (24) admits matched solutions. This

proof is a constructive one, which can be used as an effective method to find a matched solu-

tion for β. The conventional method for finding matched solutions is the shooting method,

where one takes an initial condition for β and solves the ordinary differential equation once

in one period. In general, the solution is not matched, i.e., β(T ) 6= β(0) or β̇(T ) 6= β̇(0).
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The shooting method requires one to estimate a better initial condition based on the size of

the mismatch, and solve the differential equation again. This iteration is carried out many

times until a matched solution is found. The new method suggested by the above construc-

tive proof of the existence of matched solution only requires solving Eq. (24) once with an

arbitrary initial condition. We can construct the one-period map M(T ) using any matched

or unmatched solution of Eq. (24), then the eigenvectors of M(T ) can be calculated. When

the set of bases satisfying Eqs. (35)- (37) exists, the initial condition for a matched solution

is uniquely given by Eq. (43). This new method applies to both 1D uncoupled lattices and

coupled lattices in higher dimensions. Of course, this procedure fails when the set of bases

satisfying Eqs. (35)- (37) does not exist. However, for the desirable Cases (1) and (2.1), such

a set of bases exists. Another practical implication of the existence of matched β solution

is that when an matched solution for β cannot be found, the lattice must be unstable.

As an illustrative application, we investigate here the stability properties of a continuously

rotating quadrupole lattice [2–8]. The Hamiltonian of a charged particle in such a lattice is

[31, 34]

H =
1

2
zTAz , A =







κ (t) 0

0 I





 , (48)

κ(t) = κq0







cos(2πt/T ) sin(2πt/T )

− sin(2πt/T ) cos(2πt/T )





 . (49)

We will smoothly vary κq0T
2 and observe the movement of the eigenvalues of the one-period

map. For a given value of κq0T
2, we find a matched β solution using the procedure described

above. The calculation is carried out using a code developed in Ref. [34]. The results are

plotted in Fig. 3. For κq0T
2 = 8 and κq0T

2 = 9, it belongs to Case (1). The two eigenvalues

on the left half circle have different signatures, and move towards one another as κq0T
2

increases. At κq0T
2 = π2, these two eigenvalues collide at λ = −1. Since their signatures

are different, this is an unstable Krein collision and thus structurally unstable. Right after

the collision at κq0T
2 = 10, these two eigenvalues moves off the unit circle, and lead to an

unstable lattice. These analyses can be straightforwardly carried out for any coupled lattice,

such as the N-rolling lattice [31] and the Möbius accelerator [9].
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Figure 3: Eigenvalues of continuously rotating quadrupole lattices. The two eigenvalues on the left

half circle have different signatures in (a), and move towards one other as κq0T
2 increases in (b).

The Krein collision occurs at κq0T
2 = π

2 in (c), after which these two eigenvalues on the left move

off the unit circle and lead to an unstable lattice in (d).

V. CONCLUSIONS AND FUTURE WORK

We have studied in this paper the spectral and structural stability of charged particle

dynamics in a coupled focusing lattice as a Hamiltonian system. The recently developed

generalized Courant-Synder theory for coupled lattices has been applied. It is has been

demonstrated that for coupled lattices that are spectrally and structurally stable, the matrix

envelope equation must admit matched solutions. A new method is presented to determine

a matched solution for the matrix envelope using the technique of normal form and pre-

13



Iwasawa decomposition. If a matched solution exists, this method is able to determine the

matched solution simply by solving the envelope equation once without using the (ineffi-

cient) shooting procedure. As an example, stability properties of a continuously rotating

quadrupole lattice are investigated. The Krein collision process for destabilization of the

lattice has also been demonstrated.

The application of coupled lattices to high-intensity charged particle beams [39–43] will

be investigated in future studies. The theoretical framework and analytical tools devel-

oped in the present study are also expected to be effective for the current theoretical and

experimental investigations of emittance exchange technologies [44–48].
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