
Prepared for the U.S. Department of Energy under Contract DE-AC02-09CH11466.

Princeton Plasma Physics Laboratory

PPPL- 

gczechow
Typewritten Text

phampton

phampton
Typewritten Text
5080

phampton
Typewritten Text
5110

phampton
Typewritten Text
PPPL-5110

phampton
Text Box
 A Gyrokinetic 1D Scrape-Off Layer Model of an ELM Heat Pulse

phampton
Text Box
  E. L. Shi, A.H. Hakim, and G.W. Hammett

phampton
Text Box
January 2015



Princeton Plasma Physics Laboratory 
Report Disclaimers 

	  
	  
Full Legal Disclaimer 

	  

This report was prepared as an account of work sponsored by an agency of the United 
States Government. Neither the United States Government nor any agency thereof, nor any of 
their employees, nor any of their contractors, subcontractors or their employees, makes any 
warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, 
completeness, or any third party’s use or the results of such use of any information, apparatus, 
product, or process disclosed, or represents that its use would not infringe privately owned 
rights. Reference herein to any specific commercial product, process, or service by trade name, 
trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, 
recommendation, or favoring by the United States Government or any agency thereof or its 
contractors or subcontractors. The views and opinions of authors expressed herein do not 
necessarily state or reflect those of the United States Government or any agency thereof. 
	  

Trademark Disclaimer 
	  

Reference herein to any specific commercial product, process, or service by trade name, 
trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, 
recommendation, or favoring by the United States Government or any agency thereof or its 
contractors or subcontractors. 

	  
	  
	  

PPPL Report Availability 
	  

	  

Princeton Plasma Physics Laboratory: 
	  

http://www.pppl.gov/techreports.cfm 
	  
Office of Scientific and Technical Information (OSTI): 

	  

http://www.osti.gov/scitech/ 
	  

	  
	  

Related Links: 
 
 U.S. Department of Energy 
 
 
 Office of Scientific and Technical Information 
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An electrostatic gyrokinetic-based model is applied to simulate parallel plasma transport in the scrape-off layer
to a divertor plate. The authors focus on a test problem that has been studied previously, using parameters
chosen to model a heat pulse driven by an edge-localized mode (ELM) in JET. Previous work has used
direct particle-in-cell equations with full dynamics, or Vlasov or fluid equations with only parallel dynamics.
With the use of the gyrokinetic quasineutrality equation and logical sheath boundary conditions, spatial
and temporal resolution requirements are no longer set by the electron Debye length and plasma frequency,
respectively. This test problem also helps illustrate some of the physics contained in the Hamiltonian form
of the gyrokinetic equations and some of the numerical challenges in developing an edge gyrokinetic code.

I. INTRODUCTION

One of the major issues for ITER and subsequent
higher-power tokamaks is the power load on plasma-
facing components (PFCs) from energy expelled into the
scrape-off layer (SOL) by edge-localized modes. Exces-
sive total and peak power loads from ELM heat pulses
can cause the erosion or melting of divertor targets.
Large Type I ELMs can also result in erosion to the main
chamber wall and the release of impurities into the core
plasma.1 Suppressing ELMs or mitigating the damage
they cause to PFCs is crucial for the viability of reactor-
scale tokamaks. An accurate prediction of heat fluxes on
future devices is important for the development of miti-
gation concepts.

Numerical simulations of heat pulse propagation can
provide useful information about the time dependence of
the power load on divertor targets. A test case involving
the propagation of a heat pulse from an ELM along a
scrape-off layer to a divertor target plate has been used
as a benchmark in recent literature. This problem was
first studied using a particle-in-cell (PIC) code and was
demonstrated to have good agreement with experiment.2

A Vlasov-Poisson model was later developed to study
this problem.3 A benchmark of fluid, Vlasov, and PIC
approaches to this problem was recently described in
Ref. [4]. An implementation of this test case in BOUT++
was used to compare non-local and diffusive heat flux
models for SOL modeling.5 With the exception of initial
conditions, the parameters we have adopted for our sim-
ulations are described in Ref. [4]. This test case involves
just one spatial dimension (along the field line), treating
an ELM as an intense source near the midplane without
trying to directly calculate the magnetohydrodynamic in-
stability and reconnection processes that drive the ELM.
Nevertheless, this is a useful problem for testing codes
and understanding some of the physics involved in par-
allel propagation and divertor heat fluxes.

a)Electronic mail: eshi@princeton.edu

Unlike previous approaches, we have developed and
studied gyrokinetic-based models with sheath boundary
conditions using fully kinetic electrons or by assuming a
Boltzmann response for the electrons. As is often done
in gyrokinetics (unless looking at very small electron-
scale turbulence where quasineutrality does not hold),
a gyrokinetic quasineutrality equation (which includes a
polarization-shielding term) is used, so the Debye length
does not need to be resolved. To handle the sheath, log-
ical sheath boundary conditions6 are used, which main-
tain zero net current to the wall at each time step. Al-
though our simulations are one-dimensional, perpendicu-
lar effects can be incorporated by assuming axisymmetry.
In an axisymmetric system, poloidal gradients have com-
ponents that are both parallel and perpendicular to the
magnetic field. The perpendicular ion polarization dy-
namics then enter the field equation by accounting for
the finite pitch of the magnetic field.

An advantage of the models we have developed is their
low computational cost. Earlier kinetic models have been
described as computationally intensive2 due to restric-
tions in the time step to ∼ ω−1

pe and in the spatial resolu-
tion to ∼ λDe. (A 1D Vlasov model using an asymptotic-
preserving implicit numerical scheme described in Ref. [3]
was able to relax these restrictions somewhat for this
problem, using ∆x ∼ 2λDe and ∆t ∼ 4/ωpe because their
simulation still included the sheath directly.) By using
a gyrokinetic-based model and logical sheath boundary
conditions, our code can use grid sizes and time steps
that are several orders of magnitude larger than this. It
is fully explicit at present, though one could consider ex-
tending it to use implicit methods (such as in Ref. [3])
in the future. While fluid models have their own merits,
they miss some kinetic effects, including the effect of hot
tail electrons on the heat flux on the divertor plate and
the subsequent rise of sheath potential.

We have implemented our models in Gkeyll, a code
employing discontinuous Galerkin (DG) methods that is
being developed for several applications, including solv-
ing gyrokinetic equations in the edge region. Although
Gkeyll is currently being extended to have 5D capabil-
ity, we focus on 1x+1v (v‖) simulations in this paper

mailto:eshi@princeton.edu
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for comparison with the similar 1x+1v Vlasov code in
Ref. [4].

An explicit third-order strong-stability-preserving
Runge-Kutta algorithm is used to advance the system
in time.7 A review of the Runge-Kutta DG algorithm
is given by Cockburn and Shu.8 Our modifications to
the basic DG scheme are applicable to a general class
of Hamiltonian evolution equations and conserve energy
exactly even when upwind fluxes are used (in addition
to conserving particles exactly). These details will be
described in a future publication.

Gyrokinetic codes that are fairly comprehensive (in-
cluding general magnetic fluctuations to varying degrees)
have been developed9–17 for the main core region of fu-
sion devices and have been fairly successful in explaining
core turbulence in many parameter regimes. However,
extensions are needed to handle the additional complex-
ities of the edge region (r/a > 0.9), such as open and
closed field lines, plasma-wall interactions, large ampli-
tude fluctuations, and electromagnetic fluctuations near
the beta limit. The test problem studied here is a useful
first step in testing gyrokinetic algorithms for the edge
region. Such a code could also be used to simulate linear
devices (such as LAPD18 and Vineta19) used for studying
fundamental plasma physics phenomena.

Section II describes an electrostatic 1D gyrokinetic-
based model with a modification to the ion-polarization
term to set a minimum value for the wave number. Nu-
merical implementation details and the logical sheath
boundary condition are described in Section III. Results
from numerical simulations and specific initial conditions
are presented in Section IV.

II. ELECTROSTATIC 1D GYROKINETIC MODEL WITH
KINETIC ELECTRONS

In this paper, we focus on the long-wavelength-drift-
kinetic limit of gyrokinetics and ignore finite-Larmor-
radius effects for simplicity. Polarization effects are kept
in the gyrokinetic Poisson equation, and the model has
the general form of gyrokinetics and can be extended to
include full gyroaveraging in the future.

The geometry used in the ELM SOL heat pulse test
problem is illustrated in Fig. 1. The Vlasov and fluid
codes used in Ref. [4] consider only the parallel dynam-
ics, while the 1x-3v PIC code used in Ref. [4] includes
full orbit (not gyro-averaged) particle dynamics in an
axiysmmetric system and so would automatically include
polarization effects on time scales longer than an ion gy-
roperiod.

The gyrokinetic equation can be written as a Hamilto-
nian evolution equation for species s of a plasma

∂fs
∂t

= {Hs, fs}, (1)

where Hs = p2
‖/2ms + qsφ − msV

2
E/2 is the Hamil-

tonian for the 1D electrostatic case considered here,

p‖ = msv‖ is the parallel momentum, and {f, g} =
(∂f/∂z)(∂g/∂p‖) − (∂f/∂p‖)(∂f/∂z) is the Poisson
bracket operator for any two functions f and g. The po-
tential is determined by a gyrokinetic Poisson equation
(in the long-wavelength quasineutral limit):

−∂⊥ (ε⊥∂⊥φ) =
σg
ε0

=
1

ε0

∑
s

qs

∫
dv‖ fs. (2)

Here, σg is the guiding-center charge density, while the
left-hand side is the negative of the polarization contri-
bution to the density, where the plasma perpendicular
dielectric is

ε⊥ =
c2

v2
A

=
∑
s

nsms

ε0B2
. (3)

The ion polarization dominates this term, but a sum over
all species has been included for generality.

In the Hamiltonian, VE = −(1/B)∂⊥φ is the E × B
drift in the radial direction (out of the plane in Fig. 1c).
Since there is no variation in the radial direction, there is
no explicit V E · ∇ term, and VE only enters through the
second-order contribution to the Hamiltonian, −mV 2

E/2.
Ref. [20 and 21] provide some physical interpretations of
this term, and Ref. [20] gives a derivation of it in the
cold-ion limit.

The conserved energy is given by

Wtot =

∫
dz
∑
s

∫
dv‖ fsHs

= WK +

∫
dz σgφ−

1

2

∫
dz ρV 2

E , (4)

where WK =
∫
dz
∑
s

∫
dv‖ fsmsv

2
‖/2 is the kinetic en-

ergy, and ρ is the total mass density. Using the gyroki-
netic Poisson equation (2) to substitute for σg in this
equation and doing an integration by parts (with a global
neutrality condition

∫
dzσg = 0 so boundary terms van-

ish), one finds that the total conserved energy can be
written as

Wtot =
1

2

∫
dz
∑
s

∫
dv‖ fs

(
msv

2
‖ +msV

2
E

)
= WK +

1

2

∫
dz ρV 2

E . (5)

To verify energy conservation, first note that∫
dz
∫
dv‖Hs∂fs/∂t = 0 by multiplying the gyrokinetic

equation (1) by the Hamiltonian and integrating over all
of phase-space. (Here, periodic boundary conditions are
used for simplicity; there are of course losses to the wall
in a bounded system.) The rate of change of the total
conserved energy is then written as

dWtot

dt
=

∫
dz
∑
s

∫
dv‖ fs

(
qs
∂φ

∂t
− ms

2

∂V 2
E

∂t

)

=

∫
dz

(
σg
∂φ

∂t
− 1

2

∑
s

nsms
∂V 2

E

∂t

)
. (6)
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FIG. 1. Illustration of the geometry used in the ELM SOL heat pulse test problem. The scrape-off layer region in the poloidal
cross section (a) is treated as straight (b) in this test, with the ELM represented by an intense source near the midplane region.
The time history of the resulting heat flux to the target plate is calculated in the simulation. The side view (c) illustrates that
although there is no toroidal variation in this axisymmetric problem, poloidal variations lead to both parallel and perpendicular
gradient components.

Using the gyrokinetic Poisson equation (2) to substitute
for σg and integrating by parts, one finds that these two
terms cancel, so dWtot/dt = 0. Note that the small
second-order Hamiltonian term H2 = −(m/2)V 2

E was
needed to get exact energy conservation. (In many cir-
cumstances, the E ×B energy mV 2

E is only a very small
correction to the parallel kinetic energy mv2

‖/2, but it is

still assuring to know that exact energy conservation is
possible.) This automatically occurs in the Lagrangian
field theory approach to full-F gyrokinetics21–23, in which
the gyrokinetic Poisson equation results from a functional
derivative of the action with respect to the potential φ,
so a term that is linear in φ in the gyrokinetic Poisson
equation comes from a term that is quadratic in φ in the
Hamiltonian.

A. Electrostatic model with a modified ion polarization
term

One can obtain a wave dispersion relation by lineariz-
ing Eqs. (1) and (2) and Fourier transforming in time and
space. With the additional assumption that qe = −qi and
neglecting ion perturbations (except for the ion polariza-
tion density), one has

k2
⊥ρ

2
s + [1 + ξZ (ξ)] = 0. (7)

Here, ρ2
s = Te/(miΩ

2
ci), ξ = ω/(

√
2k‖vte), vte =√

Te/me, and Z(ξ) = π−1/2
∫
dt exp(−t2)/(t− ξ) [or the

analytic continuation of this for Im(ξ) ≤ 0] is the plasma
dispersion function. In the limit ξ � 1, the solution to
the dispersion relation is a wave with frequency

ωH =
k‖vte

|k⊥|ρs
. (8)

For k⊥ρs � 1, this is a very high-frequency wave that
must be handled carefully to remain numerically stable.
Note that this wave does not affect parallel transport in
the SOL because the main heat pulse propagates at the
ion sound speed, and this wave is even faster than the
electrons for k⊥ρs � 1.

This wave is the electrostatic limit of the shear Alfvén
wave,24,25 which lies in the regime of inertial Alfvén
waves.26,27 The difficulties introduced by such a wave
could be eased by including magnetic perturbations from
A‖, in which case the dispersion relation (in the fluid elec-

tron regime ξ � 1) becomes25 ω2 = k2
‖v

2
te/(β̂e + k2

⊥ρ
2
s),

where β̂e = (βe/2)(mi/me) and βe = 2µ0neTe/B
2. In

the electrostatic limit β̂e = 0, we recover Eq. (8), but

retaining a finite β̂e would set a maximum frequency at

low k⊥ of ω = k‖vte/β̂
1/2
e = k‖vA, where vA is the Alfvén

velocity, avoiding the k⊥ρs → 0 singularity of the electro-
static case. (We shall defer further discussion of magnetic
fluctuations to a future paper, as that brings up another
set of interesting numerical subtleties.)

For electrostatic simulations, a modified ion polariza-
tion term can be introduced to effectively set a mini-
mum value for the perpendicular wave number k⊥. This
modification can be used to slow down the electrostatic
shear Alfvén wave to make it more numerically tractable.
(Even when magnetic fluctuations are included, one still
might want to consider an option of introducing a long
wavelength modification for numerical convenience or ef-
ficiency.)

When choosing how to select the minimum value for
k⊥ρs, it is useful to consider the set of k⊥’s represented on
the grid for particular simulation parameters. Consider
an axisymmetric system (as in Fig. 1c) with constant
B/Bξ, where B is the total magnetic field, and Bξ and
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Bζ are the components of B in the poloidal and toroidal
directions. It follows that ∂⊥ = (Bζ/Bξ)∂‖, so

k⊥,max =
Bζ
Bξ

k‖,max. (9)

The maximum parallel wavenumber can be estimated as
k‖,max∆z ∼ πNnc, where ∆z is the width of a single cell
in position space, and Nnc is the total degrees of freedom
per cell used in the finite element DG representation of
the position coordinate.

Therefore, one has

k⊥,max =
Bζ
Bξ

πNnc
∆z

. (10)

In our simulations, Nnc = 3 and ∆z = 10 m using 8
cells in the spatial direction to represent an 80 m parallel
length. Assuming that Bξ/B = sin(6◦), one estimates
that k⊥,maxρs ≈ 2.5 × 10−2 for 1.5 keV deuterium ions
with B = 2 T. Thus, the perpendicular wave wavenum-
bers represented by a typical grid are fairly small.

The general modified gyrokinetic Poisson equation we
consider is of the form

−∂⊥(Cεε⊥∂⊥φ) + s⊥(z, t)(φ− 〈φ〉) =
σg(z)

ε0
, (11)

where s⊥(z, t) = k2
min(z)ε⊥(z, t) is a shielding factor (we

allow kmin to depend on position but not on time in order
to preserve energy conservation, as described below) and
〈φ〉 is a dielectric-weighted flux-surface-averaged poten-
tial defined as

〈φ〉 =

∫
dz s⊥φ∫
dz s⊥

. (12)

The fixed coefficient Cε is for generality, making it easier
to consider various limits later.

The sound gyroradius is chosen to be defined by
ρ2
s(z, t) = c2s(z, t)/Ω

2
ci = Te(z, t)/(miΩ

2
ci), using the mass

and cyclotron frequency of a main ion species. A time-
independent sound gyroradius (using a typical or ini-
tial value for the electron temperature Te0) is defined
by ρ2

s0(z) = c2s0(z)/Ω2
ci = Te0(z)/(miΩ

2
ci). Note that

the shielding factor can also be written as s⊥(z, t) =
[kmin(z)ρs0(z)]2ε⊥(z, t)/ρ2

s0(z).
For simplicity, kminρs0 is chosen to be a constant in-

dependent of position. Its value should be small enough
that the wave in Eq. (8) is high enough in frequency that
it does not interact with other dynamics of interest, but
not so high in frequency that it forces the explicit time
step to be excessively small. For some of our simulations,
we use kminρs = 0.2, which leads to only a 2% correction
to the ion acoustic wave frequency ω = k‖cs/

√
1 + k2

⊥ρ
2
s

at long wavelengths. Convergence can be checked by tak-
ing the limit kminρs0 → 0.

As a simple limit, one can even set Cε = 0 and keep just
the s⊥ term, which replaces the usual differential gyroki-
netic Poisson equation with a simpler algebraic model.

This approach should work fairly well for low frequency
dynamics. The basic idea is that for long-wavelength ion-
acoustic dynamics, the left-hand side of Eq. (11) is small,
so the potential is primarily determined by the require-
ment that it adjust to keep the electron density on the
right-hand side almost equal to the ion guiding center
density. (At low frequencies, the electron density is close
to a Boltzmann response, which depends on the poten-
tial.) In future work, one could consider using an implicit
method, perhaps using the method here as a precondi-
tioner. Alternatively, electromagnetic effects will slow
down the high-frequency wave so that explicit methods
may be sufficient.

The flux-surface-averaged potential 〈φ〉 is subtracted
off in Eq. (11) so that the model polarization term is
gauge invariant like the usual polarization term. This
choice is also related to our form of the logical sheath
boundary condition, which assumes that the electron and
ion guiding center fluxes to the wall are the same so that
the net guiding center charge vanishes,

∫
dz σg = 0. Just

as the net guiding center charge vanishes, our model po-
larization charge density, s⊥(φ − 〈φ〉), also averages to
zero. This approach neglects ion polarization losses to
the wall, which is consistent in this model because inte-
grating Eq. (2) over all space then gives ∂⊥φ = 0 at the
plasma edge. (One could consider future modifications to
account for polarization drift losses to the wall, but the
present model is found to agree fairly well with full-orbit
PIC results.)

With this approach, it is also necessary to modify the
Hamiltonian in order to preserve energy consistency with
this modified gyrokinetic Poisson equation. The modified
Hamiltonian is written in the form

Hs =
1

2
msv

2
‖ + qs(φ− 〈φ〉)−

1

2
msV̂

2
E , (13)

where V̂ 2
E is a modified E × B velocity that is cho-

sen to conserve energy. The constant 〈φ〉 term in Hs

has no effect on the gyrokinetic equation because only
gradients of φ matter, but it simplifies the energy con-
servation calculation. The total energy is still Wtot =∫
dz
∑
s

∫
dv‖ fsHs, and its time derivative (neglecting

boundary terms that are straightforward to evaluate) can
be written as

dWtot

dt
=

∫
dz
∑
s

∫
dv‖ fs

∂H

∂t

=

∫
dz

(
σg

∂

∂t
(φ− 〈φ〉)−

∑
s

1

2
nsms

∂

∂t
V̂ 2
E

)
.

(14)

Using the modified gyrokinetic Poisson equation (11) and
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integrating the first term by parts gives

dWtot

dt
=

∫
dz

(∑
s

1

2
nsmsCε

∂

∂t
V 2
E

+
ε0
2
s⊥

∂

∂t
(φ− 〈φ〉)2 −

∑
s

1

2
nsms

∂

∂t
V̂ 2
E

)
, (15)

so energy is conserved if one chooses

V̂ 2
E = CεV

2
E +

ε0s⊥∑
s nsms

(φ− 〈φ〉)2 (16)

and require that the coefficient ε0s⊥/(
∑
s nsms) be in-

dependent of time so that it comes outside of a time
derivative. Using Eq. (3) and the definition of s⊥ after
Eq. (11), one sees that ε0s⊥/(

∑
s nsms) = k2

min(z)/B2,
which is indeed independent of time because kmin was
chosen not to have any time dependence.

In the limit that one uses only the algebraic model
polarization term with Cε = 0, one finds that

V̂ 2
E = (kminρs0)2

(
eδφ

Te0

)2

c2s0, (17)

where δφ = φ− 〈φ〉. For kminρs0 = 0.2 and eδφ/Te0 ∼ 1,
this E×B energy could be order 4% of the total energy.

III. NUMERICAL IMPLEMENTATION DETAILS

One detail of solving the modified gyrokinetic Pois-
son equation (11) is how to determine the flux-surface-
averaged component, which is related to the boundary
conditions. Consider the case in which ε⊥ = 0, and ex-
pand φ = 〈φ〉 + δφ. Then δφ is determined by the alge-
braic equation

s⊥(z) δφ(z) =
σg(z)

ε0
. (18)

Imposing the boundary condition that the value of φ at
the plasma edge be equal to the sheath potential gives
φ(zR) = φs = 〈φ〉 + δφ(zR) (the left and right bound-
aries have been assumed to be symmetric here), which
gives an additional equation to determine 〈φ〉. The final
expression is

φ(z) = δφ(z)− δφ(zR) + φs. (19)

In order to maintain energy conservation, it is impor-
tant that the algorithm preserve the numerical equiva-
lent of certain steps in the analytic derivation. In our
algorithm, based on Liu and Shu’s28 algorithm for the
incompressible Euler equation, φ must be obtained using
continuous finite elements, although the charge density
σg is discontinuous in our Poisson equation.

To preserve the integrations involved in energy conser-
vation, it is important to ensure that one can multiply

Eq. (18) by the fluctuating potential, integrate over all
space, and preserve∫

dz δφ s⊥ δφ =
1

ε0

∫
dz δφ σg. (20)

This requirement ensures that a potential part of the
energy on the right-hand side is exactly related to a field-
like-energy on the left-hand side. This quantity will be
preserved if one projects the modified Poisson equation
onto all of the continuous basis functions ψj that are used
for φ (i.e., φ(z) =

∑
j φjψj(z)) to ensure that

〈ψjs⊥φ〉 = 〈ψjσg〉. (21)

For piecewise linear basis functions, this leads to a tri-
diagonal equation for φj that has to be inverted to de-
termine φ. Because s⊥ ∝ n(z, t) varies in time, this will
take a little bit of work, but as one goes to higher dimen-
sions in velocity space, the Poisson solve (which is only
in the lower-dimensional configuration space) will be a
negligible fraction of the computational time.

A. Boundary Conditions

Gyrokinetics does not need to resolve the restrictive
Debye length (∼ λDe) or plasma frequency time scales
(∼ ω−1

pe ), so the sheath is usually not directly resolved.
Instead, the effects of the sheath can be incorporated
through the use of logical sheath boundary conditions.6

For a normal positive sheath, all incident ions flow into
the wall, but incident electrons with energies below the
sheath potential are reflected back into the domain such
that there is zero net current into the wall. (For bi-
ased endplates or higher dimensional problems with non-
insulating walls, one could consider more general bound-
ary conditions that involve currents in and out of the wall
at various places.) At the right boundary, for example,
this condition is expressed as∫ ∞

0

dv vfi(zR, v, t) =

∫ ∞
vc

dv vfe(zR, v, t), (22)

where zR is the coordinate of the domain edge. The cut-
off velocity vc > 0 is determined numerically through
a search algorithm. The sheath potential is then deter-
mined using the relation eφs = mev

2
c/2.

In order to reflect all electrons incident on the sheath
with velocity in the range 0 < v < vc, the electron dis-
tribution function in this range is copied into ghost cells
according to

fe(zR,−v, t) = fe(zR, v, t), 0 < v < vc, (23)

and fe(zR,−v, t) = 0 for v > vc. This condition can
also be written as fe(zR,−v, t) = fe(zR, v, t)H(vc − v)
for v > 0. This condition results in the reflection of
electrons with velocity in the range 0 < v < vc back into
the domain with the opposite velocity, while the electrons
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with energy sufficient to overcome the sheath potential
will flow out of the system to the divertor plates.

The implementation of logical sheath boundary condi-
tions needs a slight modification for use in a continuum
code. Typically, the cutoff velocity will fall within a cell
and not exactly on a cell edge. A direct projection of the
discontinuous reflected distribution onto the basis func-
tions used in a cell could lead to negative values of the
distribution function at some velocities in the cell. Fu-
ture work could consider methods of doing higher-order
projections that incorporate positivity constraints, but
for now we have used a simple scaling method, in which
the entire distribution function inside the “cutoff cell” is
copied into the ghost cell and then scaled by the fraction
required to ensure that the electron flux at the domain
edge equals the ion flux. For scaling the reflected distri-
bution function in the cutoff cell on the right boundary,
this fraction is

c =

∫ vc
vj−∆v/2

dv vfe(zR, v, t)∫ vj+∆v/2

vj−∆v/2
dv vfe(zR, v, t)

, (24)

where ∆v is the cell width in velocity space, and vj de-
notes the center of the cell.

IV. SIMULATION RESULTS

The main parameters used for our simulations were
described in Ref. [4] and were chosen to model an ELM
on the JET tokamak for a case in which the density and
temperature at the top of the pedestal were nped = 5 ×
1019 m−3 and Tped = 1.5 keV. The ELM is modelled as
an intense particle and heat source in the SOL that lasts
for 200 µs, spread over a poloidal length of 2.6 m around
the midplane (as described below) and a radial width in
the SOL of 10 cm. The model SOL has a major radius of
3 m, and this source corresponds to a total ELM energy
of about 0.4 MJ. The simulation domain has a length of
2L|| = 80 m, the length of a magnetic field line in the
SOL, with a field line pitch of 6◦. The kinetic equation
with the source term on the right-hand side is

∂f

∂t
− {H, f} = g(t)S(z)FM(v‖, TS(t)), (25)

where FM(v‖, TS(t)) is a unit Gaussian in variable v‖
with a time-dependent temperature TS(t). The function
S(z) is the same for both particle species, and is repre-
sented as

S(z) =

{
S0 cos

(
πz
Ls

)
|z| < Ls

2

0 else
, (26)

where Ls = 25 m is length of the source along the mag-
netic field line. The value of S0 was computed using the
scaling4

S0 = Anped cs,ped/Ls, (27)
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FIG. 2. Spatial and temporal profiles of the source term on
the right-hand side of Eq. (25).

where the constant of proportionality A was chosen to be
1.2
√

2 ≈ 1.7 for comparison with Ref. [4]. In our simula-
tions, S0 ≈ 9.066× 1023 m−3 s−1.

The function g(t) in Eq. (25) is used to model the time-
dependence of the particle source:

g(t) =

{
1 0 < t < 200µs

1/9 t > 200µs
. (28)

The post-ELM source also has reduced electron and
ion temperature, represented by the TS(t) parameter in
the Maxwellian term FM in Eq. (25), which has the value
1.5 keV from 0 < t < 200 µs for both ions and electrons.
The electron temperature for t > 200 µs is 210 eV, and
the ion temperature is reduced to 260 eV. The end time
for the simulation is t = 350 µs.

We performed our simulations using second-order
serendipity basis functions29 on a grid with 8 cells in the
spatial direction and 32 cells in the velocity direction. (In
1D, second-order basis functions correspond to piecewise
parabolic basis functions, or 3 degrees of freedom within
each cell.) The case with kinetic electrons and ions takes
only about three minutes to run on a standard laptop,
although we have not yet extensively optimized our code.

A. Initial Conditions

In previous papers that looked at this problem, the
codes were typically run for a while with the same weak
source that would be used in the post-ELM phase to
reach a quasi-steady state before the intense ELM source
was turned on. The authors found that the final results
were not very sensitive to the duration of the pre-ELM
phase or the initial conditions used for it. However, there
is formally no normal steady state for this problem in
the collisionless limit (low energy particles build up over
time without collisions). To remove a possible source of
ambiguity for future benchmarking, here we specify more
precise initial conditions chosen to approximately match
initial conditions at the beginning of the ELM phase used
in previous work.
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We model the initial electron distribution function as

fe0(z, v‖) = ne0(z)FM (v‖, Te0), (29)

with Te0 = 75 eV. The electron density profile (in 1019

m−3) is defined as

ne0(z) = 0.7 + 0.3

(
1−

∣∣∣∣ zL‖
∣∣∣∣)

+ 0.5 cos

(
πz

Ls

)
H

(
Ls
2
− |z|

)
. (30)

The initial ion distribution function is modeled as

fi0(z, v‖) =



FL z < −Ls

2[(
1

2
− z

Ls

)
FL

+

(
1

2
+

z

Ls

)
FR

] −Ls

2 < z < Ls

2

FR z > Ls

2

.

(31)
Here, FL and FR are left and right half-Maxwellians de-
fined as

FR(z, v‖;Ti0) = n̂(z)FM (v‖, Ti0)H(v‖), (32)

FL(z, v‖;Ti0) = n̂(z)FM (v‖, Ti0)H(−v‖), (33)

where n̂(z) = 2ni0(z), H is the Heaviside step function,
and the initial ion temperature profile (in eV) is defined
as

Ti0(z) = 100 + 45

(
1−

∣∣∣∣ zL‖
∣∣∣∣)

+ 30 cos

(
πz

Ls

)
H

(
Ls
2
− |z|

)
. (34)

The expressions for the ne0 and Ti0 profiles were cho-
sen to approximate those described in private communi-
cation with the author of Ref. [4],30 which were originally
obtained from simulations that had run for a while with a
weaker source to achieve a quasi-steady state before the
strong ELM source was turned on, as described at the
beginning of this subsection.

Given an initial electron density profile, we then cal-
culate an initial ion guiding center density profile to
minimize the excitation of high-frequency kinetic Alfvén
waves. We do this by choosing the initial ion guiding-
center density ni(z) so that it gives a potential φ(z) that
results in the electron density’s being consistent with a
Boltzmann equilibrium, i.e., the electrons are initially in
parallel force balance and do not excite high-frequency
kinetic Alfvén waves. A Boltzmann electron response is

ne(z) = C exp

(
eφ(z)

Te

)
. (35)

Taking the log of the above equation and then an ne-
weighted average, one has

〈log ne〉ne = logC +
e〈φ〉ne

Te0
, (36)

where Te has been assumed to be a constant Te0.
Note that one is free to add an arbitrary constant to φ

since only gradients of φ affect the dynamics. Choosing
the additional constraint that 〈φ〉ne = 0, one can express
the constant C in terms of ne. (This convention for 〈φ〉ne

is only for convenience, as any constant can be added to φ
in the plasma interior without affecting the results. After
the first time step, the sheath boundary condition will be
imposed, which will give a non-zero value for the average
potential.)

One then has the following equation for φ:

eφ

Te0
= log ne − 〈log ne〉ne . (37)

This φ can be used with the gyrokinetic Poisson equa-
tion to solve for ni(z) by iteration. With a small me/mi

ratio, the gyrokinetic Possion equation can be written as

ni(z)

(
1− k2

⊥ρ
2
s0

e(φ− 〈φ〉ni
)

Te0

)
= ne(z), (38)

where with the small me/mi ratio approximation,
the dielectric-weighted average is equivalent to an ion
density-weighted average. The left-hand side of this
equation is a nonlinear function of ni (because it ap-
pears as a leading coefficient and in the density-weighted
average 〈φ〉ni

), which is solved for by using iteration:

nj+1
i (z) =

ne(z)

1− k2
⊥ρ

2
s0

e
Te0

(
φ− 〈φ〉nj

i

) . (39)

Note that the the averaged φ on the right-hand side is
weighted by nji , the previous iteration’s ion density. Con-
vergence can be improved by adding a constant to ni(z)
each iteration to enforce global neutrality 〈ni〉 = 〈ne〉. In
our tests, the initial ion density profile was calculated to
10−15 relative error in five iterations.

B. Divertor heat flux with drift-kinetic electrons

Figure 3 shows the parallel heat flux on the target plate
vs. time using the 1D electrostatic model with a fixed
k⊥ρs0 = 0.2. A rapid response in the electron heat flux
is observed at early times, on the order of the electron
transit timescale τe ∼ L‖/vte,ped ≈ 2.46 µs. This re-
sponse is due to fast electrons reaching the target plate,
which initially cause a modest rise in the electron heat
flux from t ∼ 1 µs to t ∼ 1.5 µs. This build-up of fast
electrons result in a rise in the sheath potential at t ∼ 1.5
µs, which causes a modest rise in the ion heat flux and a
modest drop in the electron heat flux until the arrival of
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FIG. 3. Parallel heat flux at the divertor plate vs. time with
drift-kinetic electrons. The electron and ion thermal transit
times τe and τi are indicated by the vertical dashed lines.

the bulk ion heat flux at a later time. We did a scan in
k2
⊥ρ

2
s0 over a factor of 20 (from k2

⊥ρ
2
s0 = 0.04 to 0.1) and

found only a few percent variation in the resulting plot
of heat flux vs. time, verifying that the results are not
sensitive to the exact value of this parameter (as long as
it is small).

As pointed out in a recent invited talk,31 one of the
original motivations for calculations of this kind (such
as Ref. [2]) was a concern that the fast parallel thermal
transport of electrons would cause a very large heat flux
to arrive at the divertor plates on the electron transit
time scale. Our results confirm the previous calculations
that found that although there is a modest rise in the
heat flux on the electron transit time scale, the sheath
potential (and the potential variation along the field line)
increases to confine most of the electrons so that the bulk
of the ELM energy arrives at the target plate only on
the slower ion time scale. (Nevertheless, even this ELM
power is so large that erosion of solid target plates is a
concern, and methods of mitigating or avoiding ELMs
are being studied.)

The bulk of the ELM energy is carried by the ions,
which arrive at the target plate on the order of the ion
thermal transit timescale, τi ∼ L‖/vti ≈ 149 µs. The
reduction of source strength and temperature after 200
µs results in the abrupt drop seen in the electron heat
flux.

The parallel heat flux (parallel to the magnetic field)
on the right target plate for each species is calculated as

Qs =
1

2
ms

∫ ∞
vc,s

dv fs v
3 + (T⊥ + qsφs)

∫ ∞
vc,s

dv fs v,

(40)

where vc,s =
√

max(−2qsφs/ms, 0) accounts for the re-

flection of electrons by the sheath. The qsφs term in the
second integral models the acceleration of ions and de-
celeration of electrons as they pass through the sheath
to the divertor plate, a region that is not resolved in
our models. We have assumed that each species has a
constant perpendicular temperature T⊥ = Tped for com-
parison with the 1D Vlasov results in Ref. [4]. Note that
the pitch angle of the magnetic field is not factored into
this measure of heat flux on the target plate. The heat
flux normal to the target plate is Qs,n = Qs sin(θ), where
θ is the (usually very small) angle between the magnetic
field and the surface.

Figure 3 agrees well with the 1x+1v Vlasov and full
1x+3v PIC results in Ref. [4], providing a useful bench-
mark for these codes and supporting the accuracy of the
sheath boundary conditions and the gyrokinetic-based
model used here. (The small differences between our
1x+1v results, the Vlasov results, and the PIC results
are probably due to small differences in initial conditions
and the inclusion of collisions in the PIC code.)

C. Divertor heat flux with Boltzmann electron model

We have also investigated a model that includes the
effect of kinetic ions but assumes a Boltzmann response
for the electrons. Specifically, the electron density takes
the form

ne(z) = ne(zR) exp

(
e(φ− φs)

Te

)
, (41)

where ne(zR) is the electron density evaluated at the do-
main edge. This expression can be inverted to give an-
other algebraic equation to determine the potential, sim-
ilar to the electrostatic gyrokinetic model with a fixed
k⊥ρs0. Since the time step is set by the ions, these sim-
ulations have an execution time a factor of ∼

√
mi/me

faster than the gyrokinetic simulation. This property
makes the Boltzmann electron model useful as a test case
for code development and debugging.

The sheath potential φs can be determined by assum-
ing that fe at the target plate is a Maxwellian with tem-
perature Te. By using logical sheath boundary conditions
and quasineutrality,

φs = −Te
e

log

(√
2πΓi
nivte

)
, (42)

where Γi is the outward ion flux, and all quantities are
evaluated at the domain edge. For simplicity, we selected
Te in our simulations to be the field-line-averaged value
of the ion temperature Ti(z), but more accurate models
for Te could be used.

Figure 4 shows the parallel heat flux on the target plate
vs. time using Boltzmann electrons. As expected, kinetic
electron effects present in Fig. 3 are not resolved by this
model. When compared to a simulation using kinetic
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FIG. 4. Parallel heat flux at the divertor plate vs. time from
the Boltzmann electron model.

electrons, the main heat flux at t ∼ 100− 200 µs is pre-
dicted fairly well by the Boltzmann electron model.

The expression for the electron parallel heat flux on
the target plate is calculated as

Qe =
1

2
me

∫ ∞
vc

dv fe v
3 + (T⊥ − eφs)

∫ ∞
vc

dv fe v

= (Te + T⊥)

∫ ∞
0

dv fi v. (43)

V. CONCLUSIONS

We have used a gyrokinetic-based model to simulate
the propagation of a heat pulse along a scrape-off layer
to a divertor target plate. We have described a modi-
fication to the ion polarization term to slow down the
electrostatic shear Alfvén wave.

Our main results include the demonstration that this
gyrokinetic-based model with logical sheath boundary
conditions is able to agree well with Vlasov and full-orbit
(non-gyrokinetic) PIC simulations, without needing to
resolve the Debye length or plasma frequency. This sim-
plification allows the spatial resolution to be several or-
ders of magnitude coarser than the electron Debye length
(and the time step several orders of magnitude larger
than the plasma period) and thus leads to a much faster
calculation. Our results also confirm previous work that
the electrostatic potential in this problem varies to con-
fine most of the electrons on the same time scale as the
ions, so the main ELM heat deposition occurs on the
slower ion transit time scale.

Additionally, we have described a model using Boltz-
mann electrons that is useful for code development and
debugging. This model does not include kinetic electron

effects but runs much faster than simulations with kinetic
electrons and ions.

Although this paper focuses on electrostatic simula-
tions, we have also extended our simulations to include
magnetic fluctuations. These extensions involve a num-
ber of interesting and subtle physics and algorithm issues
that will be described in a future paper.

Since we have assumed only a single k⊥ mode in our
simulations to limit the high frequency of the electro-
static shear Alfvén wave, future work can include allow-
ing a spectrum of k⊥ modes. For 1D electromagnetic
simulations, this modification requires inverting the ∇2

⊥
operators that appear in the gyrokinetic Poisson equation
and Ampere’s law. We defer further discussion of this to
a future paper because including a magnetic component
to the fluctuations will be important when a spectrum
of very low k⊥ modes is kept in order to limit on the
frequency of the shear Alfvén wave at low k⊥.

Future work on these models can also include exten-
sions to higher spatial and velocity dimensions. An ax-
isymmetric 2D model can use a specified diffusion co-
efficient to model radial transport in the SOL. A full
3D gyrokinetic model would include turbulence, so radial
transport can be self-consistently calculated. These mod-
els could eventually include more detailed effects such as
collisions, recycling, secondary electron emission, charge-
exchange, and radiation, and could be used to study dif-
ferent types of divertor configurations, including the pos-
sible usage of liquid metal coatings.
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